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Abstract − In this paper, a new class of sets called I πgα?-closed sets is introduced and its properties
are studied in ideal topological space. Moreover I πgα?-continuity and the notion of quasi-α?-I -normal
spaces are introduced.
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1 Introduction and Preliminaries

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ ,
I ). A∗(I ) = {x ∈ X | U ∩ A /∈ I for each open neighborhood U of x} is called the local function of A
with respect to I and τ [9]. When there is no chance for confusion A∗(I ) is denoted by A∗. For every
ideal topological space (X, τ , I ), there exists a topology τ∗ finer than τ , generated by the base β(I, τ)
= {U\I | U∈ τ and I ∈ I }. In general β(I, τ) is not always a topology [8]. Observe additionally that
cl∗(A) = A∗ ∪ A [14] defines a Kuratowski closure operator for τ∗. int?(A) will denote the interior of
A in (X, τ?).

In this paper, we define and study a new notion I πgα?-closed set by using the notion of α?
I -open

set. Some new notions depending on I πgα?-closed sets such as I πgα?-open sets, I πgα?-continuity and
I πgα?-irresoluteness are also introduced and a decomposition of α?-I -continuity is given. Also by using
I πgα?-closed sets characterizations of quasi-α?-I -normal spaces are obtained. Several preservation
theorems for quasi-α?-I -normal spaces are given.

Throughout this paper, space (X, τ) (or simply X ) always means topological space on which no
separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure
of A and the interior of A are denoted by cl(A) and int(A), respectively.
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A subset A of a topological space (X, τ) is said to be regular open [13](resp. regular closed [13])
if A = int(cl(A)) (resp. A = cl(int(A))).

The finite union of regular open sets is said to be π-open [16] in (X, τ). The complement of a
π-open set is π-closed [16].

A subset A of a topological space (X, τ) is said to be α-open [10] if A ⊆ int(cl(int(A))) and the
complement of an α-open set is called α-closed [10].

The intersection of all α-closed sets containing A is called the α-closure [10] of A and is denoted
by αcl(A).

Note that αcl(A) = A ∪ cl(int(cl(A))).
A subset A of a space (X, τ) is said to be πg-closed [2] (resp. πgα-closed [1]) if cl(A) ⊆ U (resp.

αcl(A) ⊆ U) whenever A ⊆ U and U is π-open in X.
A function f : (X, τ) → (Y, σ) is said to be m-π-closed [4] if f(V) is π-closed in (Y, σ) for every

π-closed in (X, τ).
A function f : (X, τ) → (Y, σ) is said to be πg-continuous [2] (resp. πgα-continuous [1]) if f−1(V)

is πg-closed (resp. πgα-closed) in (X, τ) for every closed set V of (Y, σ).
A space (X, τ) is said to be quasi-normal [16] if for every pair of disjoint π-closed subsets A, B of

X, there exist disjoint open sets U, V of X such that A ⊆ U and B ⊆ V.
An ideal I is said to be codense [3] if τ ∩ I = ∅.
A subset A of an ideal topological space X is said to be ?-dense-in-itself [7](resp. α?-I -open or

α?
I -open [15], t-I -set [6], α-I -open [6]) if A ⊆ A? (resp. A ⊆ int?(cl(int?(A))), int(A) = int(cl?(A)), A
⊆ int(cl?(int(A)))).

The complement of α?
I -open is α?

I -closed.
A subset A of an ideal topological space X is said to be I πg-closed [11] if A?⊆ U whenever A ⊆ U

and U is π-open in X.
A function f : (X, τ , I ) → (Y, σ) is said to be I πg-continuous [11] if f−1(V) is I πg-closed in (X, τ ,

I ) for every closed set V of (Y, σ).

Lemma 1.1. [12] Let (X, τ , I) be an ideal topological space and A ⊆ X. If A ⊆ A?, then A? = cl(A?)
= cl(A) = cl?(A).

Theorem 1.2. [11] Every πg-closed set is Iπg-closed but not conversely.

Theorem 1.3. [11] For a function f : (X, τ , I) → (Y, σ), the following holds:
Every πg-continuous function is Iπg-continuous but not conversely.

Theorem 1.4. [1] Every πg-closed set is πgα-closed but not conversely.

Proposition 1.5. [6] Every α-I-open set is α-open but not conversely.

2 I πgα?-closed Sets

Theorem 2.1. For a function f : (X, τ) → (Y, σ), the following holds:
Every πg-continuous function is πgα-continuous but not conversely.

Example 2.2. Let X = {a, b, c, d}, τ ={X, ∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}}, Y = {x, y, z} and
σ = {Y, ∅, {y}, {y, z}}. Define a function f : (X, τ) → (Y, σ) as follows f(a) = f(b) = y, f(c)= x
and f(d) = z. Then f is πgα-continuous function but it is not an πg-continuous.

Definition 2.3. Let (X, τ , I) be an ideal topological space and let A be a subset of X. The union of
all α?

I -open sets contained in A is called the α?
I -interior of A and is denoted by α?

I int(A).

Definition 2.4. Let (X, τ , I) be an ideal topological space and let A be a subset of X. The intersection
of all α?

I -closed sets containing A is called the α?
I -closure of A and is denoted by α?

I cl(A).

Lemma 2.5. Let (X, τ , I) be an ideal topological space. For a subset A of X, the followings hold:

1. α?
I cl(A) = A ∪ cl?(int(cl?(A))),

2. α?
I int(A) = A ∩ int?(cl(int?(A))).
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Definition 2.6. A subset A of an ideal topological space (X, τ , I) is called Iπgα?-closed if α?
I cl(A) ⊆

U whenever A ⊆ U and U is π-open in X.
The complement of Iπgα?-closed set is said to be Iπgα?-open.

Proposition 2.7. Every α-open set is α?
I -open but not conversely.

Proof. Let A be α-open set. Then A ⊆ int(cl(int(A))) which implies A ⊆ int?(cl(int?(A))). Hence A
is α?

I -open set.

Example 2.8. Let X and τ be as in Example 2.2 and I = {∅, {a}, {b}, {a, b}}. Then {a, c} is
α?

I -open set but not an α-open set.

Theorem 2.9. Every ?-dense-in-itself and Iπgα?-closed set is a πgα-closed set.

Proof. Let A ⊆ U, and U is π-open in X. Since A is I πgα? -closed, α?
I cl(A) ⊆ U. By Lemmas 1.1

and 2.5, α?
I cl(A) = A ∪ cl?(int(cl?(A))) = A ∪ cl(int(cl(A))) = αcl(A). Then, αcl(A) ⊆ U. So A is

πgα-closed.

Theorem 2.10. Every π-open and Iπgα?-closed set is t-I-set.

Proof. α?
I cl(A) ⊆ A, since A is π-open and I πgα?-closed. We have cl?(int(cl?(A))) ⊆ A and int(cl?(A))

⊆ cl?(int(cl?(A))) ⊆ A. It implies int(cl?(A)) ⊆ int(A). Always int(A) ⊆ int(cl?(A)). Therefore int(A)
= int(cl?(A)), which shows that A is t-I -set.

Theorem 2.11. Let A be Iπgα?-closed in (X, τ , I). Then α?
I cl(A) \ A does not contain any non-empty

π-closed set.

Proof. Let F be a π-closed set such that F ⊆ α?
I cl(A) \ A. Then F ⊆ X \ A implies A ⊆ X \ F.

Therefore α?
I cl(A) ⊆ X \ F. That is F ⊆ X \ α?

I cl(A). Hence F ⊆ α?
I cl(A) ∩ (X \ α?

I cl(A))= ∅. This
shows F = ∅.
Theorem 2.12. If A is Iπgα?-closed and A ⊆ B ⊆ α?

I cl(A), then B is Iπgα?-closed.

Proof. Let A be I πgα? -closed and B ⊆ U, where U is π-open. Then A ⊆ B implies A ⊆ U. Since A is
I πgα?-closed, α?

I cl(A) ⊆ U. B ⊆ α?
I cl(A) implies α?

I cl(B) ⊆ α?
I cl(A). Therefore α?

I cl(B) ⊆ U and hence
B is I πgα?-closed.

Proposition 2.13. Let (X, τ , I) be an ideal topological space and A ⊆ X. Then the following properties
hold:

1. If A is πgα-closed, then A is Iπgα?-closed,

2. If A is Iπg-closed, then A is Iπgα?-closed.

Proof. The proof is obvious.

Remark 2.14. From Theorem 1.2, Theorem 1.4 and Proposition 2.13, we have the following diagram.
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πg-closed πgα-closed

I πg-closed I πgα? -closed

-

-
??

where none of these implications is reversible as shown in the following examples.

Example 2.15. (1) Let X and τ be as in Example 2.2. Then {c} is πgα-closed set but not an πg-
closed.
(2) In Example 2.8, {a} is Iπgα?-closed set but not πgα-closed.
(3) In Example 2.8, {c} is Iπgα?-closed set but not Iπg-closed.

Remark 2.16. The union of two Iπgα?-closed sets need not be Iπgα?-closed.

Example 2.17. In Example 2.8, {b} and {c} are Iπgα?-closed sets but their union {b, c} is not
Iπgα?-closed.

Remark 2.18. The intersection of two Iπgα?-closed sets need not be Iπgα?-closed.

Example 2.19. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}} and I =
{∅, {a}}. Then A = {a, b, c} and B = {a, b, d} are Iπgα?-closed sets but A ∩ B = {a, b} is not
Iπgα?-closed set.

Definition 2.20. [5] An ideal topological space (X, τ , I) is said to be ?-extremally disconnected if the
?-closure of every open subset of X is open.

Theorem 2.21. [5] For an ideal topological space (X, τ , I), the following properties are equivalent:

1. X is ?-extremally disconnected,

2. cl?(int(V)) ⊆ int(cl?(V)) for every subset V of X.

Theorem 2.22. Let (X, τ , I) be a ?-extremally disconnected ideal topological space. Then every subset
of X is Iπgα?-closed if and only if every π-open set is t-I-set.

Proof. Necessity: It is obvious from Theorem 2.10.
Sufficiency: Suppose that every π-open set is t-I -set. Let A be a subset of X and U be π-open such
that A ⊆ U. By hypothesis cl?(int(cl?(A))) ⊆ int(cl?(A)) ⊆ int(cl?(U)) = int(U) ⊆ U. Then α?

I cl(A)
⊆ U. So A is I πgα?-closed.

Theorem 2.23. Let (X, τ , I) be an ideal topological space. A ⊆ X is Iπgα?-open if and only if F ⊆
α?

I int(A) whenever F is π-closed and F ⊆ A.

Proof. Necessity: Let A be I πgα? -open and F be π-closed such that F ⊆ A. Then X\A ⊆ X\F where
X\F is π-open. I πgα-closedness of X\A implies α?

I cl(X\A) ⊆ X\F. Then F ⊆ α?
I int(A).

Sufficiency: Suppose F is π-closed and F ⊆ A implies F ⊆ α?
I int(A). Let X\A ⊆ U where U is π-open.

Then X\U ⊆ A where X\U is π-closed. By hypothesis X\U ⊆ α?
I int(A). That is α?

I cl(X\A) ⊆ U. So,
A is I πgα?-open.

Definition 2.24. A subset A of an ideal topological space (X, τ , I) is called NI-set if A = U ∪ V
where U is π-closed and V is α?

I -open.

Proposition 2.25. Every π-closed set is NI-set but not conversely.

Example 2.26. In Example 2.19, {a} is NI-set but not π-closed set.

Proposition 2.27. Every α?
I -open set is NI-set but not conversely.

Example 2.28. In Example 2.19, {a, c, d} is NI-set but not α?
I -open set.

Proposition 2.29. Every α?
I -open set is Iπgα?-open but not conversely.
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Proof. Let A be α?
I -open set. Then A ⊆ int?(cl(int?(V))). Assume that F is π-closed and F ⊆ A. Then

F ⊆ int?(cl(int?(V))) which implies F ⊆ A ∩ int?(cl(int?(V))) = α?
I int(A) by Lemma 2.5. Hence, by

Theorem 2.23, A is I πgα?-open.

Example 2.30. In Example 2.19, {a, d} is Iπgα?-open set but not α?
I -open set.

Theorem 2.31. For a subset A of (X, τ , I) the following conditions are equivalent:

1. A is α?
I -open,

2. A is Iπgα?-open and a NI-set.

Proof. (1) ⇒ (2) It is obvious.
(2) ⇒ (1) Let A be I πgα?-open and a NI-set. Then there exist a π-closed set U and α?

I -open set V
such that A = U ∪ V. Since U ⊆ A and A is I πgα?-open, by Theorem 2.23, U ⊆ α?

I int(A) and U ⊆
int?(cl(int?(A))). Also, V ⊆ int?(cl(int?(V))) ⊆ int?(cl(int?(A))). Then A ⊆ int?(cl(int?(A))). So A is
α?

I -open.

The following examples show that concepts of I πgα?-open set and NI-set are independent.

Example 2.32. Let (X, τ , I) be the same ideal topological space as in Example 2.19. Then {c, d} is
NI-set but not Iπgα?-open set.

Example 2.33. Let (X, τ , I) be the same ideal topological space as in Example 2.19. Then {a, c} is
Iπgα?-open set but not a NI-set.

3 I πgα?-continuity and I πgα?-irresoluteness

Definition 3.1. A function f : (X, τ , I) → (Y, σ) is said to be Iπgα?-continuous (resp. α?-I-
continuous) if f−1(V) is Iπgα?-closed (resp. α?

I -closed) in X for every closed set V of Y.

Definition 3.2. A function f : (X, τ , I) → (Y, σ, J) is said to be Iπgα?-irresolute if f−1(V) is
Iπgα?-closed in X for every Jπgα?-closed set V of Y.

Definition 3.3. A function f : (X, τ , I) → (Y, σ) is said to be NI-continuous if f−1(V) is NI-set in
(X, τ , I) for every closed set V of (Y, σ.

Theorem 3.4. A function f : (X, τ , I) → (Y, σ) is α?-I-continuous if and only if it is NI-continuous
and Iπgα?-continuous.

Proof. This is an immediate consequence of Theorem 2.31.
The composition of two I πgα?-continuous functions need not be I πgα?-continuous. Consider the

following Example:

Example 3.5. Let X = {a, b, c, d}, τ = {X, ∅, {b}, {d}, {b, d}, {b, c, d}} and I = {∅, {c}, {d},
{c, d}}. Let Y = {x, y, z}, σ = {Y, ∅, {y, z}}, J = {∅, {x}}, Z = {1, 2} and η = {Z, ∅, {1}}.
Define f : (X, τ , I) → (Y, σ, J) by f(a)= f(c)= x, f(b)= y and f(d)= z and g : (Y, σ, J) → (Z,
η) by g(x)= 1 and g(y)= g(z)= 2. Then f and g are Iπgα?-continuous. {2} is closed in (Z, η), (g ◦
f)−1({2}) = f−1(g−1({2})) = f−1({y, z}) = {b, d} which is not Iπgα?-closed in (X, τ , I). Hence g ◦ f
is not Iπgα?-continuous.

Theorem 3.6. Let f : (X, τ , I) → (Y, σ, J) and g : (Y, σ, J) → (Z, η, K) be any two functions.
Then

1. g ◦ f is Iπgα?-continuous, if g is continuous and f is Iπgα?-continuous,

2. g ◦ f is Iπgα?-continuous, if g is Jπgα?-continuous and f is Iπgα?-irresolute,

3. g ◦ f is Iπgα?-irresolute, if g is Jπgα?-irresolute and f is Iπgα?-irresolute.
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Proof. (1) Let V be closed in Z. Then g−1(V) is closed in Y, since g is continuous. I πgα?-continuity
of f implies that f−1(g−1(V)) is I πgα? -closed in X. Hence g ◦ f is I πgα?-continuous.
(2) Let V be closed in Z. Since g is J πgα?-continuous, g−1(V) is J πgα?-closed in Y. As f is I πgα?-
irresolute, f−1(g−1(V)) is I πgα?-closed in X. Hence g ◦ f is I πgα?-continuous. (3) Let V be K πgα?-
closed in Z. Then g−1(V) is J πgα?-closed in Y, since g is J πgα?-irresolute. Because f is I πgα?-irresolute,
f−1(g−1(V)) is I πgα?-closed in X. Hence g ◦ f is I πgα?-irresolute.

Remark 3.7. The following Examples show that:

1. every Iπgα?-continuous function is not πgα-continuous,

2. every Iπgα?-continuous function is not Iπg-continuous.

Example 3.8. Let (X, τ , I) be the same ideal topological space as in Example 2.8. Let Y = {x, y, z}
and σ = {Y, ∅, {y, z}}. Define a function f : (X, τ , I) → (Y, σ) as follows: f(a) = x, f(b) = f(c)= y
and f(d) = z. Then f is Iπgα?-continuous function but it is not πgα-continuous.

Example 3.9. Let (X, τ , I) be the same ideal topological space as in Example 2.8. Let Y = {x, y, z}
and σ = {Y, ∅, {y, z}}. Define a function f : (X, τ , I) → (Y, σ) as follows: f(a) = f(b) = z, f(c)= x
and f(d) = y. Then f is Iπgα?-continuous function but it is not Iπg-continuous.

Theorem 3.10. For a function f : (X, τ , I) → (Y, σ), the following properties hold:

πg-continuous πgα-continuous

I πg-continuous I πgα?-continuous

-

-

??

Proof. The proof is obvious by Remark 2.14.

4 Quasi-α?-I -normal Spaces

Definition 4.1. A space (X, τ) is said to be quasi-α-normal if for every pair of disjoint π-closed
subsets A, B of X, there exist disjoint α-open sets U, V of X such that A ⊆ U and B ⊆ V.

Definition 4.2. An ideal topological space (X, τ , I) is said to be quasi-α?-I-normal if for every pair
of disjoint π-closed subsets A, B of X, there exist disjoint α?

I -open sets U, V of X such that A ⊆ U
and B ⊆ V.

Proposition 4.3. If X is a quasi-α-normal space, then X is quasi-α?-I-normal.

Proof. It is obtained from Proposition 2.7.

Theorem 4.4. The following properties are equivalent for a space X:

1. X is quasi-α?-I-normal,

2. for any disjoint π-closed sets A and B, there exist disjoint Iπgα?-open sets U, V of X such that
A ⊆ U and B ⊆ V,

3. for any π-closed set A and any π-open set B containing A, there exists an Iπgα?-open set U such
that A ⊆ U ⊆ α?

I cl(U) ⊆ B.
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Proof. (1) ⇒ (2) The proof is obvious.
(2) ⇒ (3) Let A be any π-closed set of X and B any π-open set of X such that A ⊆ B. Then A and
X\B are disjoint π-closed subsets of X. Therefore, there exist disjoint I πgα? -open sets U and V such
that A ⊆ U and X\B ⊆ V. By the definition of I πgα?-open set, We have that X\B ⊆ α?

I int(V) and U
∩ α?

I int(V) = ∅. Therefore, we obtain α?
I cl(U) ⊆ α?

I cl(X\V) and hence A ⊆ U ⊂ α?
I cl(U) ⊆ B.

(3) ⇒ (1) Let A and B be any disjoint π-closed sets of X. Then A ⊆ X\B and X\B is π-open and hence
there exists an I πgα?-open set G of X such that A ⊆ G ⊆ α?

I cl(G) ⊆ X\B. Put U = α?
I int(G) and V

= X\ α?
I cl(G). Then U and V are disjoint α?

I -open sets of X such that A ⊆ U and B ⊆ V. Therefore,
X is quasi-α?-I -normal.

Theorem 4.5. Let f : X → Y be an Iπgα?-continuous m-π-closed injection. If Y is quasi-normal,
then X is quasi-α?-I-normal.

Proof. Let A and B be disjoint π-closed sets of Y. Since f is m-π-closed injection, f(A) and f(B) are
disjoint π-closed sets of Y. By the quasi-normality of X, there exist disjoint open sets U and V such that
f(A) ⊆ U and f(B) ⊆ V. Since f is I πgα?-continuous, then f−1(U) and f−1(V) are disjoint I πgα?-open
sets such that A ⊆ f−1(U) and B ⊆ f−1(V). Therefore X is quasi-α?-I -normal by Theorem 4.4.

Theorem 4.6. Let f : X → Y be an Iπgα?-irresolute m-π-closed injection. If Y is quasi-α?-I-normal,
then X is quasi-α?-I-normal.

Proof. Let A and B be disjoint π-closed sets of Y. Since f is m-π-closed injection, f(A) and f(B) are
disjoint π-closed sets of Y. By quasi-α?-I -normality of Y, there exist disjoint I πgα?-open sets U and
V such that f(A) ⊆ U and f(B) ⊆ V. Since f is I πgα?-irresolute, then f−1(U) and f−1(V) are disjoint
I πgα?-open sets such that A ⊆ f−1(U) and B ⊆ f−1(V). Therefore X is quasi-α?-I -normal.

Theorem 4.7. Let (X, τ , I) be an ideal topological space where I is codense. Then X is quasi-α?-I-
normal if and only if it is quasi-α-normal.

5 Conclusion

Topology is an area of Mathematics concerned with the properties of space that are preserved under
continuous deformations including stretching and bending, but not tearing. By the middle of the 20th
century, topology had become a major branch of Mathematics.

Topology as a branch of Mathematics can be formally defined as the study of qualitative prop-
erties of certain objects that are invariant under a certain kind of transformation especially those
properties that are invariant under a certain kind of equivalence and it is the study of those prop-
erties of geometric configurations which remain invariant when these configurations are subjected to
one-to-one bicontinuous transformations or homeomorphisms. Topology operates with more general
concepts than analysis. Differential properties of a given transformation are nonessential for topology
but bicontinuity is essential. As a consequence, topology is often suitable for the solution of problems
to which analysis cannot give the answer.

Though the concept of topology has been identified as a difficult territory in Mathematics, we
have taken it up as a challenge and cherishingly worked out this research study. Ideal Topology is
a generalization of topology in classical mathematics, but it also has its own unique characteristics.
It can also further up the understanding of basic structure of classical mathematics and offers new
methods and results in obtaining significant results of classical mathematics. Moreover it also has
applications in some important fields of Science and Technology.

A new class of sets called I πgα?-closed sets is introduced and its properties are studied in ideal
topological space. Moreover I πgα?-continuity and the notion of quasi-α?-I -normal spaces are intro-
duced.

References

[1] Arockiarani, I., Balachandran, K. and Janaki, C.: On contra-πgα-continuous functions, Kochi J.
Math., 3(2008), 201-209.



Journal of New Theory 2 (2015) 55-62 62

[2] Dontchev, J. and Noiri, T.: Quasi-normal spaces and πg-closed sets, Acta Math. Hungar.,
89(3)(2000), 211-219.

[3] Dontchev, J., Ganster, M. and Rose, D.: Ideal resolvability, Topology and its Applications,
93(1999), 1-16.

[4] Ekici, E. and Baker, C. W.: On πg-closed sets and continuity, Kochi J. Math., 2(2007), 35-42.

[5] Ekici, E. and Noiri, T.: ?-extremally disconnected ideal topological spaces, Acta Math. Hungar.,
122(1-2)(2009), 81-90.

[6] Hatir, E. and Noiri, T.: On decompositions of continuity via idealization, Acta Math. Hungar.,
96(4)(2002), 341-349.

[7] Hayashi, E.: Topologies defined by local properties, Math. Ann., 156(1964), 205-215.

[8] Jankovic, D. and Hamlett, T. R.: New topologies from old via ideals, Amer. Math. Monthly,
97(4)(1990), 295-310.

[9] Kuratowski, K.: Topology, Vol. 1, Academic Press, New York (1966).

[10] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[11] Rajamani, M., Inthumathi, V. and Krishnaprakash, S.: Iπg-closed sets and Iπg-continuity, Journal
of Advanced Research in Pure Mathematics, 2(4)(2010), 63-72.

[12] Renuka Devi, V., Sivaraj, D. and Tamizh Chelvam, T.: Codense and Completely codense ideals,
Acta Math. Hungar., 108(3)(2005), 197-205.

[13] Stone, M. H.: Applications of the theory of Boolean rings to general topology, Trans. Amer. Math.
Soc., 41(1937), 375-481.

[14] Vaidyanathaswamy, R.: The localization theory in set topology, Proc. Indian Acad. Sci., Sect A,
20(1944), 51-61.

[15] Viswanathan, K. and Jayasudha, J.: Some new sets and decompositions of α?-I-continuity and
AIR-continuity via idealization, Malaya J. Matematik, S(1) (2013), 17-23.

[16] Zaitsev, V.: On certain classes of topological spaces and their bicompactifications, Dokl. Akad.
Nauk. SSSR, 178(1968), 778-779.


