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Abstract − Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that
can be considered as an extension of the classical set theory. It has been used in many different
research areas, including those related to inductive machine learning and reduction of knowledge in
knowledge-based systems. Rough partial order relation and rough lattice are two important concepts
to introduce here based on RST. This paper provides some properties of rough relations, rough lattice,
rough boolean lattice and established their validity. Some results are established to illustrate the paper.
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1 Introduction

Rough set plays an important role for handling situations which are not crisp and deterministic but
associated with impreciseness in the form of indiscernibility between the objects of a set. So, in
case of dealing with some types of knowledge representation problems, rough algebraic structures are
useful. The concepts of Lattices and Boolean algebra [1] are of cardinal importance in the theory
and design of computers and of circuitry in general, besides having numerous other applications in
mathematical logic, probability theory and other fields of engineering and mathematics. Lattice is an
algebraic structure is of considerable importance, in view of its application in fields of mathematics
and computer science. The notions of rough partial order relation and rough lattice are based on RST
are needed in many applications, where experimental data are processes, in particular as a theoretical
basis for rough relation. In [2] Jouni Järvinen has proposed several direction of lattice theory for rough
set. We have also proposed lattice theory for rough set in different direction ([8],[9],[10],[11],[12]). This
paper presents the main concepts related to rough partial order relations, some of its properties and
related rough boolean algebra which are different but quite related with some special cases of Järvinen’s
work.

The remainder of this article is organized as follows. Section 2 gives account of previous work.
Our new and exciting results are described in Section 3 and Section 4. Finally, Section 5 gives the
conclusions.
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*Corresponding Author.



Journal of New Theory 2 (2015) 63-68 64

2 Definitions and Notations

2.1 Rough Set

Let U be a universe of discourse and E be an equivalence relation over U , called the indiscernibility
relation. By U/E, we denote the family of all equivalence classes induced by E on U . These classes
are referred to as categories or concepts of E and the equivalence class of an element x ∈ U , is denoted
by x/E or [x]E . The basic concept of rough set theory is the notion of an approximation space, which
is an ordered pair A = (U,E). For x, y ∈ U , if xEy then x and y are said to be indistinguishable in
A. The elements of U/E are called elementary sets in A. It is assumed that the empty set is also
elementary set for every approximation space. A definable set in A is any finite union of elementary
sets in A.

2.2 Rough Approximations

Theory of rough set was introduced by Z. Pawlak [4], assumed that set is chosen from a universe U ,
but that elements of U can be specified only upto an indiscernibility equivalence relation E on U . If a
subset X ⊆ U contains an element indiscernible from some elements not in X, then X is rough. Also
a rough set X is described by two approximations. Basically, in rough set theory, it is assumed that
our knowledge is restricted by an indiscernibility relation. An indiscernibility relation is an equiva-
lence relation E such that two elements of an universe of discourse U are E-equivalent if we cannot
distinguish these two elements by their properties known by us. By the means of an indiscernibility
relation E, we can partition the elements of U into three disjoint classes respect to any set X ⊆ U ,
defined as follows:

• The elements which are certainly in X. These are elements x ∈ U whose E-class x/E is
included in X.

• The elements which certainly are not in X. These are elements x ∈ U such that their E-class
x/E is included in Xco, which is the complement of X

• The elements which are possibly belongs to X. These are elements whose E-class intersects
with both X and Xco. In other words, x/E is not included in X nor in Xco.

From this observation, we defined lower approximation set X ↓ of X to be the set of those elements
x ∈ U whose E-class is included in X, i.e, X ↓= {x ∈ U : x/E ⊆ X} and for the upper approximation
set X ↑ of X consists of elements x ∈ U whose E-class intersect with X, i.e, X ↑= {x ∈ U : x/E∩X 6=
∅}. The difference between X ↓ and X ↑ treated as the actual area of uncertainty.

3 Rough Relation

The notion of rough relation was introduced and their properties were studied by Pawlak ([6], [7]).
Stepaniuk ([13], [14]) have established some more properties of rough relations and their applications.

Definition 3.1. Let A1 = (U1, E1) and A2 = (U2, E2) be two approximation spaces. The product of
A1 by A2 is the approximation space denoted by A = (U, S), where U = U1×U2 and the indiscernibility
relation S ⊆ (U ×U)2 is defined by (x1, y1), (x2, y2) ∈ S ⇔ (x1, x2) ∈ E1 and (y1, y2) ∈ E2, (x1, x2) ∈
U1 and (y1, y2) ∈ U2. It can be easily seen that S is an equivalence relation on U × U . The elements
(x1, y1) and (x2, y2) are indiscernible in S if and only if the elements x1 and x2 are indiscernible in E1

and so are the elements y1 and y2 in E2.

Definition 3.2. Let (U1 × U2, E) be an approximation space, where U1 and U2 are nonempty sets
and R ⊆ (U1×U2)2 be an equivalence relation. For any relation S ⊆ U1×U2 , we define two relations
L(S) and U(S) called lower and upper approximations of S respectively given by, L(S) = {(x1, x2) ∈
U1×U2 : [(x1, x2)]E ⊆ S}, U(S) = {(x1, x2) ∈ U1×U2 : [(x1, x2)]E ∩S 6= ∅}, where [(x1, x2)]E denotes
the equivalence class of relation E containing the pair (x1, x2). Rough relation of S is defined as the
pair (L(S), U(S)).
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Definition 3.3. If V and W are relations in A, then W ∗ V is a relation such that (a, b) ∈
V and (b, c) ∈ W for some b ∈ A}.

Proposition 3.4. If V, W, V1,W1 are relations in A, V1 ⊆ V and W1 ⊆ W , then W1 ∗ V1 ⊆ W ∗ V

Proof: Let (a, c) ∈ W1 ∗ V1 ⇒ ∃b ∈ A such that (a, b) ∈ V1 and (b, c) ∈ W1. Then (a, b) ∈ V
and (b, c) ∈ W so that (a, c) ∈ W ∗ V

Proposition 3.5. Let A = (U,R) be an approximation space and B = (U2, S) the approximation
product space of A×A. Then:

• [(x, y)]S = [x]E × [y]E , and

• [(y, z)]S ∗ [(x, y)]S = [(x, z)]S

Proof: The first result is trivially follows from the definition of the relation S.
For the second result let (a, c) ∈ [(y, z)]S ∗[(x, y)]S . Then there exist a, b ∈ U such that (a, b) ∈ [(x, y)]S
and (b, c) ∈ [(y, z)]S . It follows that (a, b)S(x, y) and (b, c)S(y, z). Hence aEx, bEy and cEz hold.
Consequently, (a, c) ∈ [(x, z)]S
On the other hand, let (a, c) ∈ [(x, z)]S . This gives (a, c)S(x, z). We thus get aEx and cEz. This clearly
implies (a, y)S(x, y) and (y, c)S(y, z). Hence (a, y) ∈ [(x, y)]S and (y, c) ∈ [(y, z)]S , and therefore
(a, c) ∈ [(y, z)]S ∗ [(x, y)]S

Definition 3.6. Let S = (U,E) be an approximation space and Eg be its generated relation of E, we
say that Sg = (U × U,Eg) is general approximation space of S.

Definition 3.7. [6] We consider a non-null subset M of U and a relation T on M . The rough relation
Eg(T )(M → M) is said to be Reflexive: if and only if ∀ m ∈ M, (m,m) ∈ Eg ↑ (T ). Symmetric:
if and only if ∀ m1,m2 ∈ M, (m1,m2) ∈ Eg ↑ (T ) ⇒ (m2,m1)Eg ↑ (T ). Transitive: if and only
if ∀ m1, m2, m3 ∈ M, (m1,m2) and (m2,m3)Eg ↑ (T ) ⇒ (m1,m3)Eg ↑ (T ). Antisymmetric: if and
only if ∀m1,m2 ∈ M, (m1,m2), (m2, m1) ∈ Eg ↑ (T ) ⇒ [m1]E = [m2]E . We only consider the upper
approximation as lower approximation is always subset of upper approximation.

Definition 3.8. A relation T is said to be a rough partially ordering if Eg(T ) is reflexive, symmetric
and transitive.

3.1 Rough Membership Function

Rough sets can also be defined by the rough membership function instead of approximation [5]. We
define the membership function of X with respect to E as µE

X : X → [0, 1], such that µE
X = |x/E∩X|

|x/E| ,
where || represents cardinality function on a set. The rough membership function can also be in-
terpreted as the conditional probability, and can be interpreted as a degree of certainty to which x
belongs to X. The rough membership function can be used to define the lower approximation, the
upper approximation and the boundary region of a set, as follows: E ↓ (X) = {x ∈ U : µE

X(X) =
1}, E ↑ (X) = {x ∈ U : µE

X(X) > 0} and
BNE(X) = {x ∈ U : 0 < µE

X(X) < 1}
µE

A∪B(X) ≥ max(µE
A(X), µE

B(X)) for any x ∈ U .
µE

A∩B(X) ≤ min(µE
A(X), µE

B(X)) for any x ∈ U .
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Definition 3.9. For any rough partial ordering T on a non-null subset M of U , the dominating class
of an element x in M is denoted by T≥[x]and is defined for every y in M as T≥[x](y) = rT (x, y), where

rT (x, y) = |[(x,y)]Eg∩T |
|[(x,y)]Eg | . For any rough partial ordering T on a non-null subset M of U , the dominating

class of an element x in M is denoted by T≤[x]and is defined for every y in M as T≤[x](y) = rT (y, x).

Definition 3.10. For any rough partial ordering T on a non-null subset M of U , the rough upper
bound of M is the rough set denoted by U(T, M) and is defined by U(T, M) =

⋂
x∈M

T≥[x] Here, the

operator “intersection” associates the minimum of the membership values in the constituents for each
element in M .

Definition 3.11. For any rough partial ordering T on a non-null subset M of U , the rough greatest
lower bound of M is a unique element x in L(T, M) such that L(T, M)(x) > 0 and rT (y, x) > 0 for all
elements in the support of L(T, M). The uniqueness of x is up to it equivalence class with respect to
E

Definition 3.12. A crisp subset M of U with a rough partial ordering T is said to be a rough lattice
if and only if for any subset {x, y} in M , the least upper bound (l.u.b) and the greatest lower bound
(g.l.b) exist in M . We denote the l.u.b. of {x, y} by x∨ y and the g.l.b of {x, y} by x∧ y. We say that
(M, T ) is a rough lattice on (U,E) and denoted it by L.

Example-1: Let A = (U,E) be an approximation space, where U = {a, b, c, d, e, f, g} and U/E =
{{a, b}, {c, d}, {e, f}, {g}} as shown here B = (U×U, S) = {(a, g), (b, g), (g, a), (g, b), (c, g), (d, g), (e, e),
(f, f), (e, f), (f, e), (a, c), (a, d), (b, d), (b, c), (d, a), (d, b), (c, a), (c, b), (a, e), (b, e), (a, f), (b, f), (e, a),
(e, b), (f, a), (f, b), (c, e), (d, e), (c, f), (d, f), (e, c), (e, d), (f, c), (f, d), (c, d), (d, c), (d, d), (c, c), (b, b),
(a, b), (b, a), (a, a), (g, c), (g, d), (e, g), (f, g), (g, e), (g, f), (g, g)}.
1. Let us consider two non empty subsets U1 = {a, b, c} and U2 = {f, g} of U . We take a subset
T of U1 × U2 as T = {(a, g), (b, g), (c, f), (c, g)}. The Eg ↓ (T ) = {(a, g), (b, g)} and Eg ↑ (T ) =
{(a, g), (b, g), (c, e), (d, e), (c, f), (d, f), (c, g), (d, g)}. rT (a, f) = 0 and rT (c, f) = 1

4 .
2. Let us take T = {(a, b), (c, d), (e, f), (g, g)}. Then Eg ↑ (T ) = {(e, e), (e, f), (f, f), (f, e), (c, d), (d, c),
(d, d), (c, c), (b, b), g(a, b), (b, a), (a, a), (g, g)}. It is easy to see that Rg(T ) is a rough equivalence rela-
tion.
3. Let T = {(a, g), (a, c), (c, e), (g, e), (g, g)}. Then Eg ↑ (T ) = {(a, g), (b, g), (a, c), (a, d), (b, d), (b, c),
(c, e), (d, e), (c, f), g(d, f), (g, e), (g, f), (g, g)}. So, Eg(T ) is antisymmetric.
4. Let T = {(a, g), (e, f), (c, d), (a, b), (g, g)}. Then Eg ↑ (T ) = {(a, g), (b, g), (e, e), (e, f), (f, f), (f, e),
(c, d), (d, c), (d, d), (c, c), g(b, b), (a, b), (b, a), (a, a), (g, g)} So, Eg(T ) is clearly reflexive.
Eg(T ) is antisymmetric as (e, f), (f, e) ∈ Rg ↑ (T ) and [e]E = [f ]E ; (c, d), (d, c) ∈ Rg ↑ (T ) and
[c]E = [d]E ; (a, b), (b, a) ∈ Rg ↑ (T ) and [a]E = [b]E . It is also clearly rough transitive. So, Eg(T )
is a rough partially ordered relation. if the universe is partitioned into at least three non singleton
equivalence classes which will give ultimately ” rough boolean lattice”.

4 Rough Boolean Lattice

Let R be a reflexive relation on U and X ⊆ U . The set R(X) = {y ∈ U : xRy, for some x ∈ X} is
the R-neighborhood of X. If X = {a}, then we write R(a) instead of R({a}). The approximations
are defined as XR = {x ∈ U : R(x) ⊆ X} and XR = {x ∈ U : R(x) ∩ X 6= ∅}. A set X ⊆ U is
called R-closed if R(X) = X, and an element x ∈ U is R-closed, if its singleton set {x} is R-closed.
The set of R-closed points is denoted by S. Let us assume that (U ;E) is an indiscernibility space.
The set of lower approximations BE(U) = {XE : X ⊆ U} and the set of upper approximations
BE(U) = {XE : X ⊆ U} coincide, so we denote this set simply by BE(U). The set BE(U) is a
complete Boolean sublattice of (P (U),⊆), where P (U) denotes the set of all subsets of U . This means
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that BE(U) forms a complete field of sets. Complete fields of sets are in one-to-one correspondence
with equivalence relations, meaning that for each complete field of sets F on U , we can define an
equivalence E such that BE(U) = F . Note that S and all its subsets belong to BE(U), meaning
that P (S) is a complete sublattice of BE(U), and therefore in this sense S can be viewed to consist of
completely defined objects. Each object in S can be separated from other points of U by the information
provided by the indiscernibility relation E, meaning that for any x ∈ S and X ⊆ U, x ∈ XE if and
only if x ∈ XE . The rough set of X is the equivalence class of all Y ⊆ U such that YE = XE

and Y E = XE . Since each rough set is uniquely determined by the approximation pair, one can
represent the rough set of X as (XE , XE) . This is known as increasing representation [3]. This
representations induce the sets IRE(U) = {(XE , XE) : X ⊆ U}. The set IRE(U) can be ordered
point wise (XE , XE) ≤ (YE , Y E) ⇔ XE ⊆ YE . Therefore, IRE(U) can form completely distributive
lattice. As shown in [8], IRE(U) is a complete sublattice of P (U) × P (U) ordered by the point wise
set-inclusion relation, meaning that IRE(U) is an algebraic completely distributive lattice such that∧{(XE , XE) : X ⊆ H} = (

⋂
X∈H

XE ,
⋂

X∈H

XE) and
∨{(XE , XE) : X ⊆ H} = (

⋃
X∈H

XE ,
⋃

X∈H

XE) for

all H ⊆ IRE(U).
Now we consider the rough lattice and rough boolean algebra which are parallel to fuzzy lattice and
fuzzy boolean algebra [15].

Definition 4.1. A complemented distributive rough lattice (M, T ) is known as rough Boolean algebra.
Every complemented rough lattice need to be bounded. So every rough Boolean algebra is necessarily
bounded rough lattice with bounds 0 and 1. Also every element a in M has an unique complement
denoted by aco

Lemma 4.2. Let L be a rough lattice on an approximation space (U,E) then for any two elements
a, b ∈ M , and b > a then rT (a, b) > 0 ⇔ a ∧ b = a ⇔ a ∨ b = b

Theorem 4.3. Let L be a rough lattice on the approximation space (U,E). Then for all a, b, c ∈ M ,
a ∧ a = a and a ∨ a = a, a ∧ b = b ∧ a and a ∨ b = b ∨ a, (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c =
a ∨ (b ∨ c), a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a

Theorem 4.4. Let L be a rough lattice on the approximation space (U,E). Then for all a, b, c ∈
M, rT ((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) > 0. rT ((a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) > 0

Definition 4.5. A rough lattice L on the approximation space (U,E) is said to be complete if every
subset of M has a l.u.b and a g.l.b. in (U,E)

Definition 4.6. A rough lattice L on the approximation space (U,E) is said to be bounded if ∃ two
elements 0, 1 ∈ M such that rT (0, x) > 0 and rT (x, 1) > 0 for all x ∈ M

Definition 4.7. A rough lattice L on the approximation space (U,E) is said to be distributive if and
only if for all a, b, c ∈ M , P1 : a∧ (b∨ c) = (a∧ b)∨ (a∧ c). P2 : a∨ (b∧ c) = (a∨ b)∧ (a∨ c). In this
connection we can show that the statement P1 , P2 are equivalent

Theorem 4.8. In a rough lattice L on the approximation space (U,E) the cancellation laws hold,
that is a ∨ b = a ∨ c ⇒ b = c and a ∧ b = a ∧ c ⇒ b = c

Theorem 4.9. In a rough distributive lattice L on the approximation space (U,E), the De Morgan’s
laws hold true. That is, (a∨ b)co = aco ∧ bco and (a∧ b)co = aco ∨ bco for all a, b ∈ L, where xco stands
for the complement of x

Definition 4.10. A rough chain is a partially ordered rough set (M, T ) on the approximation space
(U,E) in which for two elements a, b ∈ L, either rT (a, b) > 0 or rT (b, a) > 0

Definition 4.11. A rough lattice L on the approximation space (U,E) is said to be modular if
a ∨ (b ∧ c) = (a ∨ b) ∧ c, whenever rT (a, c) > 0 for all a, b, c ∈ L

Lemma 4.12. Every rough chain is a distributive rough lattice and every distributive rough lattice
is modular.

Lemma 4.13. In a complemented distributive rough lattice L on the approximation space (U,E), a, b ∈
L, rT (a, b) > 0 ⇔ a ∧ bco = 0 ⇔ aco ∨ b = 1 ⇔ rT (bco, aco) > 0
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5 Conclusion

In this paper, we have presented rough lattice through a rough partial ordering relation defined on
a crisp set. We have introduced some important definitions, properties and lemmas of rough lattice,
rough ordering relation based on rough approximation spaces, giving interesting example. The rough-
ness of Boolean lattice is also studied, which is an interesting topic, we will extend it further in the
future.
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