RELATIONS ON FP-SOFT SETS APPLIED TO DECISION MAKING PROBLEMS

Irfan Deli ${ }^{1,{ }^{*}}$ irfandeli@kilis.edu.tr
Naim Çağman ${ }^{2}$ naim.cagman@gop.edu.tr
${ }^{1}$ Muallim Rifat Faculty of Education, Kilis 7 Aralık University, 79000 Kilis, Turkey
${ }^{2}$ Department of Mathematics, Gaziosmanpaşa University, 60250 Tokat, Turkey

Abstract

In this work, we first define relations on the fuzzy parametrized soft sets and study their properties. We also give a decision making method based on these relations. In approximate reasoning, relations on the fuzzy parametrized soft sets have shown to be of a primordial importance. Finally, the method is successfully applied to a problems that contain uncertainties.

Keywords - Soft sets, fuzzy sets, $F P$-soft sets, relations on $F P$-soft sets, decision making.

1 Introduction

In 1999, the concept of soft sets was introduced by Molodtsov [25] to deal with problems that contain uncertainties. After Molodtsov, the operations of soft sets are given in [4, 23, 28] and studied their properties. Since then, based on these operations, soft set theory has developed in many directions and applied to wide variety of fields. For instance; on the theory of soft sets $[2,4,5,9,20,23,24,28]$, on the soft decision making [16, 17, 18, 21, 22, 27], on the fuzzy soft sets [7, 10, 11] and soft rough sets [16] are some of the selected works. Some authors have also studied the algebraic properties of soft sets, such as $[1,3,6,19,26,29,30]$.

The fuzzy parametrized soft sets (FP-soft sets), firstly studied by Çağman et al. [8], is a fuzzy parameterized soft sets. Then, FP-soft sets theory and its applications studied in detail, for example $[12,13,14]$. In this paper, after given most of the fundamental definitions of the operations of fuzzy sets, soft sets and FP-soft sets in next section, we define relations on FP-soft sets and we also give their properties in Section 3. In Section 4, we define symmetric, transitive and reflexive relations on the FP-soft sets. In Section 5, we construct a decision making method based on the FP-soft sets. We also give an application which shows that this methods successfully works. In the final section, some concluding comments are presented.

[^0]
2 Preliminary

In this section, we give the basic definitions and results of soft set theory [25] and fuzzy set theory [31] that are useful for subsequent discussions.

Definition 2.1. [31] Let U be the universe. A fuzzy set X over U is a set defined by a membership function μ_{X} representing a mapping

$$
\mu_{X}: U \rightarrow[0,1] .
$$

The value $\mu_{X}(x)$ for the fuzzy set X is called the membership value or the grade of membership of $x \in U$. The membership value represents the degree of x belonging to the fuzzy set X. Then a fuzzy set X on U can be represented as follows,

$$
X=\left\{\left(\mu_{X}(x) / x\right): x \in U, \mu_{X}(x) \in[0,1]\right\} .
$$

Note that the set of all fuzzy sets on U will be denoted by $F(U)$.
Definition 2.2. [15] t-norms are associative, monotonic and commutative two valued functions that map from $[0,1] \times[0,1]$ into $[0,1]$. These properties are formulated with the following conditions:

1. $t(0,0)=0$ and $t\left(\mu_{X_{1}}(x), 1\right)=t\left(1, \mu_{X_{1}}(x)\right)=\mu_{X_{1}}(x), x \in E$
2. If $\mu_{X_{1}}(x) \leq \mu_{X_{3}}(x)$ and $\mu_{X_{2}}(x) \leq \mu_{X_{4}}(x)$, then $\left.t\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right) \leq t\left(\mu_{X_{3}} x\right), \mu_{X_{4}}(x)\right)$
3. $t\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=t\left(\mu_{X_{2}}(x), \mu_{X_{1}}(x)\right)$
4. $t\left(\mu_{X_{1}}(x), t\left(\mu_{X_{2}}(x), \mu_{X_{3}}(x)\right)\right)=t\left(t\left(\mu_{X_{1}}(x), \mu_{X_{2}}\right)(x), \mu_{X_{3}}(x)\right)$

Definition 2.3. [15] t-conorms or s-norm are associative, monotonic and commutative two placed functions s which map from $[0,1] \times[0,1]$ into $[0,1]$. These properties are formulated with the following conditions:

1. $s(1,1)=1$ and $s\left(\mu_{X_{1}}(x), 0\right)=s\left(0, \mu_{X_{1}}(x)\right)=\mu_{X_{1}}(x), x \in E$
2. if $\mu_{X_{1}}(x) \leq \mu_{X_{3}}(x)$ and $\mu_{X_{2}}(x) \leq \mu_{X_{4}}(x)$, then $s\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right) \leq s\left(\mu_{X_{3}}(x), \mu_{X_{4}}(x)\right)$
3. $s\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=s\left(\mu_{X_{2}}(x), \mu_{X_{1}}(x)\right)$
4. $s\left(\mu_{X_{1}}(x), s\left(\mu_{X_{2}}(x), \mu_{X_{3}}(x)\right)\right)=s\left(s\left(\mu_{X_{1}}(x), \mu_{X_{2}}\right)(x), \mu_{X_{3}}(x)\right)$
t-norm and t-conorm are related in a sense of lojical duality. Typical dual pairs of non parametrized t-norm and t-conorm are complied below:
5. Drastic product:

$$
t_{w}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)= \begin{cases}\min \left\{\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right\}, & \max \left\{\mu_{X_{1}}(x) \mu_{X_{2}}(x)\right\}=1 \\ 0, & \text { otherwise }\end{cases}
$$

2. Drastic sum:

$$
s_{w}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)= \begin{cases}\max \left\{\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right\}, & \min \left\{\mu_{X_{1}}(x) \mu_{X_{2}}(x)\right\}=0 \\ 1, & \text { otherwise }\end{cases}
$$

3. Bounded product:

$$
t_{1}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\max \left\{0, \mu_{X_{1}}(x)+\mu_{X_{2}}(x)-1\right\}
$$

4. Bounded sum:

$$
s_{1}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\min \left\{1, \mu_{X_{1}}(x)+\mu_{X_{2}}(x)\right\}
$$

5. Einstein product:

$$
t_{1.5}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\frac{\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)}{2-\left[\mu_{X_{1}}(x)+\mu_{X_{2}}(x)-\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)\right]}
$$

6. Einstein sum:

$$
s_{1.5}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\frac{\mu_{X_{1}}(x)+\mu_{X_{2}}(x)}{1+\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)}
$$

7. Algebraic product:

$$
t_{2}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)
$$

8. Algebraic sum:

$$
s_{2}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\mu_{X_{1}}(x)+\mu_{X_{2}}(x)-\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)
$$

9. Hamacher product:

$$
t_{2.5}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\frac{\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)}{\mu_{X_{1}}(x)+\mu_{X_{2}}(x)-\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)}
$$

10. Hamacher sum:

$$
s_{2.5}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\frac{\mu_{X_{1}}(x)+\mu_{X_{2}}(x)-2 \cdot \mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)}{1-\mu_{X_{1}}(x) \cdot \mu_{X_{2}}(x)}
$$

11. Minumum:

$$
t_{3}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\min \left\{\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right\}
$$

12. Maximum:

$$
s_{3}\left(\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right)=\max \left\{\mu_{X_{1}}(x), \mu_{X_{2}}(x)\right\}
$$

Definition 2.4. [25]. Let U be an initial universe set and let E be a set of parameters. Then, a pair (F, E) is called a soft set over U if and only if F is a mapping or E into the set of aft subsets of the set U.

In other words, the soft set is a parametrized family of subsets of the set U. Every set $F(\varepsilon), \varepsilon \in E$, from this family may be considered as the set of ε-elements of the soft set (F, E), or as the set of ε-approximate elements of the soft set.

It is worth noting that the sets $F(\varepsilon)$ may be arbitrary. Some of them may be empty, some may have nonempty intersection.
In this definition, E is a set of parameters that are describe the elements of the universe U. To apply the soft set in decision making subset A, B, C, \ldots of the parameters set E are needed. Therefore, Cağman and Enginoğlu [4] modified the definition of soft set as follows.
Definition 2.5. [4] Let U be a universe, E be a set of parameters that are describe the elements of U, and $A \subseteq E$. Then, a soft set F_{A} over U is a set defined by a set valued function f_{A} representing a mapping

$$
\begin{equation*}
f_{A}: E \rightarrow P(U) \text { such that } f_{A}(x)=\emptyset \text { if } x \in E-A \tag{1}
\end{equation*}
$$

where f_{A} is called approximate function of the soft set F_{A}. In other words, the soft set is a parametrized family of subsets of the set U, and therefore it can be written a set of ordered pairs

$$
F_{A}=\left\{\left(x, f_{A}(x)\right): x \in E, f_{A}(x)=\emptyset \text { if } x \in E-A\right\}
$$

The subscript A in the f_{A} indicates that f_{A} is the approximate function of F_{A}. The value $f_{A}(x)$ is a set called x-element of the soft set for every $x \in E$.
Definition 2.6. [8] Let F_{X} be a soft set over U with its approximate function f_{X} and X be a fuzzy set over E with its membership function μ_{X}. Then, a $F P-$ soft sets Γ_{X}, is a fuzzy parameterized soft set over U, is defined by the set of ordered pairs

$$
\Gamma_{X}=\left\{\left(\mu_{X}(x) / x, f_{X}(x)\right): x \in E\right\}
$$

where $f_{X}: E \rightarrow P(U)$ such that $f_{X}(x)=\emptyset$ if $\mu_{X}(x)=0$ is called approximate function and $\mu_{X}: E \rightarrow$ $[0,1]$ is called membership function of $F P-$ soft set Γ_{X}. The value $\mu_{X}(x)$ is the degree of importance of the parameter x and depends on the decision-maker's requirements.

Note that the sets of all $F P$-soft sets over U will be denoted by $F P S(U)$.

3 Relations on the FP-Soft Sets

In this section, after given the cartesian products of two FP-soft sets, we define a relations on FP-soft sets and study their desired properties.
Definition 3.1. Let $\Gamma_{X}, \Gamma_{Y} \in F P S(U)$. Then, a cartesian product of Γ_{X} and Γ_{Y}, denoted by $\Gamma_{X} \widehat{\times} \Gamma_{Y}$, is defined as

$$
\left.\Gamma_{X} \widehat{\times} \Gamma_{Y}=\left\{\left(\mu_{X \widehat{\times} Y}(x, y) /(x, y), f_{X \widehat{\times} Y}(x, y)\right):(x, y) \in E \times E\right)\right\}
$$

where

$$
f_{X \widehat{\times} Y}(x, y)=f_{X}(x) \cap f_{Y}(y)
$$

and

$$
\mu_{X \widehat{\times} Y}(x, y)=\min \left\{\mu_{X}(x), \mu_{Y}(y)\right\}
$$

Here $\mu_{X \widehat{\times} Y}(x, y)$ is a t-norm.
Example 3.2. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}, u_{9}, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\right\}, E=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right\}$, and $X=\left\{0.5 / x_{1}, 0.7 / x_{2}, 0.3 / x_{3}, 0.9 / x_{4}, 0.6 / x_{5}\right\}$ and $Y=\left\{0.9 / x_{3}, 0.1 / x_{6}, 0.7 / x_{7}, 0.3 / x_{8}\right\}$ be two fuzzy subsets of E. Suppose that

$$
\begin{aligned}
\Gamma_{X}= & \left\{\left(0.5 / x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}, u_{11}, u_{12}, u_{13}, u_{15}\right\}\right),\left(0.7 / x_{2},\left\{u_{3}, u_{7}, u_{8}, u_{14},\right.\right.\right. \\
& \left.\left.u_{15}\right\}\right),\left(0.3 / x_{3},\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}, u_{10}, u_{12}, u_{13}\right\}\right),\left(0.9 / x_{4},\left\{u_{2}, u_{4}, u_{6}, u_{8}\right.\right. \\
& \left.\left.\left.u_{12}, u_{13}\right\}\right),\left(0.6 / x_{5},\left\{u_{3}, u_{4}, u_{6}, u_{7}, u_{9}, u_{13}, u_{15}\right\}\right)\right\} \\
\Gamma_{Y}= & \left\{\left(0.9 / x_{3},\left\{u_{1}, u_{5}, u_{6}, u_{9}, u_{10}, u_{13}\right\}\right),\left(0.1 / x_{6},\left\{u_{3}, u_{5}, u_{7}, u_{8}, u_{9}, u_{11}, u_{15}\right\}\right),\right. \\
& \left.\left(0.7 / x_{7},\left\{u_{2}, u_{5}, u_{9}, u_{10}, u_{11}, u_{14}\right\}\right),\left(0.3 / x_{8},\left\{u_{2}, u_{5}, u_{8}, u_{10}, u_{12}, u_{14}\right\}\right)\right\}
\end{aligned}
$$

Then, the cartesian product of Γ_{X} and Γ_{Y} is obtained as follows

$$
\begin{aligned}
\Gamma_{X} \widehat{\otimes} \Gamma_{Y}= & \left\{\left(0.5 /\left(x_{1}, x_{3}\right),\left\{u_{1}, u_{6}, u_{13}\right\}\right),\left(0.1 /\left(x_{1}, x_{6}\right),\left\{u_{3}, u_{7}, u_{8}, u_{11}, u_{15}\right\}\right),\right. \\
& \left(0.5 /\left(x_{1}, x_{7}\right),\left\{u_{11}\right\}\right),\left(0.3 /\left(x_{1}, x_{8}\right),\left\{u_{8}, u_{12}\right\}\right),\left(0.7 /\left(x_{2}, x_{3}\right), \emptyset\right) \\
& \left(0.1 /\left(x_{2}, x_{6}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.7\left(x_{2}, x_{7}\right),\left\{u_{14}\right\}\right),\left(0.3 /\left(x_{2}, x_{8}\right)\right. \\
& \left.\left\{u_{8}, u_{14}\right\}\right),\left(0.3 /\left(x_{3}, x_{3}\right),\left\{u_{1}, u_{5}, u_{6}, u_{9}, u_{10}, u_{13}\right\}\right),\left(0.1 /\left(x_{3}, x_{6}\right)\right. \\
& \left.\left\{u_{5}, u_{9}\right\}\right),\left(0.3 /\left(x_{3}, x_{7}\right),\left\{u_{2}, u_{5}, u_{9}, u_{10}\right\}\right),\left(0.3 /\left(x_{3}, x_{8}\right)\right. \\
& \left.\left\{u_{2}, u_{5}, u_{10}, u_{12}\right\}\right),\left(0.9 /\left(x_{4}, x_{3}\right),\left\{u_{6}\right\}\right),\left(0.1 /\left(x_{4}, x_{6}\right), \emptyset\right), \\
& \left(0.7 /\left(x_{4}, x_{7}\right),\left\{u_{2}, u_{6}\right\}\right),\left(0.3 /\left(x_{4}, x_{8}\right),\left\{u_{2}, u_{8}, u_{12}\right\}\right) \\
& \left(0.6 /\left(x_{5}, x_{3}\right),\left\{u_{6}, u_{9}, u_{13}\right\}\right),\left(0.1 /\left(x_{5}, x_{6}\right),\left\{u_{3}, u_{7}, u_{9}, u_{11}, u_{15}\right\}\right) \\
& \left.\left(0.6 /\left(x_{5}, x_{7}\right),\left\{u_{2}\right\}\right),\left(0.3 /\left(x_{5}, x_{8}\right), \emptyset\right)\right\}
\end{aligned}
$$

Definition 3.3. Let $\Gamma_{X}, \Gamma_{Y} \in F P S(U)$. Then, an $F P$-soft relation from Γ_{X} to Γ_{Y}, denoted by R_{F}, is an FP-soft subset of $\Gamma_{X} \widehat{\times} \Gamma_{Y}$. Any FP-soft subset of $\Gamma_{X} \times \Gamma_{Y}$ is called a FP-relation on Γ_{X}.

Note that if $\alpha=\left(\mu_{X}(x), f_{X}(x)\right) \in \Gamma_{X}$ and $\beta=\left(\mu_{Y}(y), f_{Y}(y)\right) \in \Gamma_{Y}$, then

$$
\alpha R_{F} \beta \Leftrightarrow\left(\mu_{X \widehat{\times} Y}(x, y) /(x, y), f_{X \widehat{\times} Y}(x, y)\right) \in R_{F}
$$

Example 3.4. Let us consider the Example 3.2. Then, we define an FP-soft relation R_{F}, from Γ_{Y} to Γ_{X}, as follows

$$
\left.\alpha R_{F} \beta \Leftrightarrow \mu_{X \widehat{\times} Y}\left(x_{i}, x_{j}\right) /\left(x_{i}, x_{j}\right)\right) \geq 0.3 \quad(1 \leq i, j \leq 3)
$$

Then

$$
\begin{aligned}
R_{F}= & \left\{\left(0.5 /\left(x_{1}, x_{3}\right),\left\{u_{1}, u_{6}, u_{13}\right\}\right),\left(\left(0.5 /\left(x_{1}, x_{7}\right),\left\{u_{11}\right\}\right),\left(0.3 /\left(x_{1}, x_{8}\right),\left\{u_{8},\right.\right.\right.\right. \\
& \left.\left.u_{12}\right\}\right),\left(0.7\left(x_{2}, x_{7}\right),\left\{u_{14}\right\}\right),\left(0.3 /\left(x_{2}, x_{8}\right),\left\{u_{8}, u_{14}\right\}\right),\left(0.3 /\left(x_{3}, x_{3}\right),\left\{u_{1},\right.\right. \\
& \left.\left.u_{5}, u_{6}, u_{9}, u_{10}, u_{13}\right\}\right),\left(0.3 /\left(x_{3}, x_{7}\right),\left\{u_{2}, u_{5}, u_{9}, u_{10}\right\}\right),\left(0.3 /\left(x_{3}, x_{8}\right),\left\{u_{2},\right.\right. \\
& \left.\left.u_{5}, u_{10}, u_{12}\right\}\right),\left(0.9 /\left(x_{4}, x_{3}\right),\left\{u_{6}\right\}\right),\left(0.7 /\left(x_{4}, x_{7}\right),\left\{u_{2}, u_{6}\right\}\right),\left(0.3 /\left(x_{4}, x_{8}\right),\right. \\
& \left.\left.\left\{u_{2}, u_{8}, u_{12}\right\}\right),\left(0.6 /\left(x_{5}, x_{3}\right),\left\{u_{6}, u_{9}, u_{13}\right\}\right),\left(0.6 /\left(x_{5}, x_{7}\right),\left\{u_{2}\right\}\right)\right\}
\end{aligned}
$$

Definition 3.5. Let $\Gamma_{X}, \Gamma_{Y} \in F P S(U)$ and R_{F} be an $F P$-soft relation from Γ_{X} to Γ_{Y}. Then domain and range of R_{F} respectively is defined as

$$
\begin{aligned}
D\left(R_{F}\right) & =\left\{\alpha \in F_{A}: \alpha R_{F} \beta\right\} \\
R\left(R_{F}\right) & =\left\{\beta \in F_{B}: \alpha R_{F} \beta\right\}
\end{aligned}
$$

Example 3.6. Let us consider the Example 3.4.

$$
\begin{gathered}
D\left(R_{F}\right)=\left\{\left(0.5 / x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}, u_{11}, u_{12}, u_{13}, u_{15}\right\}\right),\left(0.7 / x_{2},\left\{u_{3}, u_{7}\right.\right.\right. \\
\left.\left.u_{8}, u_{14}, u_{15}\right\}\right),\left(0.3 / x_{3},\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}, u_{10}, u_{12}, u_{13}\right\}\right),\left(0.9 / x_{4}\right. \\
\left.\left.\left\{u_{2}, u_{4}, u_{6}, u_{8}, u_{12}, u_{13}\right\}\right),\left(0.6 / x_{5},\left\{u_{3}, u_{4}, u_{6}, u_{7}, u_{9}, u_{13}, u_{15}\right\}\right)\right\} \\
R\left(R_{F}\right)=\left\{\left(0.9 / x_{3},\left\{u_{1}, u_{5}, u_{6}, u_{9}, u_{10}, u_{13}\right\}\right),\left(0.7 / x_{7},\left\{u_{2}, u_{5},\right.\right.\right. \\
\left.\left.\left.u_{9}, u_{10}, u_{11}, u_{14}\right\}\right),\left(0.3 / x_{8},\left\{u_{2}, u_{5}, u_{8}, u_{10}, u_{12}, u_{14}\right\}\right)\right\}
\end{gathered}
$$

Definition 3.7. Let R_{F} be an FP-soft relation from Γ_{X} to Γ_{Y}. Then R_{F}^{-1} is from Γ_{Y} to Γ_{X} is defined as

$$
\alpha R_{F}^{-1} \beta=\beta R_{F} \alpha
$$

Example 3.8. Let us consider the Example 3.4. Then, $R_{F}{ }^{-1}$ is from Γ_{Y} to Γ_{X} is obtained by

$$
\begin{aligned}
R_{F}^{-1}= & \left\{\left(0.5 /\left(x_{3}, x_{1}\right),\left\{u_{1}, u_{6}, u_{13}\right\}\right),\left(\left(0.5 /\left(x_{7}, x_{1}\right),\left\{u_{11}\right\}\right),\left(0.3 /\left(x_{8}, x_{1}\right),\left\{u_{8},\right.\right.\right.\right. \\
& \left.\left.u_{12}\right\}\right),\left(0.7\left(x_{7}, x_{2}\right),\left\{u_{14}\right\}\right),\left(0.3 /\left(x_{8}, x_{2}\right),\left\{u_{8}, u_{14}\right\}\right),\left(0.3 /\left(x_{3}, x_{3}\right),\left\{u_{1},\right.\right. \\
& \left.\left.u_{5}, u_{6}, u_{9}, u_{10}, u_{13}\right\}\right),\left(0.3 /\left(x_{7}, x_{3}\right),\left\{u_{2}, u_{5}, u_{9}, u_{10}\right\}\right),\left(0.3 /\left(x_{8}, x_{3}\right),\left\{u_{2},\right.\right. \\
& \left.\left.u_{5}, u_{10}, u_{12}\right\}\right),\left(0.9 /\left(x_{3}, x_{4}\right),\left\{u_{6}\right\}\right),\left(0.7 /\left(x_{7}, x_{4}\right),\left\{u_{2}, u_{6}\right\}\right),\left(0.3 /\left(x_{8}, x_{4}\right),\right. \\
& \left.\left.\left\{u_{2}, u_{8}, u_{12}\right\}\right),\left(0.6 /\left(x_{3}, x_{5}\right),\left\{u_{6}, u_{9}, u_{13}\right\}\right),\left(0.6 /\left(x_{7}, x_{5}\right),\left\{u_{2}\right\}\right)\right\}
\end{aligned}
$$

Proposition 3.9. Let $R_{F_{1}}$ and $R_{F_{2}}$ be two FP-soft relations. Then

1. $\left(R_{F_{1}}^{-1}\right)^{-1}=R_{F_{1}}$
2. $R_{F_{1}} \subseteq R_{F_{2}} \Rightarrow R_{F_{1}}^{-1} \subseteq R_{F_{2}}^{-1}$

Proof:

1. $\alpha\left(R_{F_{1}}^{-1}\right)^{-1} \beta=\beta R_{F_{1}}^{-1} \alpha=\alpha R_{F_{1}} \beta$
2. $\alpha R_{F_{1}} \beta \subseteq \alpha R_{F_{2}} \beta \Rightarrow \beta R_{F_{1}}^{-1} \alpha \subseteq \beta R_{F_{2}}^{-1} \alpha \Rightarrow R_{F_{1}}^{-1} \subseteq R_{F_{2}}^{-1}$

Definition 3.10. If $R_{F_{1}}$ is a fuzzy parametrized soft relation from Γ_{X} to Γ_{Y} and $R_{F_{2}}$ is a fuzzy parametrized soft relation from Γ_{Y} to Γ_{Z}, then a composition of two FP-soft relations $R_{F_{1}}$ and $R_{F_{2}}$ is defined by

$$
\alpha\left(R_{F_{1}} \circ R_{F_{2}}\right) \gamma=\left(\alpha R_{F_{1}} \beta\right) \wedge\left(\beta R_{F_{2}} \gamma\right)
$$

Proposition 3.11. Let $R_{F_{1}}$ and $R_{F_{2}}$ be two FP-soft relation from Γ_{X} to Γ_{Y}. Then, $\left(R_{F_{1}} \circ R_{F_{2}}\right)^{-1}=$ $R_{F_{2}}^{-1} \circ R_{F_{1}}^{-1}$

Proof:

$$
\begin{aligned}
\left.\alpha\left(R_{F_{1}} \circ R_{F_{2}}\right)^{-1}\right) \gamma & =\gamma\left(R_{F_{1}} \circ R_{F_{2}}\right) \alpha \\
& =\left(\gamma R_{F_{1}} \beta\right) \wedge\left(\beta R_{F_{2}} \alpha\right) \\
& =\left(\beta R_{F_{2}} \alpha\right) \wedge\left(\gamma R_{F_{1}} \beta\right) \\
& =\left(\alpha R_{F_{2}}^{-1} \beta\right) \wedge\left(\beta R_{F_{1}}^{-1} \gamma\right) \\
& =\alpha\left(R_{F_{2}}^{-1} \circ R_{F_{1}}^{-1}\right) \gamma
\end{aligned}
$$

Therefore we obtain

$$
\left(R_{F_{1}} \circ R_{F_{2}}\right)^{-1}=R_{F_{2}}^{-1} \circ R_{F_{1}}^{-1}
$$

Definition 3.12. An FP-soft relation R_{F} on Γ_{X} is said to be an $F P$-soft symmetric relation if $\alpha R_{F_{1}} \beta \Rightarrow \beta R_{F_{1}} \alpha, \forall \alpha, \beta \in \Gamma_{X}$.

Definition 3.13. An FP-soft relation R_{F} on Γ_{X} is said to be an $F P$-soft transitive relation if $R_{F} \circ$ $R_{F} \subseteq R_{F}$, that is, $\alpha R_{F} \beta$ and $\beta R_{F} \gamma \Rightarrow \alpha R_{F} \gamma, \forall \alpha, \beta, \gamma \in \Gamma_{X}$.

Definition 3.14. An $F P$-soft relation R_{F} on Γ_{X} is said to be an $F P$-soft reflexive relation if $\alpha R_{F} \alpha, \forall \alpha \in$ Γ_{X}.

Definition 3.15. An FP-soft relation R_{F} on Γ_{X} is said to be an $F P$-soft equivalence relation if it is symmetric, transitive and reflexive.

Example 3.16. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}\right\}, E=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right.$, $\left.x_{6}, x_{7}, x_{8}\right\}$ and $X=\left\{0.5 / x_{1}, 0.7 / x_{2}, 0.3 / x_{3}\right\}$ be a fuzzy subsets over E. Suppose that

$$
\begin{aligned}
\Gamma_{X}= & \left\{\left(0.5 / x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right),\left(0.7 / x_{2},\left\{u_{3}, u_{7}, u_{8}\right\}\right),\right. \\
& \left.\left(0.3 / x_{3},\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}\right\}\right)\right\}
\end{aligned}
$$

Then, a cartesian product on Γ_{X} is obtained as follows

$$
\begin{aligned}
\Gamma_{X} \widehat{\times} \Gamma_{X}= & \left\{\left(0.5 /\left(x_{1}, x_{1}\right),\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right),\right. \\
& \left(0.5 /\left(x_{1}, x_{2}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.3 /\left(x_{1}, x_{3}\right),\left\{u_{1}, u_{4}, u_{6}\right\}\right) \\
& \left(0.5 /\left(x_{2}, x_{1}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.7 /\left(x_{2}, x_{2}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right) \\
& \left.\left(0.3 /\left(x_{3}, x_{1}\right),\left\{u_{1}, u_{4}, u_{6}\right\}\right),\left(0.3 /\left(x_{3}, x_{3}\right),\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}\right\}\right)\right\}
\end{aligned}
$$

Then, we get a fuzzy parametrized soft relation R_{F} on F_{X} as follows

$$
\left.\alpha R_{F} \beta \Leftrightarrow \mu_{X \widehat{\times} Y}\left(x_{i}, x_{j}\right) /\left(x_{i}, x_{j}\right)\right) \geq 0.3 \quad(1 \leq i, j \leq 3)
$$

Then

$$
\begin{aligned}
R_{F}= & \left\{\left(0.5 /\left(x_{1}, x_{1}\right),\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right),\left(0.5 /\left(x_{1}, x_{2}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right),\right. \\
& \left(0.3 /\left(x_{1}, x_{3}\right),\left\{u_{1}, u_{4}, u_{6}\right\}\right),\left(0.5 /\left(x_{2}, x_{1}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right) \\
& \left(0.7 /\left(x_{2}, x_{2}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.3 /\left(x_{3}, x_{1}\right),\left\{u_{1}, u_{4}, u_{6}\right\}\right) \\
& \left.\left(0.3 /\left(x_{3}, x_{3}\right),\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}\right\}\right)\right\}
\end{aligned}
$$

R_{F} on Γ_{X} is an $F P$-soft equivalence relation because it is symmetric, transitive and reflexive.
Proposition 3.17. If R_{F} is symmetric if and only if R_{F}^{-1} is so.
Proof: If R_{F} is symmetric, then $\alpha R_{F}^{-1} \beta=\beta R_{F} \alpha=\alpha R_{F} \beta=\beta R_{F}^{-1} \alpha$. So, R_{F}^{-1} is symmetric.
Conversely, if R_{F}^{-1} is symmetric, then $\alpha R_{F} \beta=\alpha\left(R_{F}^{-1}\right)^{-1} \beta=\beta\left(R_{F}^{-1}\right) \alpha=\alpha\left(R_{F}^{-1}\right) \beta=\beta R_{F} \alpha$ So, R_{F} is symmetric.

Proposition 3.18. R_{F} is symmetric if and only if $R_{F}^{-1}=R_{F}$
Proof: If R_{F} is symmetric, then $\alpha R_{F}^{-1} \beta=\beta R_{F} \alpha=\alpha R_{F} \beta$. So, $R_{F}^{-1}=R_{F}$.
Conversely, if $R_{F}^{-1}=R_{F}$, then $\alpha R_{F} \beta=\alpha R_{F}^{-1} \beta=\beta R_{F} \alpha$. So, R_{F} is symmetric.
Proposition 3.19. If $R_{F_{1}}$ and $R_{F_{2}}$ are symmetric relations on Γ_{X}, then $R_{F_{1}} \circ R_{F_{2}}$ is symmetric on Γ_{X} if and only if $R_{F_{1}} \circ R_{F_{2}}=R_{F_{2}} \circ R_{F_{1}}$

Proof: If $R_{F_{1}}$ and $R_{F_{2}}$ are symmetric, then it implies $R_{F_{1}}^{-1}=R_{F_{1}}$ and $R_{F_{2}}^{-1}=R_{F_{2}}$. We have $\left(R_{F_{1}} \circ R_{F_{2}}\right)^{-1}=R_{F_{2}}^{-1} \circ R_{F_{1}}^{-1}$. then $R_{F_{1}} \circ R_{F_{2}}$ is symmetric. It implies $R_{F_{1}} \circ R_{F_{2}}=\left(R_{F_{1}} \circ R_{F_{2}}\right)^{-1}=$ $R_{F_{2}}^{-1} \circ R_{F_{1}}^{-1}=R_{F_{2}} \circ R_{F_{1}}$.

Conversely, $\left(R_{F_{1}} \circ R_{F_{2}}\right)^{-1}=R_{F_{2}}^{-1} \circ R_{F_{1}}^{-1}=R_{F_{2}} \circ R_{F_{1}}=R_{F_{1}} \circ R_{F_{2}}$. So, $R_{F_{1}} \circ R_{F_{2}}$ is symmetric.

Corollary 3.20. If R_{F} is symmetric, then R_{F}^{n} is symmetric for all positive integer n, where

$$
R_{F}^{n}=\underbrace{R_{F} \circ R_{F} \circ \ldots \circ R_{F}}_{n \text { times }}
$$

Proposition 3.21. If R_{F} is transitive, then R_{F}^{-1} is also transitive.

Proof:

$$
\begin{aligned}
\alpha R_{F}^{-1} \beta & =\beta R_{F} \alpha \supseteq \beta\left(R_{F} \circ R_{F}\right) \alpha \\
& =\left(\beta R_{F} \gamma\right) \wedge\left(\gamma R_{F} \alpha\right) \\
& =\left(\gamma R_{F} \alpha\right) \wedge\left(\beta R_{F} \gamma\right) \\
& =\left(\alpha R_{F}^{-1} \gamma\right) \wedge\left(\gamma R_{F}^{-1} \beta\right) \\
& =\alpha\left(R_{F}^{-1} \circ R_{F}^{-1}\right) \beta
\end{aligned}
$$

So, $R_{F}^{-1} \circ R_{F}^{-1} \subseteq R_{F}^{-1}$. The proof is completed.
Proposition 3.22. If R_{F} is transitive then $R_{F} \circ R_{F}$ is so.

Proof:

$$
\begin{aligned}
\alpha\left(R_{F} \circ R_{F}\right) \beta & =\left(\alpha R_{F} \gamma\right) \wedge\left(\gamma-R_{F} \beta\right) \\
& =\alpha\left(R_{F} \circ R_{F}\right) \gamma \wedge \gamma\left(R_{F} \circ R_{F}\right) \beta \\
& =\alpha\left(R_{F} \circ R_{F} \circ R_{F} \circ R_{F}\right) \beta
\end{aligned}
$$

So, $\alpha\left(R_{F} \circ R_{F} \circ R_{F} \circ R_{F}\right) \beta \subseteq \alpha\left(R_{F} \circ R_{F}\right) \beta$. The proof is completed.
Proposition 3.23. If R_{F} is reflexive then R_{F}^{-1} is so.
Proof: $\alpha R_{F}^{-1} \beta=\beta R_{F} \alpha \subseteq \alpha R_{F} \alpha=\alpha R_{F}^{-1} \alpha$ and $\beta R_{F}^{-1} \alpha=\alpha R_{F} \beta \subseteq \alpha R_{F} \alpha=\alpha R_{F}^{-1} \alpha$. The proof is completed.
Proposition 3.24. If R_{F} is symmetric and transitive, then R_{F} is reflexive.
Proof: Proof can be made easily by using Definition 4.1, Definition 4.2 and Definition 4.3.
Definition 3.25. Let $\Gamma_{X} \in F P S(U), R_{F}$ be an $F P$-soft equivalence relation on Γ_{X} and $\alpha \in R_{F}$. Then, an equivalence class of α, denoted by $[\alpha]_{R_{F}}$, is defined as

$$
[\alpha]_{R_{F}}=\left\{\beta: \alpha R_{F} \beta\right\}
$$

Example 3.26. Let us consider the Example 3.16. Then an equivalence class of $\left(x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right)$ will be as follows.

$$
\begin{aligned}
{\left[\left(0.5 / x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right)\right]_{R_{F}}=} & \left\{\left(0.5 / x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right)\right. \\
& \left(0.7 / x_{2},\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.3 / x_{3}\right. \\
& \left.\left.\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}\right\}\right)\right\}
\end{aligned}
$$

4 Decision Making Method

In this section, we construct a soft fuzzification operator and a decision making method on FP-soft relations.

Definition 4.1. Let $\Gamma_{X} \in F P S(U)$ and R_{F} be a $F P$-soft relation on Γ_{X}. Then fuzzification operator, denoted by $s_{R_{F}}$, is defined by

$$
s_{R_{F}}: R_{F} \rightarrow F(U), \quad s_{R_{F}}(X \times X, U)=\left\{\mu_{R_{F}}(u) / u: u \in U\right\}
$$

where

$$
\mu_{R_{F}}(u)=\frac{1}{|X \times X|} \sum_{j} \sum_{i} \mu_{R_{F}}\left(x_{i}, x_{j}\right) \chi(u)
$$

and where

$$
\chi(u)= \begin{cases}1, & u \in f_{R_{F}}\left(x_{i}, x_{j}\right) \\ 0, & u \notin f_{R_{F}}\left(x_{i}, x_{j}\right)\end{cases}
$$

Note that $|X \times X|$ is the cardinality of $X \times X$.

Now; we can construct a decision making method on FP-soft relation by the following algorithm;

1. construct a feasible fuzzy subset X over E,
2. construct a FP-soft set Γ_{X} over U,
3. construct a FP-soft relation R_{F} over Γ_{X} according to the requests,
4. calculate the fuzzification operator $s_{R_{F}}$ over R_{F},
5. select the objects, from $s_{R_{F}}$, which have the largest membership value.

Example 4.2. A customer, Mr. X, comes to the auto gallery agent to buy a car which is over middle class. Assume that an auto gallery agent has a set of different types of car $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}\right\}$, which may be characterized by a set of parameters $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. For $i=1,2,3,4$ the parameters x_{i} stand for "safety", "cheap", "modern" and "large", respectively. If Mr. X has to consider own set of parameters, then we select a car on the basis of the set of customer parameters by using the algorithm as follows.

1. $M r X$ constructs a fuzzy sets X over E,
$X=\left\{0.5 / x_{1}, 0.7 / x_{2}, 0.3 / x_{3}\right\}$
2. $M r X$ constructs a FP-soft set Γ_{X} over U,

$$
\begin{aligned}
\Gamma_{X}= & \left\{\left(0.5 / x_{1},\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right),\left(0.7 / x_{2},\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.3 / x_{3},\right.\right. \\
& \left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{6}, u_{9}\right\}
\end{aligned}
$$

3. the fuzzy parametrized soft relation R_{F} over Γ_{X} is calculated according to the $M r X$'s requests (The car must be a over middle class, it means the membership degrees are over 0.5),

$$
\begin{aligned}
R_{F}= & \left\{\left(0.5 /\left(x_{1}, x_{1}\right),\left\{u_{1}, u_{3}, u_{4}, u_{6}, u_{7}, u_{8}\right\}\right),\left(0.5 /\left(x_{1}, x_{2}\right),\left\{u_{3}, u_{7}\right.\right.\right. \\
& \left.\left.\left.u_{8}\right\}\right),\left(0.5 /\left(x_{2}, x_{1}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right),\left(0.7 /\left(x_{2}, x_{2}\right),\left\{u_{3}, u_{7}, u_{8}\right\}\right)\right\}
\end{aligned}
$$

4. the soft fuzzification operator $s_{R_{F}}$ over R_{F} is calculated as follows

$$
\begin{aligned}
s_{R_{F}}= & \left\{\left(0.055 / u_{1}, 0.0 / u_{2}, 0.244 / u_{3}, 0.055 / u_{4}, 0.0 / u_{5}, 0.055 / u_{6}, 0.244 / u_{7}\right.\right. \\
& \left.\left.0.244 / u_{8}\right\}\right\}
\end{aligned}
$$

5. now, select the optimum alternative objects u_{3}, u_{7} and u_{8} which have the biggest membership degree 0.244 among the others.

5 Conclusion

We first gave most of the fundamental definitions of the operations of fuzzy sets, soft sets and FP-soft sets are presented. We then defined relations on FP-soft sets and studied some of their properties. We also defined symmetric, transitive and reflexive relations on the FP-soft sets. Finally, we construct a decision making method and gave an application which shows that this method successfully works. We have used a t-norm, which is minimum operator, the above relation. However, application areas the relations can be expanded using the above other norms in the future.

References

[1] Acar, U. Koyuncu, F. and Tanay, B. Soft sets and soft rings, Comput. Math. Appl. 59, 3458-3463, 2010.
[2] Ali, M.I. Feng, F. Liu, X. Min, W.K. and Shabir, M. On some new operations in soft set theory, Comput. Math. Appl. 57, 1547-1553, 2009.
[3] Aktas, H. and C̣ağman, N. Soft sets and soft groups, Inform. Sci. 177, 2726-2735, 2007.
[4] C̣ağman, N. and Enginoğlu, S. Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207, 848-855, 2010.
[5] C̣ağman, N. and Enginoğlu, S. Soft matrix theory and its decision making, Comput. Math. Appl. 59, 3308-3314, 2010.
[6] C.ağman, N. Çıtak,, F. and Aktaṣ, H. Soft int-group and its applications to group theory, Neural Computing and Applications 21, 151-158, 2012.
[7] C̣ağman, N. and Enginoğlu, S. Fuzzy soft matrix theory and its applications in decision making, Iranian Journal of Fuzzy Systems, 9/1, 109-119, 2012.
[8] C Cağman, N. Çıtak, F. and Enginoğlu, S. FP-soft set theory and its applications, Annals of Fuzzy Mathematics and Informatics 2/2, 219-226, 2011.
[9] C̣ağman, N. Karataş, S. and Enginoğlu, S. Soft Topology, Computers and Mathematics with Applications 62, 351-358, 2011.
[10] C̣ağman, N. Çıtak, F. and Enginoğlu, S. Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems 1, 21-35, 2010.
[11] C̣ağman, N. Enginoğlu, S. and C̣ıtak, F. Fuzzy Soft Set Theory and Its Applications, Iran. J. Fuzzy Syst. 8/3, 137-147, 2011.
[12] C̣ağman, N. Deli, I. Means of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, (In Press)
[13] Cağman, N. Deli, I. Product of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, (In Press)
[14] Deli, I. Means of Fuzzy Parameterızed Soft Sets and its Applications (In Turkish), Masters Thesis, Gaziosmanpasa University, Graduate School of Natural and Applied Science, 2010.
[15] D. Dubois, and H. Prade, Fuzzy Set and Systems: Theory and Applications, Academic Press, New York, 1980.
[16] Feng, F. Liu, X.Y. Leoreanu-Fotea, V. Jun, Y.B. Soft sets and soft rough sets, Inform. Sci. 181/6, 1125-1137, 2011.
[17] Feng, F. Jun, Y.B. Liu, X. and Li, L. An adjustable approach to fuzzy soft set based decision making, J. Comput. App. Math. 234, 10-20, 2010.
[18] Feng, F. Li, L. C̣ağman, N. Generalized uni-int decision making schemes based on choice value soft sets, European Journal of Operational Research 220, 162-170, 2012.
[19] Jun, Y.B. Lee, K.J. and Khan, A. Soft ordered semigroups, Math. Logic Q. 56/1, 42-50, 2010.
[20] Karaaslan, F. Çağman N. and Enginoğlu, S. Soft Lattices, Journal of New Results in Science 1, 5-17, 2012.
[21] Kovkov, D.V. Kolbanov, V.M. and Molodtsov, D.A. Soft sets theory-based optimization, J. Comput. Sys. Sc. Int. 46/6, 872-880, 2007.
[22] Maji, P.K. Roy, A.R. and Biswas, R. An application of soft sets in a decision making problem, Comput. Math. Appl. 44, 1077-1083, 2002.
[23] Maji, P.K. Biswas, R. and Roy, A.R. Soft set theory, Comput. Math. Appl. 45, 555-562, 2003.
[24] Majumdar, P. and Samanta, S.K. Generalised fuzzy soft sets, Comput. Math. Appl. 59, 1425-1432, 2010.
[25] Molodtsov, D.A. Soft set theory-first results, Comput. Math. Appl. 37, 19-31, 1999.
[26] Park, C.H. Jun, Y.B. and Öztürk, M.A. Soft WS-algebras, Commun. Korean Math. Soc. 23/3, 313-324, 2008.
[27] Roy, A.R. and Maji, P.K. A fuzzy soft set theoretic approach to decision making problems, J. Comput. App. Math. 203, 412-418, 2007.
[28] Sezgin, A. and Atagün, A.O. On operations of soft sets, Comput. Math. Appl. 61/5, 1457-1467, 2011.
[29] Sezgin, A. Atagün, A.O. and Çağman N. Soft intersection near-rings with its applications, Neural Computing and Applications 21, 221-229, 2012.
[30] Sezgin, A. Atagün, A.O. and Çağman N. Union soft substructures of near-rings and N-groups, Neural Computing and Applications 21, 133-143, 2012.
[31] Zadeh, L.A. Fuzzy Sets, Inform. and Control 8, 338-353, 1965.
[32] Zimmermann, H.J. Fuzzy Set Theory and its applications. Kluwer Academic, 2th edition, Dordrecht, 1991.

[^0]: ${ }^{* *}$ Edited by Oktay Muhtaroğlu (Area Editor) and Umut Orhan (Associate Editor-in-Chief).

 * Corresponding Author.

