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Abstract − The present paper studies the relation between the point-line displacement and the
equiform transformation in Euclidean 3-space R3. A point-line can be transformed into another point-
line via an equiform transformation. Observing that a point-line is nothing but a line element when
its reference point is the origin of the coordinate system, we show that this transformation can also be
performed by using dual quaternions.
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1 Introduction

In kinematics, a point-line is represented by an oriented (directed) line and an incident point on this
line. The point-line in kinematics has many implementation areas in manufacturing. Zhang and Ting
[8] examine the point-line positions and displacement with the help of dual quaternion algebra. On the
other hand, Odehnal, Pottmann and Wallner [1] investigate Plücker coordinates of the line elements
in Euclidean three-space R3. Also, the relation between the point-line displacement and the equiform
transformation in Minkowski 3-space is studied in [7].

Our interest in this paper is to investigate the relation between point-line representations and
equiform kinematics in Euclidean 3-space R3. In Section 2, we give dual quaternions and some of their
algebraic properties. Then in Section 3, we give the point-line operator, the equiform transformation
and the Plücker coordinates of line elements in Euclidean 3-space R3. We examined the similarity
between a point-line and a line element. Finally, we introduce the point-line operator which transforms
one point-line to another.

2 Preliminaries

In this section, we give some definitions and fundamental facts about Euclidean three-space R3, that
will be used through the paper.
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2.1 Some Properties of Euclidean 3-space R3

Theorem 2.1. Let ~u, ~v and ~w be two vectors in Euclidean three-space R3. Then,
i. ~u × (~v × ~w) = 〈~u, ~w〉~v − 〈~u, ~v〉 ~w,

ii. 〈~u × ~v, ~u × ~v〉 = 〈~u, ~u〉 〈~v, ~v〉 − 〈~u, ~v〉2,
where ~u = (u1, u2, u3), ~v = (v1, v2, v3) and

~u× ~v =

∣∣∣∣∣∣

~e1 ~e2 ~e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

is the vector product in R3.

Let Rm
n be the set of matrices of m rows and n columns.

Definition 2.2. Let A = [aij ] ∈ Rm
n and B = [bjk] ∈ Rn

p . Matrix multiplication is defined as

AB =




n∑

j=1

aijbjk


 . (1)

Note that AB is an m× p matrix.

Definition 2.3. An n × n identity matrix with respect to matrix multiplication, denoted by In, is
given by

In =




1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1




n×n

. (2)

Note that for every A ∈ Rn
n, InA = AIn = A.

Definition 2.4. A matrix A ∈ Rn
n is called invertible if there exists an n × n matrix B such that

AB = BA = In. Then B is called the inverse of A and is denoted by A−1.

Definition 2.5. The transpose of a matrix A = [aij ] ∈ Rm
n is denoted by AT and defined as AT =

[aji] ∈ Rn
m.

Definition 2.6. A matrix A ∈ Rn
n is called orthogonal matrix if A−1 = AT .

2.2 Dual Quaternions

In analogy with the complex numbers, W. K. Clifford, defined [2] the dual numbers and showed that
they form an algebra. As the dual numbers are defined by

D = {A = a + εa∗ | a, a∗ ∈ R} (3)
= {A = (a, a∗) | a, a∗ ∈ R} , (4)

where ε is the dual symbol subjected to the rules

ε 6= 0, 0ε = ε0 = 0, 1ε = ε1 = ε, ε2 = 0.

The set D of dual numbers is a commutative ring with the operations (+) and (·).
The algebra

H = {q = q0 + q1~e1 + q2~e2 + q3~e3 | q0, q1, q2, q3 ∈ R}
of quaternions is defined as the four-dimensional vector space over R having basis {1, ~e1, ~e2, ~e3}
with the following properties:

1) (~e1)
2 = (~e2)

2 = (~e3)
2 = 1,

2) ~e1~e2 = −~e2~e1 = ~e3, ~e2~e3 = −~e3~e2 = ~e1, ~e3~e1 = −~e1~e3 = ~e2.
(5)
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It is clear that H is an associative and not commutative algebra and 1 is the identity element of H.
H is called quaternion algebra (see [4] for quaternions).

Similarly, as a consequence of this definition, a dual quaternion Q can also be written as

Q = q + εq∗,

where q and q∗ are quaternions.
A dual quaternion

Q = q + εq∗

is characterized by the following properties in [4]:
Scalar and vector parts of a dual quaternion Q = A0 + A1~e1 + A2~e2 + A3~e3 are denoted by SQ = A0

and ~VQ = A1~e1 + A2~e2 + A3~e3, respectively. The basis {1, ~e1, ~e2, ~e3} have the same multiplication
properties of basis elements in real quaternions.
Two dual quaternions Q and P obey the following multiplication rule,

QP = (qp) + ε (qp∗ + pq∗)

where P = p + εp∗, p and p∗ are quaternions.
Scalar product of quaternions Q and P is given by

〈Q, P 〉 = 〈P, Q〉
= 〈q, p〉+ ε (〈q, p∗〉+ 〈q∗, p〉) . (6)

3 Point-line Displacement with Equiform Transfor-

mations of R3

In [1], a point-line is represented by an oriented (directed) line and an incident point on this line.
Moreover, an oriented (directed) line can be represented with a unit line vector or signed Plücker
coordinates. Thus, we can say the point-line representation can be built up as a dual vector or signed
Plücker coordinates.

Let L be an oriented (directed) line and P be a reference point in Euclidean three-space R3. If
we take N as the foot of the perpendicular from P to the directed line L and E is an incident on
this directed line L, then the distance h from N to E depends on the location of E and the oriented
(directed) line L, (see Fig. 1).

Figure 1. Point-line representation (7)

The oriented (directed) line L passing through points E and N can be represented by a unit dual
vector.
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Let ~A = ~a + ε−→a 0 be a unit dual vector satisfying 〈~a, ~a〉 = 1 and 〈~a,−→a 0〉 = 0 where the vector −→a
denotes the unit vector along the oriented line, and the vector−→a 0 is the moment vector of the oriented
line with respect to the origin of reference frame O − xyz.
A point-line can be represented by multiplication of a dual number exp(εh) = 1 + εh, and ~A, namely

Â = exp(εh) ~A

=
∥∥∥Â

∥∥∥ ~A

= ~a + ε−→a ′0,
(8)

where −→a ′0 = −→a 0 + h~a and Â is a dual vector with dual length exp(εh).
When we have the point-line coordinates, the incident offset, the directed line, and the incident can
be determined easily. Then,

~A = ~a + ε (−→a ′0 − h~a) , (9)

and
h = g(~a,−→a ′0). (10)

Here, the value of h changes related to the reference point. Without losing generality, if we assume
that the reference point is the origin of the coordinate system, we can write the position vector of the
incident E as

~rE =
−−→
PN +

−−→
NE,

where −→a 0 =
−−→
PN × ~a and

−−→
NE = h~a. Therefore, from Theorem 2.1 and −→a ′0 = −→a 0 + h~a, the position

vector ~rE of the incident E is

~rE = ~a×−→a 0 + h~a

= ~a×−→a ′0 + 〈~a,−→a ′0〉~a,

where × is the cross-product.

3.1 Equiform Transformations

This section describes equiform transformations, which means affine transformations whose linear part
is composed from an orthogonal transformation and a homothetical transformation in Euclidean three-
space R3.
Such an equiform transformation maps points x ∈ R3 by using

ϕ : R3 −→ R3

x −→ ϕ(x) = y(t) = α(t)D(t)x + b(t), (11)

where D ∈ O (3) , b ∈ R3 and α is a homothetic scale. D, α and b are differentiable functions of class
C∞ of a parameter t.
The velocity ẏ(t) has the form

v (y) =
·
DDT y +

α̇

α
y −

·
DDT b− α̇

α
b + ḃ, (12)

where v (y) = ẏ(t) = dy
dt .

Since D is orthogonal, the matrix
·
DDT := C× is skew-symmetric and the product C×x can be written

in the form c× x in Euclidean three-space R3:

v (y) = c× y + γy + c̄, (13)

where γ = α̇
α and c̄ =

·
DDT b− α̇

αb + ḃ.
Any triple (c, c̄, γ) ∈ R7 defines a uniform equiform motion in Euclidean three-space R3, uniquely [1].
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3.2 Plücker Coordinates of Line Elements

Let L be an oriented (directed) line in Euclidean three-space R3 passing through a point ~x. In order
to assign coordinates to the line element (L, ~x), we use the familiar definition of Plücker coordinates.
The triple (~a,−→a 0, h) ∈ R7 is called the Plücker coordinates of the line element (L, ~x) in R3

1, if ~a 6= ~0 is
parallel to L, then −→a 0 = ~x× ~a, h = 〈~x,~a〉. It is easy to show that

~x = N (~a,−→a 0) + h~a, (14)

where N (~a,−→a 0) = ~a×−→a 0.
The point N (~a,−→a 0) is the foot point of the origin on the line L. We know that Plücker coordinates
satisfy 〈~a,−→a 0〉 = 0, and ~a 6= ~0 occurs as coordinates of lines in R3. Therefore, from (14) we obtain the
equation

~x = ~a×−→a 0 + h~a, (15)

where h = 〈~x,~a〉 and ~a is a unit parallel vector to the line L.
If the corresponding line has an orientation, then a line element becomes oriented. The equiform

transformation (11) transforms the line element (~a,−→a 0, h1) into (~u, ~u0, h2) with ~x′ = αR~x+~b, ~u = R~a,
~u0 = ~x′ × ~u, h2 = 〈~x′, ~u〉. In block matrix form, this transformation reads




~u
~u0

h2


 =




D 0 0
D×D αD 0
~bT D 0T α







~a−→a 0

h1


 , (16)

where D ∈ O (3) , b ∈ R3, α is a homothetic scale D, D×~x = ~b × ~x, ~A = ~a + ε−→a 0, 〈~a, ~a〉 = 1,
〈~a,−→a 0〉 = 0 and ~U = −→u + ε−→u 0, 〈−→u , −→u 〉 = 1, 〈−→u ,−→u 0〉 = 0, ([1]).
Using the correspondence between line elements and point-lines we observe the following:

Conclusion 3.1. Let Â =
∥∥∥Â

∥∥∥ ~A and Û =
∥∥∥Û

∥∥∥ ~U be two point-lines. When the reference point is
chosen as the origin of the coordinate system for a point-line, the transformations (16) transform the
point-line Â to the point-line Û if ~A is a unit dual quaternion vector.

We can obtain the oriented (directed) line elements in the equation (16) by using dual quaternions.
Moreover, we also can transform a point-line to another point-line by using dual quaternions with the
following theorem.

Theorem 3.2. A dual quaternion Q transforms a given point-line to another given point-line and is
defined by

Q =
1∥∥∥Â
∥∥∥

2

(〈
Â, Û

〉
+

(
Â× Û

))
, (17)

where Â and Û denoted two point-lines, × is cross product and the Q is called the point-line operator
which acts on point-lines.

Proof. Let Â and Û be two point-lines defined by Â =
∥∥∥Â

∥∥∥ ~A and

Û =
∥∥∥Û

∥∥∥ ~U . Here, from the Eq. (8) ~A and ~U are unit dual vectors, dual length
∥∥∥Â

∥∥∥ = exp ε(h1) of Â

and dual length
∥∥∥Û

∥∥∥ = exp ε(h2) of Û .

If we apply quaternion multiplication to the Eq. (17) with Â from right-side, then we have

QÂ =
1∥∥∥Â
∥∥∥

2

[〈
Â, Û

〉
Â + (Â× Û)× Â

]

and from Theorem 2.1 we have

QÂ =
1∥∥∥Â
∥∥∥

2

[〈
Â, Û

〉
Â +

〈
Â, Â

〉
Û −

〈
Â, Û

〉
Â

]
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and from
〈
Â, Â

〉
= 1

QÂ = Û .

Also, since

Â =
∥∥∥Â

∥∥∥ ~A,

Û =
∥∥∥Û

∥∥∥ ~U,

Eq. (17) can be modified

Q =

∥∥∥Û
∥∥∥

∥∥∥Â
∥∥∥

(
〈

~A, ~U
〉

+
(

~A× ~U
)
),

and from the Eq. (8) since
∥∥∥Â

∥∥∥ = exp ε(h1) and
∥∥∥Û

∥∥∥ = exp ε(h2), the last equation can be rewritten
as

Q = {exp [ε(h2 − h1)]}Q0,

where ‖Û‖
‖Â‖ = exp [ε(h2 − h1)] is dual length of Q and Q0 =

〈
~A, ~U

〉
+

(
~A× ~U

)
.

Because
〈

~A, ~U
〉

is the scalar part of Q0 and
(

~A× ~U
)

is the vector part of Q0, then Q is a dual
quaternion.

Example 3.3. Let Â =
(
0, 1

2 ,
√

3
2 ,

√
3

2 , 0, 0, 1
2

)

and Û =
(
0, 0, 1, − 3

2 , − 1, 0, −
√

3
2

)
be two point-lines in R7. Since from the Eq. (8)

Â =
(
1 +

ε

2

)

︸ ︷︷ ︸
‖Â‖

[(
0,

1
2
,

√
3

2

)
+ ε

(√
3

2
, 0, 0

)]

︸ ︷︷ ︸
~A

and

Û =

(
1−

√
3

2
ε

)

︸ ︷︷ ︸
‖Û‖

[
(0, 0, 1) + ε

(
−3

2
, − 1, 0

)]

︸ ︷︷ ︸
~U

,

from the Eq. (17) it can be written

Q =

(
1−

√
3 + 1
2

ε

)
(

(√
3

2
− 1

2
ε

)
+

((
1
2
, 0, 0

)
+ ε

(√
3

2
, − 5

4

√
3,

3
4

))
).

If we apply quaternion multiplication to Q with Â from right-side, then we have

QÂ =

(
1−

√
3

2
ε

)[
(0, 0, 1) + ε

(
−3

2
, − 1, 0

)]

= Û .

4 Conclusion

In this study, we used a block matrix to transform a given point-line to another given one that is given
in [1]. We prove that dual quaternions can be used to map a given point-line to another given one.
Since it is compact, free of redundancies and easier to compute compared to the matrix given in the
Eq. (16), this approach has some advantages.
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Beiträge zur Algebra und Geometrie, 47(2), 567–582, 2006.

[2] W. K. Clifford, Preliminary skecth of biquaternions, Proceedings of London Math. Soc., 4, 361–
395, 1873.
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