r-τ_{12}-θ-GENERALIZED FUZZY CLOSED SETS IN SMOOTH BITOPOLITICAL SPACES

Osama A. E. Tantawy
Rasha N. Majeed
Sobhy A. El-Sheikh
<drosmamat@yahoo.com>
<rashannm6@gmail.com>
<elsheikh33@hotmail.com>

1 Department of Mathematics, Faculty of Science, Zagazig University, Cairo, Egypt
2 Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
3 Department of Mathematics, Baghdad University, Baghdad, Iraq
4 Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt

Abstract — In [34] we introduced the notion of \(r-(\tau_1, \tau_2)-\theta \)-generalized fuzzy closed sets in smooth bitopological spaces by using \((\tau_1, \tau_2)\theta\)-fuzzy closure \(T_{\tau_1}^{\tau_2} \) defined in [19]. Recently, [33] we defined a new \(\theta \)-fuzzy closure, denoted \(C_{\tau_{12}}^{\theta} \) on smooth bitopological spaces by using smooth supra topological space \((X, \tau_{12})\) which is generated from smooth bitopological space \((X, \tau_1, \tau_2)\) [1], such that \(C_{\tau_{12}}^{\theta} \leq T_{\tau_1}^{\tau_2} \). In this paper, we introduce a new class of \(r-\theta \)-generalized fuzzy closed sets, namely, \(r-\tau_{12}-\theta \)-gfc in smooth bitopological spaces via \(C_{\tau_{12}}^{\theta} \)-fuzzy closure operator. The basic properties of these sets are studied. Furthermore, the relationship with other notions of \(r \)-generalized fuzzy closed sets in [31, 32, 33, 34] are investigated and we give many examples for reverse. In addition, by using \(r-\tau_{12}-\theta \)-gfc sets, we define a new fuzzy closure operator which generates a new smooth topology. Finally, generally fuzzy \(\theta \)-continuous (resp. irresolute) and fuzzy strongly \(\theta \)-continuous mappings are introduced and some of their properties are studied.

Keywords — Smooth topology, \(\theta \)-generalized fuzzy closed, generalized fuzzy closure operator, generalized fuzzy \(\theta \)-continuous mapping, generalized fuzzy \(\theta \)-irresolute mapping, fuzzy strongly \(\theta \)-continuous mapping.

1 Introduction

Kubiak [20] and Sostak [29] independently in (1985) introduced the fundamental concept of a fuzzy topology as an extension of both crisp topology and Chang’s fuzzy topology [5]. Sostak presented some rules and showed how such an extension can be realized. Subsequently, Badard [3], introduced the concept of ‘smooth topological space’. Chattopadhyay et al. [6] and Chattopadhyay and Samanta [7] have re-introduced the same concept, calling it ‘gradation of openness’. Ramadan [26] and his colleagues have introduced a similar definition, namely, smooth topological space for lattice \(L = [0, 1] \). Lee et al. [21] introduced the concept of smooth bitopological space as a generalization of smooth topological space and Kandil’s defined fuzzy bitopological space [14].
The so-called supra topology was established, by Mashhour et al. [24] (recall that a supra topology on a set X is a collection of subsets of X, which is closed under arbitrary unions). Abd El-Monsef and Ramadan [2] introduced the concept supra fuzzy topology, followed by Ghanim et al. [13] who introduced the supra fuzzy topology in Šostak sense. Abbas [1] generated the supra fuzzy topology (X, τ_{θ}) from fuzzy bitopological space (X, τ_1, τ_2) in Šostak sense as an extension of supra fuzzy topology due to Kandil et al. [15].

The first attempt of generalizing closed sets was done by Levine [23]. Subsequently, Fukutake [12], generalized this concept in bitopological space. Balasubramanian and Sundaram [4], introduced the concept of generalized fuzzy closed sets within Chang’s fuzzy topology. Kim and Ko [18] defined r-generalized fuzzy closed sets in smooth topological spaces. Recently, in [31], we introduced the concept of generalized fuzzy closed sets in smooth bitopological spaces. Noiri [25] and Dontchev and Maki [8] introduced another new generalization of Livine generalized closed set by utilizing the θ-closure operator. The concept of θ-generalized closed sets was applied to the digital line [9]. Khedr and Al-Saadi [16] generalized the notion of θ-generalized sets to bitopological space. El-Shafei and Zakari [10] introduced the concept of θ-generalized fuzzy closed sets in Chang’s fuzzy topology. Recently, in [34], we introduced the notion of θ-generalized fuzzy closed sets in smooth bitopological spaces by utilizing the $(\tau_1, \tau_2)\theta$-fuzzy closure $T_{\tau_{\theta}}$ defined in [19]. In this paper we define another type of $r\theta$-generalized fuzzy closed sets in smooth bitopological spaces via C^g_{θ}-fuzzy closure which was established by us [33], and study its relationship with other types of r-generalized fuzzy closed sets which introduced in ([31, 32, 33, 34]). By using this new class of generalized fuzzy closed sets we define a new fuzzy closure operator which generates a new smooth topology. Finally, we define and study generalized fuzzy θ-continuous (resp. irresolute) and fuzzy strongly θ-continuous mappings.

2 Preliminary

Throughout this paper, let X be a non-empty set, $I = [0, 1], I_0 = (0, 1]$. A fuzzy set μ of X is a mapping $\mu : X \rightarrow I$, and I^X be the family of all fuzzy sets on X. For any $\mu_1, \mu_2 \in I^X$, then $(\mu_1 \wedge \mu_2)(x) = \min\{\mu_1(x), \mu_2(x) : x \in X\}$, $(\mu_1 \vee \mu_2)(x) = \max\{\mu_1(x), \mu_2(x) : x \in X\}$. The complement of a fuzzy set λ is denoted by $\overline{\lambda} - \lambda$. For $\alpha \in I$, $\bar{\alpha}(x) = \alpha $ $\forall x \in X$. By 0 and 1, we denote constant maps on X with value 0 and 1, respectively. For $x \in X$ and $t \in I_0$, the fuzzy set x_t of X whose value t at x and 0 otherwise is called the fuzzy point in X. Let $P t(X)$ be a family of all fuzzy points in X. For $\lambda \in I^X, x_t \in \lambda$ if and only if $\lambda(x) \geq t$ and x_t is said to be quasi-coincident (q-coincident, for short) with λ, denoted by $x_t q \lambda$ if and only if $1 - \lambda(x) < t$. For $\mu, \lambda \in I^X, \mu$ is called q-coincident with λ, denoted by $\mu q \lambda$, if $\mu(x) + \lambda(x) > 1$ for some $x \in X$, otherwise we write $\mu q \lambda$. Also, for two fuzzy sets λ_1 and $\lambda_2 \in I^X, \lambda_1 \leq \lambda_2$ if and only if $\lambda_1 \bar{q} 1 - \lambda_2$. FP (resp. FP^*) stand for fuzzy pairwise (resp. fuzzyP^*). The indices $i, j \in \{1, 2\}$ and $i \neq j$.

Definition 2.1. [3, 6, 26, 29] A smooth topology on X is a mapping $\tau : I^X \rightarrow I$ which satisfies the following properties:

1. $\tau(\overline{0}) = \tau(\overline{1}) = 1$,
2. $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2), \forall \mu_1, \mu_2 \in I^X$,
3. $\tau(\vee_{i \in J} \mu_i) \geq \bigwedge_{i \in J} \tau(\mu_i), \forall \{\mu_i : i \in J\} \subseteq I^X$.

The pair (X, τ) is called a smooth topological space. For $r \in I_0$, μ is an r-open fuzzy set of X if $\tau(\mu) \geq r$, and μ is an r-closed fuzzy set of X if $\tau(1 - \mu) \geq r$. Note, Šostak [29] used the term ‘fuzzy topology’ and Chattopadhyay et al. [6], the term ‘gradation of openness’ for a smooth topology τ.

If τ satisfies conditions (1) and (3), then τ is said to be supra smooth topology and (X, τ) is said to be a supra smooth topological space [13].

Definition 2.2. [21, 29] A triple (X, τ_1, τ_2) consisting of the set X endowed with smooth topologies τ_1 and τ_2 on X is called a smooth bitopological space (smooth bts, for short). For $\lambda \in I^X$ and $r \in I_0$, r-τ_1-open (resp. closed) fuzzy set denotes the r-open (resp. closed) fuzzy set in (X, τ_i), for $i = 1, 2$.

Subsequently, the fuzzy interior (resp. inferior) for any fuzzy set in smooth topological space is given as follows:
Definition 2.3. [7] Let \((X, \tau)\) be a smooth topological space. For \(\lambda \in I^X\) and \(r \in I_0\), a fuzzy closure is a mapping \(C : I^X \times I_0 \to I^X\) such that
\[
C_{\tau}(\lambda, r) = \bigwedge\{\mu \in I^X | \mu \geq \lambda, \tau(1 - \mu) \geq r\}.
\] (1)

And, a fuzzy interior of \(\lambda\) is a mapping \(I_{\tau} : I^X \times I_0 \to I^X\) defined as
\[
I_{\tau}(\lambda, r) = \bigvee\{\mu \in I^X | \mu \leq \lambda, \tau(\mu) \geq r\},
\] (2)
satisfies
\[
I_{\tau}(1 - l, r) = 1 - C_{\tau}(l, r).
\] (3)

Remark 2.4. If \((X, \tau)\) is a supra smooth topological space. Then the definition of fuzzy closure (resp. interior) for any fuzzy set is defined as (1) and (2) in Definition 2.3 respectively.

Definition 2.5. [7] A mapping \(C : I^X \times I_0 \to I^X\) is called a fuzzy closure operator if, for \(\lambda, \mu \in I^X\) and \(r, s \in I_0\), the mapping \(C\) satisfies the following conditions:

(C1) \(C(0, r) = 0\),
(C2) \(\lambda \leq C(\lambda, r)\),
(C3) \(C(\lambda, r) \lor C(\mu, r) = C(\lambda \lor \mu, r)\),
(C4) \(C(\lambda, r) \leq C(\lambda, s)\) if \(r \leq s\),
(C5) \(C(C(\lambda, r), r) = C(\lambda, r)\).

The fuzzy closure operator \(C\) generates a smooth topology \(\tau_C : I^X \to I\) given by
\[
\tau_C(\lambda) = \bigvee\{r \in I | C(1 - \lambda, r) = 1 - \lambda\}.
\] (4)

If \(C\) satisfies conditions (C1),(C2),(C4),(C5) and the following inequality:
(C3)* \(C(\lambda, r) \lor C(\mu, r) \leq C(\lambda \lor \mu, r)\),
then \(C\) is called supra fuzzy closure operator on \(X\) [1]. and it generates a supra smooth topology \(\tau_C : I^X \to I\) as in (4).

By using (3), the definitions of fuzzy interior operator and supra fuzzy interior operator are obtained. In analogs of Definition 2.5, a fuzzy interior operator was defined.

The following theorem shows how to generate a supra fuzzy closure operator from smooth bts \((X, \tau_1, \tau_2)\).

Theorem 2.6. [1] Let \((X, \tau_1, \tau_2)\) be a smooth bts, for each \(\lambda \in I^X\) and \(r \in I_0\). Then:
(1) The mapping \(C_{\tau_2} : I^X \to I^X\) such that \(C_{\tau_2}(\lambda, r) = C_{\tau_1}(\lambda, r) \land C_{\tau_2}(\lambda, r)\) is a supra fuzzy closure operator, and \((X, C_{\tau_2})\) is a supra fuzzy closure space.
(2) The mapping \(I_{\tau_2} : I^X \to I^X\) defined by \(I_{\tau_2}(\lambda, r) = I_{\tau_1}(\lambda, r) \lor I_{\tau_2}(\lambda, r)\) is a supra fuzzy interior operator, satisfies \(I_{\tau_2}(1 - \lambda, r) = 1 - C_{\tau_2}(\lambda, r)\).

Theorem 2.7. [1] Let \((X, \tau_1, \tau_2)\) be a smooth bts, let \((X, C_{\tau_2})\) be a supra fuzzy closure space. Define the mapping \(\tau_S : I^X \to I\) on \(X\) by
\[
\tau_S(\lambda) = \bigvee\{\tau_1(\lambda_1) \land \tau_2(\lambda_2) : \lambda = \lambda_1 \lor \lambda_2, \lambda_1, \lambda_2 \in I^X\}
\]
where \(\bigvee\) is taken over all families \(\{\lambda_1, \lambda_2 \in I^X : \lambda = \lambda_1 \lor \lambda_2\}\). Then:
(1) \(\tau_S = \tau_{C_{\tau_2}}\) is the coarsest smooth supra topology on \(X\) which is finer than \(\tau_1\) and \(\tau_2\).
(2) \(C_{\tau_2} = C_{\tau_S} = C_{\tau_{C_{\tau_2}}}\).

Remark 2.8. In this paper we will denote \(\tau_{C_{\tau_2}}\) by \(\tau_{\tau_2}\).

Definition 2.9. Let \((X, \tau_1, \tau_2)\) be a smooth bts, \(\lambda \in I^X\) and \(r \in I_0\). Then, a fuzzy set \(\lambda\) is called:
(1) an r-(τ_1, τ_2)-generalized fuzzy closed (r-(τ_1, τ_2)-gfc, for short), if $C_{\tau_i}(\lambda, s) \leq \mu$, whenever $\lambda \leq \mu$ such that $\tau_i(\mu) \geq s \forall 0 < s \leq r$. The complement of r-(τ_1, τ_2)-gfc is an r-(τ_1, τ_2)-generalized fuzzy open (r-(τ_1, τ_2)-gfo, for short) \cite{31}.

(2) an r-τ_{12}-generalized fuzzy closed (r-τ_{12}-gfc, for short) if $C_{12}(\lambda, s) \leq \mu$ whenever $\lambda \leq \mu$ and $\tau_{12}(\mu) \geq s \forall 0 < s \leq r$. The complement of r-τ_{12}-gfc is an r-τ_{12}-generalized fuzzy open (r-τ_{12}-gfo, for short) \cite{32}.

The concepts of r-τ_{12}-gfc and r-(i, j)-gfc sets are independent.

Recall next the definitions of open Q-nbd, θ-cluster point and θ-fuzzy closure operator in smooth bts (X, τ_1, τ_2).

Definition 2.10. \cite{19} Let (X, τ_1, τ_2) be a smooth bts, $\mu \in I^X$, $x \in Pt(X)$ and $r \in I_0$. Then, μ is called an r-open fuzzy τ_i-neighborhood of x_2 if $x_2 \in \mu$ with $\tau_i(\mu) \geq r$, we denote $Q_{\tau_i}(x_2, r) = \{\mu \in I^X | x_2 \in \mu, \tau_i(\mu) \geq r\}$.

Definition 2.11. \cite{19} Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. Then:

1. A fuzzy point $x \in Pt(X)$ is called an r-(τ_1, τ_2)-cluster point of λ if for each $\mu \in Q_{\tau_i}(x, r)$, $C_{\tau_i}(\mu, q) \lambda$.
2. An $(\tau_1, \tau_2)\theta$-closure is a mapping $T_{\tau_1}^\theta : I^X \times I_0 \longrightarrow I^X$ defined as follows:

 $T_{\tau_1}^\theta(\lambda, r) = \bigvee \{x \in Pt(X) | x_2 \in r-(\tau_1, \tau_2)\theta$-cluster point of $\lambda\}$.
3. λ is called an r-(τ_1, τ_2) fuzzy θ-closed iff $\lambda = T_{\tau_1}^\theta(\lambda, r)$. The complement of an r-(τ_1, τ_2) fuzzy θ-closed is called r-(τ_1, τ_2) fuzzy θ-open.

Theorem 2.12. \cite{19} Let (X, τ_1, τ_2) be a smooth bts, $\lambda, \mu \in I^X$, $x \in Pt(X)$ and $r \in I_0$. Then:

1. $T_{\tau_1}^\theta(\lambda, r) = \bigwedge \{\mu \in I^X | \tau_1(\mu, q) \geq \lambda, \tau_2(\bar{\lambda} - \mu) \geq r\}$, i.e., $T_{\tau_1}^\theta(\lambda, r)$ is an r-τ_1-closed fuzzy set.
2. x is an r-$(\tau_1, \tau_2)\theta$-cluster point of λ if $x \in T_{\tau_1}^\theta(\lambda, r)$.

Definition 2.13. \cite{34} Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. A fuzzy set λ is an r-(τ_1, τ_2)-generalized fuzzy closed (r-(τ_1, τ_2)-gfc, for short) if $T_{\tau_1}^\theta(\lambda, s) \leq \mu$ whenever $s \leq r$ such that $\tau_i(\mu) \geq s \forall 0 < s \leq r$. The complement of r-(τ_1, τ_2)-gfc is an r-(τ_1, τ_2)-generalized fuzzy open (r-(τ_1, τ_2)-gfo, for short).

Definition 2.14. \cite{33} Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$, $r \in I_0$ and $x \in Pt(X)$. Then:

1. A fuzzy point x_2 is said to be an r-τ_{12}-cluster point of λ if and only if $C_{12}(\mu, r) \lambda$, for each $\mu \in Q_{12}(x_2, r)$, where $Q_{12}(x_2, r) = \{\mu \in I^X | x_2 \in \mu, \tau_{12}(\mu) \geq r\}$. The set of all r-τ_{12}-cluster points of λ is called C_{12}-fuzzy closure of λ, i.e., $C_{12} : I^X \times I_0 \longrightarrow I^X$ defined as $C_{12}^\theta(\lambda, r) = \bigvee \{x_2 \in Pt(X) | x_2 \in r$-$\tau_{12}$-cluster point of $\lambda\}$.
2. λ is said to be an r-τ_{12}-closed fuzzy set iff $C_{12}^\theta(\lambda, r) = \lambda$. The complement of r-τ_{12}-closed fuzzy set is an r-τ_{12}-open fuzzy set.

Theorem 2.15. \cite{33} Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. Then:

1. $C_{12}(\lambda, r) \leq C_{12}^\theta(\lambda, r) \leq T_{\tau_1}^\theta(\lambda, r)$.
2. If λ is an r-τ_{12}-open fuzzy set in X, then $C_{12}(\lambda, r) = C_{12}^\theta(\lambda, r)$.

Some properties of C_{12}^θ are given in the following proposition:

Proposition 2.16. \cite{33} Let (X, τ_1, τ_2) be a smooth bts, $\lambda, \lambda_1, \lambda_2 \in I^X$ and $r \in I_0$. Then:

1. $C_{12}^\theta(\lambda, r) = \bigwedge \{C_{12}(\rho, r) : \rho \geq \lambda, \tau_{12}(\rho) \geq r\}$.
(2) If $\lambda_1 \leq \lambda_2$, then $C^\theta_{12}(\lambda_1, r) \leq C^\theta_{12}(\lambda_2, r)$.

(3) $C^\theta_{12}(\lambda_1, r) \lor C^\theta_{12}(\lambda_2, r) = C^\theta_{12}(\lambda_1 \lor \lambda_2, r)$.

(4) $C^\theta_{12}(\lambda, r) \leq C^\theta_{12}((\lambda, s)$, if $r \leq s$.

(5) $C^\theta_{12}(\lambda_1 \land \lambda_2, r) \leq C^\theta_{12}(\lambda_1, r) \land C^\theta_{12}(\lambda_2, r)$.

(6) $C^\theta_{12}(\lambda, r) \leq C^\theta_{12}(C^\theta_{12}(\lambda, r), r)$.

Next we introduce the concept of I^θ_{12}-fuzzy interior in smooth bts (X, τ_1, τ_2).

Definition 2.17. [33] Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. A fuzzy point x_i is said to be an r-τ_{12}-θ-interior point of λ if there exists $\mu \in \mathcal{Q}_{\tau_{12}}(x_i, r)$ such that $C^\theta_{12}(\mu, r) \neq 1 - \lambda$. The set of all r-τ_{12}-θ-interior points of λ is called I^θ_{12}-fuzzy interior of λ, i.e. $I^\theta_{12} : I^X \times I_0 \rightarrow I^X$ defined as

$$I^\theta_{12}(\lambda, r) = \bigvee \{x_i \in Pt(X) \mid x_i \text{ is } r \text{-} \tau_{12} \text{-} \theta \text{-} \text{interior point of } \lambda\}.$$

Equivalently, I^θ_{12}-fuzzy interior can be stated as follows.

Proposition 2.18. [33] Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. Then:

$$I^\theta_{12}(\lambda, r) = \bigvee \{\mu \in I^X \mid C^\theta_{12}(\mu, r) \leq \lambda, \tau_{12}(\mu) \geq r\}.$$

Throughout this paper (X, τ_1) and (Y, τ^*_1) denote the supra smooth topological spaces which are induced from smooth bitopological spaces (X, τ_1, τ_2) and (Y, τ^*_1, τ^*_2) respectively.

Definition 2.19. A mapping $f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau^*_1, \tau^*_2)$ from a smooth bts (X, τ_1, τ_2) to another one (Y, τ^*_1, τ^*_2) is said to be:

1. **FP-continuous** if and only if $\tau^*_i(f^{-1}(\mu)) \geq \tau^*_i(\mu)$ for each $\mu \in I^Y$ and $i = 1, 2$ [17].

2. **FP*-continuous** if and only if $f : (X, \tau_{12}) \rightarrow (Y, \tau^*_{12})$ is F-continuous [27]. That is, $\tau_{12}(f^{-1}(\mu)) \geq \tau^*_{12}$ for each $\mu \in I^Y$.

3. **FP*-open** if and only if $f : (X, \tau_{12}) \rightarrow (Y, \tau^*_{12})$ is F-open [17]. That is, $\tau^*_{12}(f(\lambda)) \geq \tau_{12}(\lambda)$ for each $\lambda \in I^X$.

4. generalized **FP*-continuous (GFP*-continuous, for short) if and only if $f^{-1}(\mu) is an r-τ_{12}-gfc for all $\mu \in I^Y$ with $\tau^*_{12}(1 - \mu) \geq r$ [32].

5. generalized **FP*-irresolute closed (GFP*-irresolute closed, for short) if and only if $f(\mu)$ is an r-τ^*_{12}-gfc in Y for each r-τ_{12}-gfc μ in X [32].

3 r-τ_{12}-θ-generalized Fuzzy Closed Sets

In this section we introduce a new class of generalized fuzzy closed sets via a fuzzy closure C^θ_{12} defined in [33], and we study its relationship with other types of generalized fuzzy closed sets which introduced in [31, 32, 33, 34]).

Definition 3.1. Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. Then:

1. A fuzzy set λ is called an r-τ_{12}-θ-generalized fuzzy closed (r-τ_{12}-θ-gfc, for short) if $C^\theta_{12}(\lambda, s) \leq \mu$ whenever $\lambda \leq \mu$ and $\tau_{12}(\mu) \geq s$ for all $0 < s \leq r$.

2. A fuzzy set λ is called an r-τ_{12}-θ-generalized fuzzy open (r-τ_{12}-θ-gfo, for short) if $1 - \lambda$ is an r-τ_{12}-θ-gfc.

Proposition 3.2. Let (X, τ_1, τ_2) be a smooth bts, $\lambda_1, \lambda_2 \in I^X$ and $r \in I_0$. Then:

1. If λ_1, λ_2 are r-τ_{12}-θ-gfc sets, then $\lambda_1 \lor \lambda_2$ is an r-τ_{12}-θ-gfc set.

2. If λ_1, λ_2 are r-τ_{12}-θ-gfo sets, then $\lambda_1 \land \lambda_2$ is an r-τ_{12}-θ-gfo set.
Proof. To prove part (1), let $\lambda_1 \lor \lambda_2 \leq \mu$ such that $\tau_{12}(\mu) \geq s$ for $0 < s \leq r$. This implies $\lambda_1 \leq \mu$ and $\lambda_2 \leq \mu$. Since λ_1 and λ_2 are r-τ_{12}-θ-gfc sets, then in view of Proposition 2.16(3) and Definition 3.1(1), we have, $C_{12}^\theta(\lambda_1 \lor \lambda_2, s) = C_{12}^\theta(\lambda_1, s) \lor C_{12}^\theta(\lambda_2, s) \leq \mu \lor \mu = \mu$. Hence, $\lambda_1 \lor \lambda_2$ is an r-τ_{12}-θ-gfc. The prove of part (2), follows from the duality of (1).

Remark 3.3. The finite intersection (resp. union) of r-τ_{12}-θ-gfc (resp. gfo) sets in a smooth bts (X, τ_1, τ_2) need not to be an r-τ_{12}-θ-gfc (resp. gfo), as the following example shows.

Example 3.4. Let $X = \{a, b\}$. Define $\lambda_1, \lambda_2 \in I^X$ as follows:

$$\lambda_1 = a_{0.2} \lor b_{0.5}, \quad \lambda_2 = a_{0.4} \lor b_{0.2}.$$

We define smooth topologies $\tau_1, \tau_2 : I^X \rightarrow I$ as follows:

$$\tau_1(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{2} & \text{if } \lambda = \lambda_1, \\ 0 & \text{otherwise}. \end{cases} \quad \text{and} \quad \tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{3}{4} & \text{if } \lambda = \lambda_2, \\ 0 & \text{otherwise}. \end{cases}$$

The induced supra smooth topological space of (X, τ_1, τ_2), is defined as $\tau_{12} : I^X \rightarrow I$ such that

$$\tau_{12}(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{4} & \text{if } \lambda = \lambda_1, \\ \frac{3}{4} & \text{if } \lambda = \lambda_2, \\ \frac{1}{4} & \text{if } \lambda = \lambda_1 \lor \lambda_2, \\ 0 & \text{otherwise}. \end{cases}$$

Then, for $r = \frac{1}{4}$, the fuzzy sets $\eta_1 = a_{0.2} \lor b_{0.6}$ and $\eta_2 = a_{0.6} \lor b_{0.2}$ are $\frac{1}{4}$-τ_{12}-θ-gfc sets but $\eta_1 \land \eta_2$ is not a $\frac{1}{4}$-τ_{12}-θ-gfc. By taking the complement of η_1 and η_2 we obtain the finite union of r-τ_{12}-θ-gfo sets. This union need not to be r-τ_{12}-θ-gfo.

In the following Propositions 3.5, 3.7, 3.9, 3.10 and 3.11 with the examples following them show that the class of r-τ_{12}-θ-gfc sets is properly placed between the classes of r-τ_{12}-gfc sets and r-τ_{12}-θ-closed fuzzy sets.

Proposition 3.5. Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. If λ is an r-τ_{12}-θ-closed fuzzy set, then λ is an r-τ_{12}-θ-gfc set.

Proof. Let $\lambda \leq \mu$ such that $\tau_{12}(\mu) \geq s$ for $0 < s \leq r$. Since λ is an r-τ_{12}-θ-closed fuzzy set, then $C_{12}^\theta(\lambda, r) = \lambda$ and from Proposition 2.16(4), for $s \leq r$ we have $C_{12}^\theta(\lambda, s) \leq C_{12}^\theta(\lambda, r) = \lambda \leq \mu$. Hence, λ is an r-τ_{12}-θ-gfc set.

The converse of Proposition 3.5 is not true as we show in the next example.

Example 3.6. Let $X = \{a, b\}$. Define $\lambda_1, \lambda_2 \in I^X$ as follows:

$$\lambda_1 = a_{0.2} \lor b_{0.5}, \quad \lambda_2 = a_{0.5} \lor b_{0.3}.$$

We define smooth topologies $\tau_1, \tau_2 : I^X \rightarrow I$ as follows:

$$\tau_1(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{2} & \text{if } \lambda = \lambda_1, \\ 0 & \text{otherwise}; \end{cases} \quad \text{and} \quad \tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{2} & \text{if } \lambda = \lambda_2, \\ 0 & \text{otherwise}. \end{cases}$$

The induced supra smooth topological space of (X, τ_1, τ_2), is defined as $\tau_{12} : I^X \rightarrow I$ such that

$$\tau_{12}(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{2} & \text{if } \lambda = \lambda_1, \lambda_2, \lambda_1 \lor \lambda_2, \\ 0 & \text{otherwise}. \end{cases}$$

Then, for $r = \frac{1}{2}$, the fuzzy set $\lambda = a_{0.4} \lor b_{0.4}$ is a $\frac{1}{2}$-τ_{12}-θ-gfc but is not a $\frac{1}{2}$-τ_{12}-θ-closed fuzzy set.
Proposition 3.7. Let \((X, \tau_1, \tau_2)\) be a smooth bts, \(\lambda \in I^X\) and \(r \in I_0\). If \(\lambda\) is an \(r\)-\(\tau_{12}\)-gfc set, then \(\lambda\) is an \(r\)-\(\tau_{12}\)-gfc set.

Proof. The proof follows directly from Theorem 2.15(1).

The following example shows the converse of the previous proposition is not true.

Example 3.8. Let \(X = \{a, b\}\). Define \(\lambda_1, \lambda_2 \in I^X\) as follows:

\[\lambda_1 = a_{0.7} \lor b_{0.5}, \quad \lambda_2 = a_{0.2} \lor b_{0.9}.\]

We define smooth topologies \(\tau_1, \tau_2 : I^X \rightarrow I\) as follows:

\[\tau_1(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \bar{1}, \\ \frac{1}{2} & \text{if } \lambda = \lambda_1, \\ 0 & \text{otherwise}; \end{cases}\]

\[\tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \bar{1}, \\ \frac{1}{2} & \text{if } \lambda = \lambda_2, \\ 0 & \text{otherwise}. \end{cases}\]

The induced supra smooth topological space of \((X, \tau_1, \tau_2)\), is defined as \(\tau_{12} : I^X \rightarrow I\) such that

\[\tau_{12}(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \bar{1}, \\ \frac{1}{4} & \text{if } \lambda = \lambda_1, \\ \frac{3}{4} & \text{if } \lambda = \lambda_2, \\ 0 & \text{otherwise}. \end{cases}\]

Then for \(r = \frac{1}{2}\), the fuzzy set \(\lambda = a_{0.3} \lor b_{0.5}\) is a \(\frac{1}{2}\)-\(\tau_{12}\)-gfc but is not a \(\frac{1}{2}\)-\(\tau_{12}\)-gfc.

Proposition 3.9. [32] Let \((X, \tau_1, \tau_2)\) be a smooth bts, \(\lambda \in I^X\) and \(r \in I_0\). If \(\lambda\) is an \(r\)-\(\tau_{12}\)-closed fuzzy set, then \(\lambda\) is an \(r\)-\(\tau_{12}\)-gfc set.

The converse of Proposition 3.9 is not true (see [32]).

Proposition 3.10. [33] Let \((X, \tau_1, \tau_2)\) be a smooth bts, \(\lambda \in I^X\) and \(r \in I_0\). If \(\lambda\) is an \(r\)-\(\tau_{12}\)-closed fuzzy set, then \(\lambda\) is an \(r\)-\(\tau_{12}\)-closed fuzzy set.

The converse of Proposition 3.10 is not true (see [33]).

Proposition 3.11. Let \((X, \tau_1, \tau_2)\) be a smooth bts, \(\lambda \in I^X\) and \(r \in I_0\). If \(\lambda\) is an \(r\)-(\(\tau_j, \tau_i\)) fuzzy \(\theta\)-closed set, then \(\lambda\) is an \(r\)-\(\tau_{12}\)-\(\theta\)-closed fuzzy set.

Proof. To prove \(\lambda\) is an \(r\)-\(\tau_{12}\)-\(\theta\)-closed fuzzy set, we must prove \(C^\theta_{12}(\lambda, r) = \lambda\). Clearly \(\lambda \leq C^\theta_{12}(\lambda, r)\). On the other hand, from Theorem 2.15(1), \(C^\theta_{12}(\lambda, r) \leq T^\theta_{12}(\lambda, r)\). Since \(\lambda\) is an \(r\)-(\(\tau_j, \tau_i\)) fuzzy \(\theta\)-closed set, then \(T^\theta_{12}(\lambda, r) \leq \lambda\). Consequently, \(C^\theta_{12}(\lambda, r) \leq \lambda\). Hence, \(\lambda\) is an \(r\)-\(\tau_{12}\)-\(\theta\)-closed fuzzy set.

The next example shows the converse of Proposition 3.11 is not true in general.

Example 3.12. Let \(X = \{a, b\}\). Define \(\lambda_1, \lambda_2 \in I^X\) as follows:

\[\lambda_1 = a_{0.4} \lor b_{0.5}, \quad \lambda_2 = a_{0.5} \lor b_{0.4}.\]

We define smooth topologies \(\tau_1, \tau_2 : I^X \rightarrow I\) as follows:

\[\tau_1(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{3} & \text{if } \lambda = \lambda_1, \\ 0 & \text{otherwise}; \end{cases}\]

\[\tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, 1, \\ \frac{1}{4} & \text{if } \lambda = \lambda_2, \\ 0 & \text{otherwise}. \end{cases}\]
The induced supra smooth topological space of \((X, \tau_1, \tau_2)\), is defined as \(\tau_{12} : I^X \rightarrow I\) such that
\[
\tau_{12}(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_2, \\
\frac{1}{3} & \text{if } \lambda = \lambda_1 \lor \lambda_2, \\
0 & \text{otherwise}.
\end{cases}
\]

Then, for \(r = \frac{1}{4}\), the fuzzy set \(\lambda = a_{0.5} \lor b_{0.5}\) is a \(\frac{1}{4}\)-\((\tau_1, \tau_2)\)-\(\theta\)-closed fuzzy set but is not a \(\frac{1}{4}\)-\((\tau_1, \tau_2)\)-\(\theta\)-closed set.

From the above discussion we have the following diagram which is an enlargement of a Diagram from [33],

\[
r-(\tau_1, \tau_2)-\theta-gfc \iff r-(\tau_1, \tau_2) \Rightarrow r-\tau_{12}\text{-closed fuzzy set} \Rightarrow r-\tau_{12}\text{-closed fuzzy set}
\]

From the above diagram one can notice that the concepts of \(r-(\tau_1, \tau_2)-\theta\)-gfc and \(r-\tau_{12}\text{-closed fuzzy set}\) are independent as the following two examples show.

Example 3.13. Let \(X = \{a, b\}\). Define \(\lambda_1, \lambda_2 \in I^X\) as follows:
\[
\lambda_1 = a_{0.3} \lor b_{0.5}, \quad \lambda_2 = a_{0.6} \lor b_{0.2}.
\]
We define smooth topologies \(\tau_1, \tau_2 : I^X \rightarrow I\) as follows:
\[
\tau_1(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{2} & \text{if } \lambda = \lambda_1, \\
0 & \text{otherwise};
\end{cases}
\quad \text{and} \quad
\tau_2(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_2, \\
0 & \text{otherwise}.
\end{cases}
\]

The induced supra smooth topological space of \((X, \tau_1, \tau_2)\), is defined as \(\tau_{12} : I^X \rightarrow I\) such that
\[
\tau_{12}(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_2, \\
\frac{1}{3} & \text{if } \lambda = \lambda_1 \lor \lambda_2, \\
0 & \text{otherwise}.
\end{cases}
\]

Then for \(r = \frac{1}{4}\), the fuzzy set \(\lambda = a_{0.4} \lor b_{0.3}\) is a \(\frac{1}{4}\)-\((\tau_1, \tau_2)\)-\(\theta\)-gfc but is not a \(\frac{1}{4}\)-\((\tau_1, \tau_2)\)-\(\theta\)-closed set.

Example 3.14. Let \(X = \{a, b\}\). Define \(\lambda_1, \lambda_2 \in I^X\) as follows:
\[
\lambda_1 = a_{0.4} \lor b_{0.3}, \quad \lambda_2 = a_{0.6} \lor b_{0.2}.
\]
We define smooth topologies \(\tau_1, \tau_2 : I^X \rightarrow I\) as follows:
\[
\tau_1(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{2} & \text{if } \lambda = \lambda_1, \\
0 & \text{otherwise};
\end{cases}
\quad \text{and} \quad
\tau_2(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_2, \\
0 & \text{otherwise}.
\end{cases}
\]

The induced supra smooth topological space of \((X, \tau_1, \tau_2)\), is defined as \(\tau_{12} : I^X \rightarrow I\) such that
\[
\tau_{12}(\lambda) = \begin{cases}
1 & \text{if } \lambda = 0, 1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_1, \\
\frac{1}{3} & \text{if } \lambda = \lambda_2, \\
\frac{1}{3} & \text{if } \lambda = \lambda_1 \lor \lambda_2, \\
0 & \text{otherwise}.
\end{cases}
\]

Then for \(r = \frac{1}{4}\), the fuzzy set \(\lambda = a_{0.1} \lor b_{0.3}\) is a \(\frac{1}{4}\)-\((\tau_1, \tau_2)\)-\(\theta\)-gfc but is not a \(\frac{1}{4}\)-\((\tau_1, \tau_2)\)-\(\theta\)-closed set.
4 Generalized C_{12}^θ-fuzzy Closure Operator

In this section we use the class of r-τ_{12}-θ-gfc (resp. gfo) sets to introduce a new fuzzy closure (resp. interior) operator on smooth bts (X, τ_1, τ_2). In fact this new fuzzy closure (resp. interior) operator represents a generalization of the fuzzy closure (resp. interior) operator C_{12}^θ (resp. I_{12}^θ) [32]. Some properties of these new fuzzy closure are given. We show that C_{12}^θ (resp. I_{12}^θ) generates a smooth fuzzy topology which is finer than τ_{12}^θ.

Definition 4.1. Let (X, τ_1, τ_2) be a smooth bts. For $\lambda \in I_X$ and $r \in I_0$, a generalized C_{12}^θ-fuzzy closure is a map $GC_{12}^\theta : I_X \times I_0 \rightarrow I_X$ define as

$$GC_{12}^\theta(\lambda, r) = \bigwedge \{ \rho \in I_X | \rho \geq \lambda \text{ and } \rho \text{ is } r$-$\tau_{12}$-$\theta$-gfc set \}.$$

And a generalized I_{12}^θ-fuzzy interior of λ is a map $GI_{12}^\theta : I_X \times I_0 \rightarrow I_X$ define as

$$GI_{12}^\theta(\lambda, r) = \bigvee \{ \rho \in I_X | \rho \leq \lambda \text{ and } \rho \text{ is } r$-$\tau_{12}$-$\theta$-gfo set \}.$$

Some properties of GC_{12}^θ and GI_{12}^θ are given next.

Proposition 4.2. Let (X, τ_1, τ_2) be a smooth bts, $\lambda, \lambda_1, \lambda_2 \in I_X$ and $r \in I_0$. Then:

1. $GI_{12}^\theta(\bar{1} - \lambda, r) = \bar{1} - GC_{12}^\theta(\lambda, r)$.
2. If $\lambda_1 \leq \lambda_2$, then $GC_{12}^\theta(\lambda_1, r) \leq GC_{12}^\theta(\lambda_2, r)$.
3. If $\lambda_1 \leq \lambda_2$, then $GI_{12}^\theta(\lambda_1, r) \leq GI_{12}^\theta(\lambda_2, r)$.
4. If λ is an r-τ_{12}-θ-gfc, then $GC_{12}^\theta(\lambda, r) = \lambda$.
5. If λ is an r-τ_{12}-θ-gfo, then $GI_{12}^\theta(\lambda, r) = \lambda$.

Proof. We prove (1), using Definition 4.1:

$$\bar{1} - GC_{12}^\theta(\lambda, r) = \bar{1} - \bigwedge \{ \rho \in I_X | \rho \geq \lambda \text{ and } \rho \text{ is } r$-$\tau_{12}$-$\theta$-gfc set \}.$$

$$= \bigvee \{ \bar{1} - \rho \in I_X | \bar{1} - \rho \leq \bar{1} - \lambda, \bar{1} - \rho \text{ is } r$-$\tau_{12}$-$\theta$-gfo set \}.$$

$$= GI_{12}^\theta(\bar{1} - \lambda, r).$$

To prove (2), suppose there exist $x \in X$ and $t \in I_0$ such that

$$GC_{12}^\theta(\lambda_1, r)(x) > t > GC_{12}^\theta(\lambda_2, r)(x).$$

Since $GC_{12}^\theta(\lambda_2, r)(x) < t$, then there exists an r-τ_{12}-θ-gfc ρ with $\rho \geq \lambda_2$ such that $\rho(x) < t$. Since $\lambda_1 \leq \lambda_2$, then $GC_{12}^\theta(\lambda_1, r)(x) \leq \rho$. It follows $GC_{12}^\theta(\lambda_1, r)(x) < t$. This contradicts (5). Hence, $GC_{12}^\theta(\lambda_1, r) \leq GC_{12}^\theta(\lambda_2, r)$. The proof of (3), follows from taking the complement of (2) and then using (1). The proof of (4), follows from Definition 4.1. Finally, the proof of (5) is similar to the proof of (3). \qed

In Proposition 4.2 the converse of (4) and (5) are not true as the following example show. The example is inspired by the one introduced in [18, p.333]

Example 4.3. Let $X = \{a, b\}$. Define smooth topologies $\tau_1 = \tau_2 : I^X \rightarrow I$ as follows:

$$\tau_1(\lambda) = \tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, \\ 0.3 & \text{if } \lambda = a_{0.6}, \\ 0 & \text{otherwise}. \end{cases}$$

The induced supra smooth topological space of (X, τ_1, τ_2), is defined as $\tau_{12} : I^X \rightarrow I$ such that

$$\tau_{12}(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, \\ 0.3 & \text{if } \lambda = a_{0.6}, \\ 0 & \text{otherwise}. \end{cases}$$

The fuzzy set $a_{0.6}$ is not a 1-τ_{12}-θ-gfc, but $GC_{12}^\theta(a_{0.6}, 1) = a_{0.6}$. Because, $a_{0.6} \vee b_s$ is a 1-τ_{12}-θ-gfc for $s \in I_0$. Therefore,

$$GC_{12}^\theta(a_{0.6}, 1) = \bigwedge_{s \in I_0} (a_{0.6} \vee b_s) = a_{0.6} \vee \bigwedge_{s \in I_0} b_s = a_{0.6}.$$
Next we show GC_{12}^θ (resp. GI_{12}^θ) is fuzzy closure operator.

Theorem 4.4. Let (X, τ_1, τ_2) be a smooth bts, $\lambda \in I^X$ and $r \in I_0$. Then:

1. GC_{12}^θ (resp. GI_{12}^θ) is a fuzzy closure (resp. interior) operator.
2. The mapping $\tau_{12}^\theta : I^X \longrightarrow I$ defined as

$$\tau_{12}^\theta(\lambda) = \bigvee \{ r \in I | GC_{12}^\theta(1-\lambda, r) = 1 - \lambda \}.$$

is a smooth topology on X such that $\tau_{12}^\theta \leq \tau_{12}^\theta$.

Proof. We have shown that GC_{12}^θ is a fuzzy closure operator and in a similar way can prove that GI_{12}^θ is a fuzzy interior operator. To prove (1), we need to satisfy conditions (C1) – (C5) in Definition 2.5.

(C1) Since 0 is an r-τ_{12}-θ-gfc set in X, then from Proposition 4.2(4), $GC_{12}^\theta(0, r) = 0$.

(C2) Follows immediately from the Definition of GC_{12}^θ.

(C3) Since $\lambda \leq \lambda \lor \mu$ and $\mu \leq \lambda \lor \mu$, then from Proposition 4.2(2),

$$GC_{12}^\theta(\lambda, r) \leq GC_{12}^\theta(\lambda \lor \mu, r) \quad \text{and} \quad GC_{12}^\theta(\mu, r) \leq GC_{12}^\theta(\lambda \lor \mu, r).$$

This implies, $GC_{12}^\theta(\lambda, r) \lor GC_{12}^\theta(\mu, r) \leq GC_{12}^\theta(\lambda \lor \mu, r)$.

Suppose $GC_{12}^\theta(\lambda \lor \mu, r) \not\subseteq GC_{12}^\theta(\lambda, r) \lor GC_{12}^\theta(\mu, r)$. Consequently, $x \in X$ and $t \in I_0$ exist such that

$$GC_{12}^\theta(\lambda, r)(x) \lor GC_{12}^\theta(\mu, r)(x) < t < GC_{12}^\theta(\lambda \lor \mu, r)(x).\tag{6}$$

Since $GC_{12}^\theta(\lambda, r)(x) < t$ and $GC_{12}^\theta(\mu, r)(x) < t$, then there exist r-τ_{12}-θ-gfc sets ρ_1, ρ_2 with $\lambda \leq \rho_1$ and $\mu \leq \rho_2$ such that

$$\rho_1(x) < t, \rho_2(x) < t.$$

Since $\lambda \lor \mu \leq \rho_1 \lor \rho_2$ and $\rho_1 \lor \rho_2$ is an r-τ_{12}-θ-gfc from Proposition 3.2(1), we have

$$GC_{12}^\theta(\lambda \lor \mu, r)(x) \leq (\rho_1 \lor \rho_2)(x) < t.\quad \text{This, however, contradicts (6). Hence,}$$

$$GC_{12}^\theta(\lambda, r) \lor GC_{12}^\theta(\mu, r) = GC_{12}^\theta(\lambda \lor \mu, r).$$

(C4) Let $r \leq s$, $r, s \in I_0$. Suppose $GC_{12}^\theta(\lambda, r) \not\subseteq GC_{12}^\theta(\lambda, s)$. Consequently, $x \in X$ and $t \in I_0$ exist such that

$$GC_{12}^\theta(\lambda, s)(x) < t < GC_{12}^\theta(\lambda, r)(x).\tag{7}$$

Since $GC_{12}^\theta(\lambda, s)(x) < t$, then there is an r-τ_{12}-θ-gfc set ρ with $\lambda \leq \rho$ such that $\rho(x) < t$. This yields $C_{12}^\rho(\rho, s_1) \leq \mu$, whenever $\rho \leq \mu$ and $\tau_{12}(\mu) \geq s_1$, for $0 < s_1 \leq \mu$. Since $r \leq s$, then $C_{12}^\rho(\rho, r_1) \leq \mu$ whenever $\rho \leq \mu$ and $\tau_{12}(\mu) \geq r_1$, for $0 < r_1 \leq r \leq s_1 \leq s$. This implies ρ is an r-τ_{12}-θ-gfc. From Definition 4.1, we have $GC_{12}^\theta(\lambda, r)(x) \leq \rho(x) < t$. This contradicts (7). Hence, $GC_{12}^\theta(\lambda, r) \leq GC_{12}^\theta(\lambda, s)$.

(C5) Let ρ be any r-τ_{12}-θ-gfc containing λ. Then, from Definition 4.1, we have $GC_{12}^\theta(\lambda, r) \leq \rho$. From proposition 4.2(2), we obtain $GC_{12}^\theta(\lambda, r) \leq GC_{12}^\theta(\rho, r) = \rho$. This means that $GC_{12}^\theta(\lambda, r)$ is contained in every r-τ_{12}-θ-gfc set containing λ. Hence, $GC_{12}^\theta(\lambda, r) \leq GC_{12}^\theta(\lambda, r)$. However, $GC_{12}^\theta(\lambda, r) \leq GC_{12}^\theta(\lambda, r)$. Therefore, $GC_{12}^\theta(\lambda, r) = GC_{12}^\theta(\lambda, r)$. Thus GC_{12}^θ is a fuzzy closure operator.

To prove (2), we employ (1) and Definition 2.5, we get $\tau_{12}^\theta(\lambda)$ is a smooth topology on X. By Proposition 3.5, $C_{12}(1-\lambda, r) = 1 - \lambda$ which yields $GC_{12}^\theta(1-\lambda, r) = 1 - \lambda$. Thus, $\tau_{12}^\theta(\lambda) \leq \tau_{12}^\theta(\lambda)$ for all $\lambda \in I^X$.

At the end of this section we state the following proposition which is describes each r-τ_{12}-θ-gfc set in smooth topological space (X, τ_{12}^θ).

Proposition 4.5. Let (X, τ_1, τ_2) be a smooth bts. $\lambda \in I^X$ and $r \in I_0$. If λ is an r-τ_{12}-θ-gfc, then λ is an r-τ_{12}^θ-closed fuzzy set.

Proof. The proof follows from Proposition 4.2(4) and Theorem 4.4(2).
5 GFP*-θ-continuous and GFP*-θ-irresolute Mappings

In this section we use the smooth supra topological space \((X, \tau_{12})\) which is generated from smooth bts \((X, \tau_1, \tau_2)\) to introduce and study the concepts of generalized \(FP^*-\theta\)-continuous (resp. irresolute) and \(FP^*\)-strongly-\(\theta\)-continuous mappings for the smooth bts \((X, \tau_1, \tau_2)\).

Definition 5.1. A mapping \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*)\) is called:

1. generalized \(FP^*-\theta\)-continuous (\(GFP^*-\theta\)-continuous, for short) if \(f^{-1}(\mu)\) is an \(r\)-\(\tau_{12}\)-gfc in \(X\) for each \(r\)-\(\tau_{12}\)-closed fuzzy set \(\mu\) in \(Y\).
2. generalized-\(FP^*-\theta\)-irresolute (\(GFP^*-\theta\)-irresolute, for short) if \(f^{-1}(\mu)\) is an \(r\)-\(\tau_{12}\)-gfc in \(X\) for each \(r\)-\(\tau_{12}\)-gfc \(\mu\) in \(Y\).
3. \(FP^*\)-strongly-\(\theta\)-continuous (\(FP^*-\theta\)-continuous, for short) if \(f^{-1}(\mu)\) is an \(r\)-\(\tau_{12}\)-gfc in \(X\) for each \(r\)-\(\tau_{12}\)-gfc \(\mu\) in \(Y\).

Next we give the relationship between \(GFP^*-\theta\)-continuous, \(FP^*-\theta\)-continuous, \(GFP^*-\theta\)-continuous and \(FP^*\)-continuous. Next proposition give the relationship between \(GFP^*-\theta\)-continuous and \(FP^*\)-continuous.

Proposition 5.2. If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*)\) is \(GFP^*-\theta\)-continuous, then \(f\) is \(FP^*\)-continuous.

Proof. Let \(\mu \in I^Y\) such that \(\mu\) is an \(r\)-\(\tau_{12}\)-fuzzy closed set. Since \(f\) is \(GFP^*-\theta\)-continuous, then we have, \(f^{-1}(\mu)\) is an \(r\)-\(\tau_{12}\)-gfc, and from Proposition 3.7, this yields \(f^{-1}(\mu)\) is an \(r\)-\(\tau_{12}\)-gfc. Hence, \(f\) is \(FP^*\)-continuous.

The converse of the above proposition is not true according to the following counterexample.

Example 5.3. Let \(X = \{a, b\}\) and \(Y = \{p, q, w\}\). Define \(\lambda_1, \lambda_2 \in I^X\) and \(\mu_1, \mu_2 \in I^Y\) as follows:

\[
\lambda_1 = a \lor b, \quad \lambda_2 = a \lor b, \quad \mu_1 = p \lor q \lor w, \quad \mu_2 = p \lor q \lor w.
\]

We define the smooth topologies \(\tau_1, \tau_2 : I^X \rightarrow I\) and \(\tau_1^*, \tau_2^* : I^Y \rightarrow I\) as follows:

\[
\tau_1(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \bar{1}, \\ \frac{1}{2} & \text{if } \lambda = \bar{1}, \\ 0 & \text{otherwise}; \end{cases} \quad \tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \bar{1}, \\ \frac{1}{2} & \text{if } \lambda = \bar{1}, \\ 0 & \text{otherwise}; \end{cases}
\]

\[
\tau_1^*(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \bar{1}, \\ \frac{2}{3} & \text{if } \mu = \bar{1}, \\ 0 & \text{otherwise}; \end{cases} \quad \text{and} \quad \tau_2^*(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \bar{1}, \\ \frac{1}{3} & \text{if } \mu = \bar{1}, \\ 0 & \text{otherwise}; \end{cases}
\]

From the smooth bts’s \((X, \tau_1, \tau_2)\) and \((Y, \tau_1^*, \tau_2^*)\) we can induce the supra smooth topologies \(\tau_{12}\) and \(\tau_{12}^*\) as follows:

\[
\tau_{12}(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \bar{1}, \\ \frac{1}{2} & \text{if } \lambda = \bar{1}, \\ \frac{1}{3} & \text{if } \lambda = \bar{2}, \\ \frac{1}{3} & \text{if } \lambda = \bar{1} \lor \bar{2}, \\ 0 & \text{otherwise}; \end{cases} \quad \text{and} \quad \tau_{12}^*(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \bar{1}, \\ \frac{1}{2} & \text{if } \mu = \bar{1}, \\ \frac{1}{3} & \text{if } \mu = \bar{2}, \\ \frac{1}{3} & \text{if } \mu = \bar{1} \lor \bar{2}, \\ 0 & \text{otherwise}. \end{cases}
\]

Consider the mapping \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*)\) defined by \(f(a) = q\) and \(f(b) = w\). Then, \(f\) is \(FP^*\)-continuous but is not \(GFP^*-\theta\)-continuous because, there exists \(1 - \mu_1\) is a \(\frac{1}{2}\)-\(\tau_{12}\)-closed fuzzy set but \(f^{-1}(1 - \mu_1)\) is not a \(\frac{1}{2}\)-\(\tau_{12}\)-gfc set.

Next we give the relationship between \(FP^*-\theta\)-continuous and \(FP^*-\theta\)-continuous.
Proposition 5.4. If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*) \) is \(GFP^* \)-\(\theta \)-continuous, then \(f \) is \(GFP^* \)-\(\theta \)-continuous.

Proof. Let \(\lambda \in \) be an \(r-\tau_{12} \)-closed fuzzy set in \(Y \). Let \(f^{-1}(\lambda) \leq \mu \) where \(\tau_{12}(\mu) \geq s \) for \(0 < s \leq r \). We must show \(C_{12}^\theta(f^{-1}(\lambda), s) \leq \mu \). Let \(x_i \notin \mu \) this mean, \(x_i q \bar{1} \mu \). In fact that \(f^{-1}(\lambda) \leq \mu \), which implies \(1 - \mu \leq 1 - f^{-1}(\lambda) \), and since \(x_i q \bar{1} \mu \) this yields, \(x_i q \bar{1} \leq f^{-1}(\lambda) \). Thus, we have \(f(x_i) \bar{1} \mu \lambda \) such that \(\lambda \leq \mu \) is \(r-\tau_{12} \)-open fuzzy set in \(Y \). That is mean \(\bar{1} - \lambda \leq Q_{\tau_{12}}(f(x_i), r) \). Since \(f \) is \(FP^* \)-\(\theta \)-continuous. Then, there exists \(\eta \in Q_{\tau_{12}}(x_i, r) \) such that \(f(C_{12}(\eta, r)) \leq \bar{1} - \lambda \). This implies, \(f(C_{12}(\eta, r)) \bar{1} \lambda \) and then \(C_{12}(\eta, r) \bar{1} f^{-1}(\lambda) \). In view of Definition 2.14, we get \(x_i \notin C_{12}^\theta(f^{-1}(\lambda), r) \). Since \(s \leq r \) then, from Proposition 2.16(4), we have \(x_i \notin C_{12}^\theta(f^{-1}(\lambda), s) \). Hence, we obtain \(C_{12}^\theta(f^{-1}(\lambda), s) \leq \mu \). Thus, \(f \) is \(GFP^* \)-\(\theta \)-continuous.

The converse of the above Proposition not true as seen from the following example.

Example 5.5. Let \(X = [a, b] \) and \(Y = [p, q] \). Define \(\lambda_1, \lambda_2 \in I^X \) and \(\mu_1, \mu_2 \in I^Y \) as follows:

\[
\lambda_1 = a + b, \quad \lambda_2 = a + b, \quad \mu_1 = b \vee q, \quad \mu_2 = b \vee q.
\]

We define the smooth topologies \(\tau_1, \tau_2 : I^X \rightarrow I \) and \(\tau_1^*, \tau_2^* : I^Y \rightarrow I \) as follows:

\[
\tau_1(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0 \bar{1}, \\
\frac{1}{2} & \text{if } \lambda = \lambda_1, \\
0 & \text{otherwise}; \end{cases} \quad \tau_2(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0 \bar{1}, \\
\frac{1}{3} & \text{if } \lambda = \lambda_2, \\
0 & \text{otherwise}; \end{cases}
\]

\[
\tau_1^*(\mu) = \begin{cases} 1 & \text{if } \mu = 0 \bar{1}, \\
\frac{1}{2} & \text{if } \mu = \mu_1, \\
0 & \text{otherwise}; \end{cases} \quad \text{and} \quad \tau_2^*(\mu) = \begin{cases} 1 & \text{if } \mu = 0 \bar{1}, \\
\frac{1}{3} & \text{if } \mu = \mu_2, \\
0 & \text{otherwise}. \end{cases}
\]

From the smooth bts’s \((X, \tau_1, \tau_2) \) and \((Y, \tau_1^*, \tau_2^*) \) we can induce the supra smooth topologies \(\tau_{12} \) and \(\tau_{12}^* \) as follows

\[
\tau_{12}(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0 \bar{1}, \\
\frac{1}{2} & \text{if } \lambda = \lambda_1, \\
\frac{1}{4} & \text{if } \lambda = \lambda_2, \\
0 & \text{otherwise}; \end{cases} \quad \text{and} \quad \tau_{12}^*(\mu) = \begin{cases} 1 & \text{if } \mu = 0 \bar{1}, \\
\frac{1}{2} & \text{if } \mu = \mu_1, \\
\frac{1}{3} & \text{if } \mu = \mu_2, \\
0 & \text{otherwise}. \end{cases}
\]

Consider the mapping \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*) \) defined by \(f(a) = q \) and \(f(b) = p \). Then, \(f \) is \(GFP^* \)-\(\theta \)-continuous but is not \(FP^* \)-\(\theta \)-continuous because, there exists \(a_0, \eta \in P t(X), r = \frac{1}{2} \) and \(\mu_1 \in Q_{\tau_{12}}(f(a_0, \eta), \frac{1}{2}) \) such that for any \(\lambda \in Q_{\tau_{12}}(a_0, \eta, \frac{1}{2}), f(C_{12}(\lambda, \frac{1}{2})) \notin \mu_1 \).

Proposition 5.6. [32] If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*) \) is \(FP^* \)-continuous, then \(f \) is \(GFP^* \)-continuous.

The converse of the proceeded proposition is not true in general (see [32]).

To discuss the relation between \(FP^* \)-\(\theta \)-continuous and \(FP^* \)-continuous, we need to give an equivalent definition to \(FP^* \)-continuous.

Theorem 5.7. A mapping \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*) \) is \(FP^* \)-continuous iff for each \(x_i \in P t(X) \) and for each \(\mu \in Q_{\tau_{12}}(f(x_i), r) \), there exists \(\eta \in Q_{\tau_{12}}(x_i, r) \) such that \(f(\eta) \leq \mu \).

Proof. The proof is similar to the one in [[34], Theorem 5.3].

Proposition 5.8. If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*) \) is \(FP^* \)-\(\theta \)-continuous, then \(f \) is \(FP^* \)-continuous.

Proof. Let \(x_i \in P t(X) \) and \(\mu \in Q_{\tau_{12}}(f(x_i), r) \). Since \(f \) is \(FP^* \)-\(\theta \)-continuous. Then, there exists \(\eta \in Q_{\tau_{12}}(x_i, r) \) such that \(f(C_{12}(\eta, r)) \leq \mu \). Since \(\eta \leq C_{12}(\eta, r) \), then \(f(\eta) \leq f(C_{12}(\eta, r)) \leq \mu \). Thus, in view of Theorem 5.7, \(f \) is \(FP^* \)-continuous.
The converse of proposition 5.8 is not true as we have shown in Example 5.3. Note that Example 5.3 and Example 5.5 show that the FP^*-continuous and GFP^*-θ-continuous are independent. Therefore we have the following implications and none of them are reversible.

$$\text{GFP}^*-\theta\text{-continuous } \implies \text{GFP}^*-\text{continuous}$$

$$\uparrow$$

$$\text{FP}^*-\text{S-}\theta\text{-continuous } \implies \text{FP}^*-\text{continuous}$$

The following theorem provides conditions to obtain $GFP^*-\theta$-irresolute mapping from $GFP^*-\theta$-continuous mapping.

Theorem 5.9. If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1^*, \tau_2^*)$ is bijective, FP^*-open and GFP^*-θ-continuous, then f is $GFP^*-\theta$-irresolute.

Proof. Let ν be an $r-\tau_{12}^*-\theta$-gfc set and $f^{-1}(\nu) \leq \mu$ such that $\tau_{12}(\mu) \geq s$ for $0 < s \leq r$. Since $f^{-1}(\nu) \leq \mu$, then $\nu \leq f(\mu)$. From the fact that f is FP^*-open, we obtain $f(\mu)$ is an $s-\tau_{12}^*$-open fuzzy set. Now, we have ν is an $r-\tau_{12}^*-\theta$-gfc and $\nu \leq f(\mu)$. From Definition 3.1(1) we get, $C_{12}^\rho(\nu, s) \leq f(\mu)$ and thus, $f^{-1}(C_{12}^\rho(\nu, s)) \leq \mu$. Since $C_{12}^\rho(\nu, s)$ is an $r-\tau_{12}^*$-closed fuzzy set in Y and f is GFP^*-θ-continuous. Then, $f^{-1}(C_{12}^\rho(\nu, s))$ is an $r-\tau_{12}^*-\theta$-gfc in X. Thus, from Definition 3.1(1), $C_{12}^\rho(f^{-1}(\tau_{12}^*(\nu, s)), s) \leq \mu$ this yields $C_{12}^\rho(f^{-1}(\nu), s) \leq \mu$. Therefore, $f^{-1}(\nu)$ is an $r-\tau_{12}^*-\theta$-gfc. Hence, f is $GFP^*-\theta$-irresolute. ☐

Acknowledgement

The authors express their grateful thanks to the referee for reading the manuscript and making helpful comments.

References

