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1 Introduction

The following inequality holds for any convex function f define on R and a, b ∈ R, with a < b

f

(
a + b

2

)
≤ 1

b− a

∫ 1

0

f(x)dx ≤ f(a) + f(b)
2

(1)

both inequalities hold in the reversed direction if f is concave.
The inequality (1) is known in the literature as the Hermite-Hadamard’s inequality. The Hermite-

Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows
easily from Jensen’s inequality. The classical Hermite-Hadamard inequality provides estimates of the
mean value of a continuous convex function f : [a, b] → R.

In this paper, Firstly we defined for bounded positive selfadjoint operator p-convex functions in
Hilbert space, secondly established some new theorems for them and finally Hermite-Hadamard type
inequalities for product two bounded positive selfadjoint operators p-convex set up in Hilbert space.

In the paper [1] Dragomir et al. consider P (I). This class is defined in the following way.

Definition 1.1. [1] We say that f : I → R is a P -function, or that f belongs to the class P (I), if f
is a non-negative function and for all x, y ∈ I, α ∈ [0, 1], we have

f
(
αx + (1− α)y

) ≤ f(x) + f(y).

For some results about the class P (I) see, e.g., [2] and [3].
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2 Preliminary

First, we review the operator order in B(H) and the continuous functional calculus for a bounded
selfadjoint operator. For selfadjoint operators A,B ∈ B(H) we write, for every x ∈ H

A ≤ B(or B ≥ A) if 〈Ax, x〉 ≤ 〈Bx, x〉(or 〈Bx, x〉 ≥ 〈Ax, x〉)

we call it the operator order.
Let A be a selfadjoint linear operator on a complex Hilbert space (H, 〈., .〉) and C(Sp(A)) the C∗

-algebra of all continuous complex-valued functions on the spectrum A. The Gelfand map establishes
a ∗-isometrically isomorphism Φ between C(Sp(A)) and the C∗-algebra C∗(A) generated by A and
the identity operator 1H on H as follows [6].

For any f, g ∈ C(Sp(A)) and any α, β ∈ C we have

i. Φ(αf + βg) = αΦ(f) + βΦ(g) ;

ii. Φ(fg) = Φ(f)Φ(g) and Φ(f∗) = Φ(f)∗;

iii. ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A)|f(t)| ;

iv. Φ(f0) = 1 and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A)

If f is a continuous complex-valued functions on C(Sp(A)), the element Φ(f) of C∗(A) is denoted
by f(A), and we call it the continuous functional calculus for a bounded selfadjoint operator A.

If A is bounded selfadjoint operator and f is real valued continuous function on Sp(A), then
f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e f(A) is a positive operator on H. Moreover,
if both f and g are real valued functions on Sp(A) such that f(t) ≤ g(t) for any t ∈ Sp(A), then
f(A) ≤ f(B) in the operator order B(H).

A real valued continuous function f on an interval I is said to be operator convex (operator
concave) if

f((1− λ)A + λB) ≤ (≥)(1− λ)f(A) + λf(B)

in the operator order in B(H), for all λ ∈ [0, 1] and for every bounded self-adjoint operator A and B
in B(H) whose spectra are contained in I.

3 Operator p-convex Functions in Hilbert Space

The following definition and function class are firstly defined by Seren Salaş.

Definition 3.1. Let I be interval in R and K be a convex subset of B(H)+. A continuous function
f : I → R is said to be operator p-convex on I, operators in K if

f
(
αA + (1− α)B

) ≤ f(A) + f(B) (2)

in the operator order in B(H), for all α ∈ [0, 1] and for every positive operators A and B in K
whose spectra are contained in I .

In the other words, if f is an operator p-convex on I, we denote by f ∈ SpO.

Lemma 3.2. If f belongs to SpO for operators in K, then f(A) is positive for every A ∈ K.

Proof. For A ∈ K, we have

f(A) = f

(
A

2
+

A

2

)
≤ f(A) + f(A) = 2f(A).

This implies that f(A) ≥ 0.
Moslehian and Najafi [4] proved the following theorem for positive operators as follows :

Theorem 3.3. [4] Let A, B ∈ B(H)+. Then AB+BA is positive if and only if f(A+B) ≤ f(A)+f(B)
for all non-negative operator functions f on [0,∞).
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Dragomir in [5] has proved a Hermite-Hadamard type inequality for operator convex function
as follows:

Theorem 3.4. [5] Let f : I → R be an operator convex function on the interval I. Then for all
selfadjoint operators A and B with spectra in I we have the inequality

(
f

(
A + B

2

)
≤

)
1
2

[
f

(
3A + B

4

)
+ f

(
A + 3B

4

)]

≤
∫ 1

0

f

((
1− t)A + tB

))
dt

≤ 1
2

[
f

(
A + B

2

)
+

f(A) + f(B)
2

](
≤

(
f(A) + f(B)

2

)]
.

Let X be a vector space, x, y ∈ X, x 6= y. Define the segment

[x, y] := (1− t)x + ty; t ∈ [0, 1].

We consider the function f : [x, y] :→ R and the associated function

g(x, y) : [0, 1] → R

g(x, y)(t) := f((1− t)x + ty), t ∈ [0, 1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1]. For any convex function
defined on a segment [x, y] ∈ X, we have the Hermite-Hadamard integral inequality

f

(
x + y

2

)
≤

∫ 1

0

f((1− t)x + ty)dt ≤ f(x) + f(y)
2

which can be derived from the classical Hermite-Hadamard inequality for the convex g(x, y) : [0, 1] → R.

Lemma 3.5. Let f : I ⊆ R → R be a continuous function on the interval I. Then for every two
positive operators A,B ∈ K ⊆ B(H)+ with spectra in I the function f ∈ SpO for operators in

[A,B] := (1− t)A + tB; t ∈ [0, 1]

if and only if the function ϕx,A,B : [0, 1] → R defined by

ϕx,A,B :=
〈
f((1− t)A + tB)x, x

〉

is operator p-convex on [0, 1] for every x ∈ H with ‖x‖ = 1.

Proof. Since f ∈ SpO operator in [A,B], then for any t1, t2 ∈ [0, 1] and α ∈ [0, 1] we have

ϕx,A,B(αt1 + (1− α)t2) =
〈
f((1− (αt1 + (1− α)t2)A + (αt1 + (1− α)t2)B)x, x

〉

=
〈
f(α[(1− t1)A + t1B] + (1− α)[(1− t2)A + t2B])x, x

〉

≤ 〈
f((1− t1)A + t1B)x, x

〉
+ f((1− t2)A + t2B)x, x

〉

≤ ϕx,A,B(t1) + ϕx,A,B(t2)

Theorem 3.6. Let f ∈ SpO on the interval I ⊆ [0,∞) for operators K ⊆ B(H)+. Then for all
positive operators A and B in K with spectra in I, we have the inequality

1
2
f

(
A + B

2

)
≤

∫ 1

0

f
(
tA + (1− t)B

)
dt ≤ [

f(A) + (B)
]

(3)
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Proof. For x ∈ H with ‖x‖ = 1 and t ∈ [0, 1], we have
〈
((1− t)A + tB)x, x

〉
= (1− t)

〈
Ax, x

〉
+ t

〈
Bx, x

〉 ∈ I, (4)

Since
〈
Ax, x

〉 ∈ Sp(A) ⊆ I and
〈
Bx, x

〉 ∈ Sp(B) ⊆ I.

Continuity of f and 4 imply that the operator-valued integral
∫ 1

0
f
(
tA + (1− t)B

)
dt exists.

Since f is operator p-convex, therefore for t in [0, 1], and A,B ∈ K we have

f
(
tA + (1− t)B

)
dt ≤ f(A) + f(B) (5)

Integrating both sides of 5 over [0, 1] we get the following inequality
∫ 1

0

f
(
tA + (1− t)B

)
dt ≤ f(A) + f(B)

To prove the first inequality of 3, we observe that

f

(
A + B

2

)
≤ f

(
tA + (1− t)B

)
+ f

(
(1− t)A + tB

)
(6)

Integrating the inequality 6 over t ∈ [0, 1] and taking into account that
∫ 1

0

f
(
tA + (1− t)B

)
dt =

∫ 1

0

f
(
(1− t)A + tB

)
dt

then we deduce the first part of 3.

4 The Hermite-Hadamard Type Inequality for the

Product Two Operators p-convex Functions

Let f, g ∈ SpO on the interval in I. Then for all positive operators A and B on a Hilbert space H
with spectra in I, we define real functions M(A, B) and N(A,B) on H by

M(A,B)(x) = 〈f(A)x, x〉〈g(A)x, x〉+ 〈f(B)x, x〉〈g(B)x, x〉 (x ∈ H),

N(A,B)(x) = 〈f(A)x, x〉〈g(B)x, x〉+ 〈f(B)x, x〉〈g(A)x, x〉 (x ∈ H).

Theorem 4.1. Let f, g ∈ SpO be on the interval I for operators in K ⊆ B(H)+. Then for all positive
operators A and B in K with spectra in I, we have the inequality

∫ 1

0

〈f(
tA + (1− t)B

)
x, x〉〈g(

tA + (1− t)B
)
x, x〉dt

≤ M(A,B) + N(A,B)

hold for any x ∈ H with ‖x‖ = 1.

Proof. For x ∈ H with ‖x‖ = 1 and t ∈ [0, 1], we have

〈
(A + B)x, x

〉
=

〈
Ax, x

〉
+

〈
Bx, x

〉 ∈ I, (7)

since
〈
Ax, x

〉 ∈ Sp(A) ⊆ I and
〈
Bx, x

〉 ∈ Sp(B) ⊆ I.

Continuity of f, g and 7 imply that the operator-valued integrals
∫ 1

0

f
(
tA + (1− t)B

)
dt,

∫ 1

0

g
(
tA + (1− t)B

)
dt and

∫ 1

0

(fg)
(
tA + (1− t)B

)
dt

exist.
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Since f, g ∈ SpO, therefore for t in [0, 1] and x ∈ H we have

〈f(
tA + (1− t)B

)
x, x〉 ≤ 〈f(A) + f(B)x, x〉 (8)

〈g(
tA + (1− t)B

)
x, x〉 ≤ 〈g(A) + g(B)x, x〉. (9)

From 8 and 9, we obtain

〈f(
tA + (1− t)B

)
x, x〉〈g(

tA + (1− t)B
)
x, x〉 ≤ 〈f(A)x, x〉〈g(A)x, x〉

+〈f(A)x, x〉〈g(B)x, x〉
+〈f(B)x, x〉〈g(A)x, x〉
+〈f(B)x, x〉〈g(B)x, x〉 (10)

Integrating both sides of 10 over [0, 1], we get the required inequality 7.

Theorem 4.2. Let f, g belong to SpO on the interval I for operators in K ⊆ B(H)+. Then for all
positive operators A and B in K with spectra in I, we have the inequality

1
2

〈
f

(
A + B

2

)
x, x

〉〈
g

(
A + B

2

)
x, x

〉
(11)

≤
∫ 1

0

〈f(
tA + (1− t)B

)
x, x〉〈g(

tA + (1− t)B
)
x, x〉dt

+M(A,B) + N(A,B) (12)

hold for any x ∈ H with ‖x‖ = 1.

Proof. Since f, g ∈ SpO, therefore for any t ∈ I and any x ∈ H with ‖x‖ = 1, we observe that
〈

f

(
A + B

2

)
x, x

〉〈
g

(
A + B

2

)
x, x

〉

≤
〈

f

(
tA + (1− t)B

2
+

(1− t)A + tB

2

)
x, x

〉

×
〈

g

(
tA + (1− t)B

2
+

(1− t)A + tB

2

)
x, x

〉

≤
{
〈f(

tA + (1− t)B
)〉+ 〈f(

(1− t)A + tB
)〉

×〈g(
tA + (1− t)B

)〉+ 〈g(
(1− t)A + tB

)〉
}

≤
{[
〈f(

tA + (1− t)B
)
x, x〉〈g(

tA + (1− t)B
)
x, x〉

]

+
[
〈f(

(1− t)A + tB
)
x, x〉〈g(

(1− t)A + tB
)
x, x〉

]

+
[
〈f(A)x, x〉+ 〈f(B)x, x〉

]
×

[
〈g(A)x, x〉+ 〈g(B)x, x〉

]

+
[
〈f(A)x, x〉+ 〈f(B)x, x〉

]
×

[
〈g(A)x, x〉+ 〈g(B)x, x〉

]}
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=

{[
〈f(

tA + (1− t)B
)
x, x〉g(

tA + (1− t)B
)
x, x〉

]

+
[
〈f(

(1− t)A + tB
)
x, x〉〈g(

(1− t)A + tB
)
x, x〉

]

+2
[
〈f(A)x, x〉〈g(A)x, x〉

]
+ 2

[
〈f(B)x, x〉〈g(B)x, x〉

]

+2
[
〈f(A)x, x〉〈g(B)x, x〉

]
+ 2

[
〈f(B)x, x〉〈g(A)x, x〉

]}

By integration over [0, 1], we obtain
〈

f

(
A + B

2

)
x, x

〉〈
g

(
A + B

2

)
x, x

〉

≤
∫ 1

0

[
〈f(

(1− t)A + tB
)
x, x〉〈g(

tA + (1− t)B
)
x, x〉

+〈f(
tA + (1− t)B

)
x, x〉〈g(

(1− t)A + tB
)
x, x〉

]
dt

+2M(A,B) + 2N(A, B)

This implies the inequality 11.
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