THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR p-CONVEX FUNCTIONS IN HILBERT SPACE

Seren Salaş ${ }^{1, *}$ <serensalas@gmail.com $>$
Erdal Unluyol ${ }^{1}$ erdalunluyol@odu.edu.tr
Yeter Erdass ${ }^{1}$ yeterrerdass@gmail.com
${ }^{1}$ Department of Mathematics, University of Ordu, 52000 Ordu, Turkey

Abstract

In this paper, we introduce operator p-convex functions and establish some HermiteHadamard type inequalities in which some operator p-convex functions of positive operators in Hilbert spaces are involved.

Keywords - The Hermite-Hadamard inequality, p-convex functions, operator p-convex functions, selfadjoint operator, inner product space, Hilbert space.

1 Introduction

The following inequality holds for any convex function f define on \mathbb{R} and $a, b \in \mathbb{R}$, with $a<b$

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{0}^{1} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

both inequalities hold in the reversed direction if f is concave.
The inequality (1) is known in the literature as the Hermite-Hadamard's inequality. The HermiteHadamard's inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's inequality. The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex function $f:[a, b] \rightarrow \mathbb{R}$.

In this paper, Firstly we defined for bounded positive selfadjoint operator p-convex functions in Hilbert space, secondly established some new theorems for them and finally Hermite-Hadamard type inequalities for product two bounded positive selfadjoint operators p-convex set up in Hilbert space.

In the paper [1] Dragomir et al. consider $P(I)$. This class is defined in the following way.
Definition 1.1. [1] We say that $f: I \rightarrow \mathbb{R}$ is a P-function, or that f belongs to the class $P(I)$, if f is a non-negative function and for all $x, y \in I, \alpha \in[0,1]$, we have

$$
f(\alpha x+(1-\alpha) y) \leq f(x)+f(y)
$$

For some results about the class $P(I)$ see, e.g., [2] and [3].

[^0]
2 Preliminary

First, we review the operator order in $B(H)$ and the continuous functional calculus for a bounded selfadjoint operator. For selfadjoint operators $A, B \in B(H)$ we write, for every $x \in H$

$$
A \leq B(\text { or } B \geq A) \text { if }\langle A x, x\rangle \leq\langle B x, x\rangle(\text { or }\langle B x, x\rangle \geq\langle A x, x\rangle)
$$

we call it the operator order.
Let A be a selfadjoint linear operator on a complex Hilbert space $(H,\langle.,\rangle$.$) and C(S p(A))$ the C^{*} -algebra of all continuous complex-valued functions on the spectrum A. The Gelfand map establishes a *-isometrically isomorphism Φ between $C(S p(A))$ and the C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows [6].

For any $f, g \in C(S p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
i. $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
ii. $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi\left(f^{*}\right)=\Phi(f)^{*}$;
iii. $\|\Phi(f)\|=\|f\|:=\sup _{t \in S p(A)}|f(t)|$;
iv. $\Phi\left(f_{0}\right)=1$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in S p(A)$

If f is a continuous complex-valued functions on $C(S p(A))$, the element $\Phi(f)$ of $C^{*}(A)$ is denoted by $f(A)$, and we call it the continuous functional calculus for a bounded selfadjoint operator A.

If A is bounded selfadjoint operator and f is real valued continuous function on $S p(A)$, then $f(t) \geq 0$ for any $t \in S p(A)$ implies that $f(A) \geq 0$, i.e $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $S p(A)$ such that $f(t) \leq g(t)$ for any $t \in S p(A)$, then $f(A) \leq f(B)$ in the operator order $B(H)$.

A real valued continuous function f on an interval I is said to be operator convex (operator concave) if

$$
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B)
$$

in the operator order in $B(H)$, for all $\lambda \in[0,1]$ and for every bounded self-adjoint operator A and B in $B(H)$ whose spectra are contained in I.

3 Operator p-convex Functions in Hilbert Space

The following definition and function class are firstly defined by Seren Salaş.
Definition 3.1. Let I be interval in \mathbb{R} and K be a convex subset of $B(H)^{+}$. A continuous function $f: I \rightarrow \mathbb{R}$ is said to be operator p-convex on I, operators in K if

$$
\begin{equation*}
f(\alpha A+(1-\alpha) B) \leq f(A)+f(B) \tag{2}
\end{equation*}
$$

in the operator order in $B(H)$, for all $\alpha \in[0,1]$ and for every positive operators A and B in K whose spectra are contained in I.

In the other words, if f is an operator p-convex on I, we denote by $f \in S_{p} O$.
Lemma 3.2. If f belongs to $S_{p} O$ for operators in K, then $f(A)$ is positive for every $A \in K$.
Proof. For $A \in K$, we have

$$
f(A)=f\left(\frac{A}{2}+\frac{A}{2}\right) \leq f(A)+f(A)=2 f(A)
$$

This implies that $f(A) \geq 0$.
Moslehian and Najafi [4] proved the following theorem for positive operators as follows :
Theorem 3.3. [4] Let $A, B \in B(H)^{+}$. Then $A B+B A$ is positive if and only if $f(A+B) \leq f(A)+f(B)$ for all non-negative operator functions f on $[0, \infty)$.

Dragomir in [5] has proved a Hermite-Hadamard type inequality for operator convex function as follows:

Theorem 3.4. [5] Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I. Then for all selfadjoint operators A and B with spectra in I we have the inequality

$$
\begin{aligned}
\left(f\left(\frac{A+B}{2}\right) \leq\right) & \frac{1}{2}\left[f\left(\frac{3 A+B}{4}\right)+f\left(\frac{A+3 B}{4}\right)\right] \\
\leq & \left.\int_{0}^{1} f((1-t) A+t B)\right) d t \\
\leq & \frac{1}{2}\left[f\left(\frac{A+B}{2}\right)+\frac{f(A)+f(B)}{2}\right]\left(\leq\left(\frac{f(A)+f(B)}{2}\right)\right] .
\end{aligned}
$$

Let X be a vector space, $x, y \in X, x \neq y$. Define the segment

$$
[x, y]:=(1-t) x+t y ; t \in[0,1] .
$$

We consider the function $f:[x, y]: \rightarrow \mathbb{R}$ and the associated function

$$
\begin{gathered}
g(x, y):[0,1] \rightarrow \mathbb{R} \\
g(x, y)(t):=f((1-t) x+t y), t \in[0,1] .
\end{gathered}
$$

Note that f is convex on $[x, y]$ if and only if $g(x, y)$ is convex on $[0,1]$. For any convex function defined on a segment $[x, y] \in X$, we have the Hermite-Hadamard integral inequality

$$
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f((1-t) x+t y) d t \leq \frac{f(x)+f(y)}{2}
$$

which can be derived from the classical Hermite-Hadamard inequality for the convex $g(x, y):[0,1] \rightarrow \mathbb{R}$.
Lemma 3.5. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function on the interval I. Then for every two positive operators $A, B \in K \subseteq B(H)^{+}$with spectra in I the function $f \in S_{p} O$ for operators in

$$
[A, B]:=(1-t) A+t B ; t \in[0,1]
$$

if and only if the function $\varphi_{x, A, B}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{x, A, B}:=\langle f((1-t) A+t B) x, x\rangle
$$

is operator p-convex on $[0,1]$ for every $x \in H$ with $\|x\|=1$.
Proof. Since $f \in S_{p} O$ operator in $[A, B]$, then for any $t_{1}, t_{2} \in[0,1]$ and $\alpha \in[0,1]$ we have

$$
\begin{aligned}
\varphi_{x, A, B}\left(\alpha t_{1}+(1-\alpha) t_{2}\right) & =\left\langle f\left(\left(1-\left(\alpha t_{1}+(1-\alpha) t_{2}\right) A+\left(\alpha t_{1}+(1-\alpha) t_{2}\right) B\right) x, x\right\rangle\right. \\
& =\left\langle f\left(\alpha\left[\left(1-t_{1}\right) A+t_{1} B\right]+(1-\alpha)\left[\left(1-t_{2}\right) A+t_{2} B\right]\right) x, x\right\rangle \\
& \left.\leq\left\langle f\left(\left(1-t_{1}\right) A+t_{1} B\right) x, x\right\rangle+f\left(\left(1-t_{2}\right) A+t_{2} B\right) x, x\right\rangle \\
& \leq \varphi_{x, A, B}\left(t_{1}\right)+\varphi_{x, A, B}\left(t_{2}\right)
\end{aligned}
$$

Theorem 3.6. Let $f \in S_{p} O$ on the interval $I \subseteq[0, \infty)$ for operators $K \subseteq B(H)^{+}$. Then for all positive operators A and B in K with spectra in I, we have the inequality

$$
\begin{equation*}
\frac{1}{2} f\left(\frac{A+B}{2}\right) \leq \int_{0}^{1} f(t A+(1-t) B) d t \leq[f(A)+(B)] \tag{3}
\end{equation*}
$$

Proof. For $x \in H$ with $\|x\|=1$ and $t \in[0,1]$, we have

$$
\begin{equation*}
\langle((1-t) A+t B) x, x\rangle=(1-t)\langle A x, x\rangle+t\langle B x, x\rangle \in I, \tag{4}
\end{equation*}
$$

Since $\langle A x, x\rangle \in S p(A) \subseteq I$ and $\langle B x, x\rangle \in S p(B) \subseteq I$.
Continuity of f and 4 imply that the operator-valued integral $\int_{0}^{1} f(t A+(1-t) B) d t$ exists.
Since f is operator p-convex, therefore for t in $[0,1]$, and $A, B \in K$ we have

$$
\begin{equation*}
f(t A+(1-t) B) d t \leq f(A)+f(B) \tag{5}
\end{equation*}
$$

Integrating both sides of 5 over $[0,1]$ we get the following inequality

$$
\int_{0}^{1} f(t A+(1-t) B) d t \leq f(A)+f(B)
$$

To prove the first inequality of 3 , we observe that

$$
\begin{equation*}
f\left(\frac{A+B}{2}\right) \leq f(t A+(1-t) B)+f((1-t) A+t B) \tag{6}
\end{equation*}
$$

Integrating the inequality 6 over $t \in[0,1]$ and taking into account that

$$
\int_{0}^{1} f(t A+(1-t) B) d t=\int_{0}^{1} f((1-t) A+t B) d t
$$

then we deduce the first part of 3 .

4 The Hermite-Hadamard Type Inequality for the Product Two Operators p-convex Functions

Let $f, g \in S_{p} O$ on the interval in I. Then for all positive operators A and B on a Hilbert space H with spectra in I, we define real functions $M(A, B)$ and $N(A, B)$ on H by

$$
\begin{aligned}
M(A, B)(x) & =\langle f(A) x, x\rangle\langle g(A) x, x\rangle+\langle f(B) x, x\rangle\langle g(B) x, x\rangle(x \in H), \\
N(A, B)(x) & =\langle f(A) x, x\rangle\langle g(B) x, x\rangle+\langle f(B) x, x\rangle\langle g(A) x, x\rangle(x \in H) .
\end{aligned}
$$

Theorem 4.1. Let $f, g \in S_{p} O$ be on the interval I for operators in $K \subseteq B(H)^{+}$. Then for all positive operators A and B in K with spectra in I, we have the inequality

$$
\begin{array}{r}
\int_{0}^{1}\langle f(t A+(1-t) B) x, x\rangle\langle g(t A+(1-t) B) x, x\rangle d t \\
\leq M(A, B)+N(A, B)
\end{array}
$$

hold for any $x \in H$ with $\|x\|=1$.
Proof. For $x \in H$ with $\|x\|=1$ and $t \in[0,1]$, we have

$$
\begin{equation*}
\langle(A+B) x, x\rangle=\langle A x, x\rangle+\langle B x, x\rangle \in I, \tag{7}
\end{equation*}
$$

since $\langle A x, x\rangle \in S p(A) \subseteq I$ and $\langle B x, x\rangle \in S p(B) \subseteq I$.
Continuity of f, g and 7 imply that the operator-valued integrals

$$
\int_{0}^{1} f(t A+(1-t) B) d t, \int_{0}^{1} g(t A+(1-t) B) d t \text { and } \int_{0}^{1}(f g)(t A+(1-t) B) d t
$$

exist.

Since $f, g \in S_{p} O$, therefore for t in $[0,1]$ and $x \in H$ we have

$$
\begin{align*}
\langle f(t A+(1-t) B) x, x\rangle & \leq\langle f(A)+f(B) x, x\rangle \tag{8}\\
\langle g(t A+(1-t) B) x, x\rangle & \leq\langle g(A)+g(B) x, x\rangle . \tag{9}
\end{align*}
$$

From 8 and 9 , we obtain

$$
\begin{align*}
\langle f(t A+(1-t) B) x, x\rangle\langle g(t A+(1-t) B) x, x\rangle & \leq\langle f(A) x, x\rangle\langle g(A) x, x\rangle \\
& +\langle f(A) x, x\rangle\langle g(B) x, x\rangle \\
& +\langle f(B) x, x\rangle\langle g(A) x, x\rangle \\
& +\langle f(B) x, x\rangle\langle g(B) x, x\rangle \tag{10}
\end{align*}
$$

Integrating both sides of 10 over $[0,1]$, we get the required inequality 7 .
Theorem 4.2. Let f, g belong to $S_{p} O$ on the interval I for operators in $K \subseteq B(H)^{+}$. Then for all positive operators A and B in K with spectra in I, we have the inequality

$$
\begin{align*}
& \frac{1}{2}\left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle \tag{11}\\
\leq & \int_{0}^{1}\langle f(t A+(1-t) B) x, x\rangle\langle g(t A+(1-t) B) x, x\rangle d t \\
& +M(A, B)+N(A, B) \tag{12}
\end{align*}
$$

hold for any $x \in H$ with $\|x\|=1$.
Proof. Since $f, g \in S_{p} O$, therefore for any $t \in I$ and any $x \in H$ with $\|x\|=1$, we observe that

$$
\begin{aligned}
&\left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle \\
& \leq\left\langle f\left(\frac{t A+(1-t) B}{2}+\frac{(1-t) A+t B}{2}\right) x, x\right\rangle \\
& \times\left\langle g\left(\frac{t A+(1-t) B}{2}+\frac{(1-t) A+t B}{2}\right) x, x\right\rangle \\
& \leq\{\langle f(t A+(1-t) B)\rangle+\langle f((1-t) A+t B)\rangle \\
& \leq \quad\{[\langle f(t A+(1-t) B) x, x\rangle\langle g(t A+(1-t) B) x, x\rangle] \\
&\times\langle g(t A+(1-t) B)\rangle+\langle g((1-t) A+t B)\rangle\} \\
&+ {[\langle f((1-t) A+t B) x, x\rangle\langle g((1-t) A+t B) x, x\rangle] } \\
&+ {[\langle f(A) x, x\rangle+\langle f(B) x, x\rangle] \times[\langle g(A) x, x\rangle+\langle g(B) x, x\rangle] } \\
&+ {[\langle f(A) x, x\rangle+\langle f(B) x, x\rangle] \times[\langle g(A) x, x\rangle+\langle g(B) x, x\rangle]\} }
\end{aligned}
$$

$$
\begin{aligned}
= & \{[\langle f(t A+(1-t) B) x, x\rangle g(t A+(1-t) B) x, x\rangle] \\
& +[\langle f((1-t) A+t B) x, x\rangle\langle g((1-t) A+t B) x, x\rangle] \\
& +2[\langle f(A) x, x\rangle\langle g(A) x, x\rangle]+2[\langle f(B) x, x\rangle\langle g(B) x, x\rangle] \\
& +2[\langle f(A) x, x\rangle\langle g(B) x, x\rangle]+2[\langle f(B) x, x\rangle\langle g(A) x, x\rangle]\}
\end{aligned}
$$

By integration over $[0,1]$, we obtain

$$
\begin{aligned}
& \left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle \\
\leq & \int_{0}^{1}[\langle f((1-t) A+t B) x, x\rangle\langle g(t A+(1-t) B) x, x\rangle \\
& +\langle f(t A+(1-t) B) x, x\rangle\langle g((1-t) A+t B) x, x\rangle] d t \\
& +2 M(A, B)+2 N(A, B)
\end{aligned}
$$

This implies the inequality 11 .

References

[1] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequality of Hadamard type, Soochow J. Math. 21 (1995) 335-341.
[2] C. E. M. Pearce, A. M. Rubinov P-funcutions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl. 240 (1999) 92-104.
[3] K. L. Tseng, G. S.Yang, S. S. Dragomir, On quasi-convex functions and Hadamard-type inequality, RGMIA Res. Rep. Coll. 6 (3) (2003), Article 1.
[4] M. S. Moslehian, H. Najafi, Around operator monotone functions. Integr. Equ. Oper. Theory., 71 (2011), 575-582, doi: 10.1007/s00020-011-1921-0
[5] S. S. Dragomir, The Hermite-Hadamard type inequalities for operator convex functions. Appl. Math. Comput., 2011, 218(3): 766-772, doi 10.1016/j.amc.2011.01.056
[6] T. Furuta, J. Mićić Hot, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, (2005).

[^0]: ${ }^{* *}$ Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).

 * Corresponding Author.

