SOME INEQUALITIES FOR q AND (q, k) DEFORMED GAMMA FUNCTIONS

Kwara Nantomah ${ }^{1, *}$ < knantomah@uds.edu.gh> Osman Kasimu ${ }^{2}$ o.kasimu@yahoo.com
${ }^{1,2}$ Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.

Abstract - In this short paper, the authors establish some inequalities involving the q and (q, k) deformed Gamma functions by employing some basic analytical techniques.

Keywords - Gamma function, q-deformation, (q, k)-deformation, q-addition, inequality.

1 Introduction

Let $\Gamma(x)$ be the classical Gamma function and $\psi(x)$ be the classical Psi or Digamma function defined for $x \in R^{+}$as:

$$
\begin{gathered}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \\
\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} .
\end{gathered}
$$

It is common knowledge in literature that the Gamma function satisfies the following properties.

$$
\begin{aligned}
& \Gamma(n+1)=n!, \quad n \in Z^{+}, \\
& \Gamma(x+1)=x \Gamma(x), \quad x \in R^{+} .
\end{aligned}
$$

Also, let $\Gamma_{q}(x)$ be the q-deformed Gamma function (also known as the q-Gamma function or the q analogue of the Gamma function) and $\psi_{q}(x)$ be the q-deformed Psi function defined for $q \in(0,1)$ and $x \in R^{+}$as (See [6], [7] and the references therein):

$$
\Gamma_{q}(x)=(1-q)^{1-x} \prod_{n=1}^{\infty} \frac{1-q^{n}}{1-q^{x+n}} \quad \text { and } \quad \psi_{q}(x)=\frac{d}{d x} \ln \Gamma_{q}(x)
$$

[^0]with $\Gamma_{q}(x)$ satisfying the properties:
\[

$$
\begin{align*}
& \Gamma_{q}(n+1)=[n]_{q}!\quad n \in Z^{+}, \tag{1}\\
& \Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x) \quad x \in R^{+} . \tag{2}
\end{align*}
$$
\]

where $[x]_{q}=\frac{1-q^{x}}{1-q} \quad$ and $\quad[x+y]_{q}=[x]_{q}+q^{x}[y]_{q} \quad$ for $x, y \in R^{+}$. See [2].
Similarly, let $\Gamma_{(q, k)}(x)$ be the (q, k)-deformed Gamma function and $\psi_{(q, k)}(x)$ be the (q, k)-deformed Psi function defined for $q \in(0,1), k>0$ and $x \in R^{+}$as (See [2], [8], [10] and the references therein):

$$
\Gamma_{(q, k)}(x)=\frac{\left(1-q^{k}\right)_{q, k}^{\frac{x}{k}-1}}{(1-q)^{\frac{x}{k}-1}}=\frac{\left(1-q^{k}\right)_{q, k}^{\infty}}{\left(1-q^{x}\right)_{q, k}^{\infty} \cdot(1-q)^{\frac{x}{k}-1}} \quad \text { and } \quad \psi_{(q, k)}(x)=\frac{d}{d x} \ln \Gamma_{(q, k)}(x)
$$

where $(x+y)_{q, k}^{n}=\prod_{j=0}^{n-1}\left(x+q^{j k} y\right)$ with $\Gamma_{(q, k)}(x)$ satisfying the following property:

$$
\begin{equation*}
\Gamma_{(q, k)}(x+k)=[x]_{q} \Gamma_{(q, k)}(x), \quad x \in R^{+} . \tag{3}
\end{equation*}
$$

The q-addition (otherwise known as the q-analogue or q-deformation of the ordinary addition) can be defined in the following two ways:

The Nalli-Ward-Alsalam q-addition, \oplus_{q} is defined (See [11], [1], [3]) as:

$$
\begin{equation*}
\left(a \oplus_{q} b\right)^{n}:=\sum_{k=1}^{n}\binom{n}{k}_{q} a^{k} b^{n-k} \quad \text { for } \quad a, b \in R, n \in N . \tag{4}
\end{equation*}
$$

where $\binom{n}{k}_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$ is the q-binomial coefficient.
The Jackson-Hahn-Cigler q-addition, \boxplus_{q} is defined (See [4], [5], [3]) as:

$$
\begin{equation*}
\left(a \boxplus_{q} b\right)^{n}:=\sum_{k=1}^{n}\binom{n}{k}_{q} q^{\frac{k(k-1)}{2}} a^{n-k} b^{k} \quad \text { for } \quad a, b \in R, n \in N . \tag{5}
\end{equation*}
$$

Notice that both \oplus_{q} and \boxplus_{q} reduce to the ordinary addition, + when $q=1$.
In a recent paper [9], the inequalities:

$$
\begin{align*}
\frac{\Gamma(m+n+1)}{\Gamma(m+1) \Gamma(n+1)}<\frac{(m+n)^{m+n}}{m^{m} n^{n}}, & m, n \in Z^{+} \tag{6}\\
\frac{\Gamma(x+y+1)}{\Gamma(x+1) \Gamma(y+1)} \leq \frac{(x+y)^{x+y}}{x^{x} y^{y}}, & x, y \in R^{+} \tag{7}
\end{align*}
$$

which occur in the study of probability theory were presented together with some other results. In this paper, the objective is to establish related inequalities for the q and (q, k) deformed Gamma functions. The results are presented in the following section.

2 Main Results

Theorem 2.1. Let $q \in(0,1)$ and $m, n \in Z^{+}$. Then, the inequality:

$$
\begin{equation*}
\frac{\Gamma_{q}(m+n+1)}{\Gamma_{q}(m+1) \Gamma_{q}(n+1)} \leq \frac{\left(m \oplus_{q} n\right)^{m+n}}{m^{m} n^{n}} \tag{8}
\end{equation*}
$$

holds true.

Proof. By equation (4) we obtain;

$$
\left(m \oplus_{q} n\right)^{m+n} \geq\binom{ m+n}{m}_{q} m^{m} n^{n}
$$

since the binomial expansion of $\left(m \oplus_{q} n\right)^{m+n}$ includes the term $\binom{m+n}{m}_{q} m^{m} n^{n}$ as well as some other terms. That implies,

$$
\frac{[m+n]_{q}!}{[m]_{q}![n]_{q}!} \leq \frac{\left(m \oplus_{q} n\right)^{m+n}}{m^{m} n^{n}}
$$

Now using relation (1) yields,

$$
\frac{\Gamma_{q}(m+n+1)}{\Gamma_{q}(m+1) \Gamma_{q}(n+1)} \leq \frac{\left(m \oplus_{q} n\right)^{m+n}}{m^{m} n^{n}}
$$

completing the proof.

Theorem 2.2. Let $q \in(0,1)$ and $m, n \in Z^{+}$. Then, the inequality:

$$
\begin{equation*}
\frac{\Gamma_{q}(m+n+1)}{\Gamma_{q}(m+1) \Gamma_{q}(n+1)} \leq \frac{\left(m \boxplus_{q} n\right)^{m+n} q^{\frac{n(1-n)}{2}}}{m^{m} n^{n}} \tag{9}
\end{equation*}
$$

holds true.
Proof. Similarly, by equation (5) we obtain;

$$
\left(m \boxplus_{q} n\right)^{m+n} \geq\binom{ m+n}{n}_{q} q^{\frac{n(n-1)}{2}} m^{m} n^{n} .
$$

Implying,

$$
\frac{[m+n]_{q}!}{[m]_{q}![n]_{q}!} \leq \frac{\left(m \boxplus_{q} n\right)^{m+n} q^{\frac{n(1-n)}{2}}}{m^{m} n^{n}} .
$$

By relation (1), we obtain;

$$
\frac{\Gamma_{q}(m+n+1)}{\Gamma_{q}(m+1) \Gamma_{q}(n+1)} \leq \frac{\left(m \boxplus_{q} n\right)^{m+n} q^{\frac{n(1-n)}{2}}}{m^{m} n^{n}}
$$

concluding the proof.

Lemma 2.3. If $q \in(0,1)$ and $x \in(0,1)$ then,

$$
\begin{equation*}
\ln \left(1-q^{x}\right)-\ln (1-q)<0 . \tag{10}
\end{equation*}
$$

Proof. We have $q^{x}>q$ for all $q \in(0,1)$ and $x \in(0,1)$. That implies, $1-q^{x}<1-q$. Taking the logarithm of both sides concludes the proof.

Theorem 2.4. Let $q \in(0,1)$ fixed, $x \in(0,1)$ and $y \in(0,1)$ be such that $\psi_{q}(x+1)>0$. Then, the inequality:

$$
\begin{equation*}
\frac{\Gamma_{q}(x+y+1)}{\Gamma_{q}(x+1) \Gamma_{q}(y+1)} \geq \frac{[x+y]_{q}^{[x+y]_{q}}}{[x]_{q}^{[x]_{q}}[y]_{q} e^{q^{x}[y]_{q}} \Gamma_{q}(y)} \tag{11}
\end{equation*}
$$

holds true.

Proof. Let Q and T be defined for $q \in(0,1)$ fixed, $x \in(0,1)$ and $y \in(0,1)$ by,

$$
Q(x)=\frac{e^{[x]_{q}} \Gamma_{q}(x+1)}{[x]_{q}^{[x]_{q}}} \quad \text { and } \quad T(x, y)=\frac{Q(x+y)}{Q(x) Q(y)}
$$

Let $\mu(x)=\ln Q(x)$. That is,

$$
\begin{aligned}
\mu(x) & =[x]_{q}+\ln \Gamma_{q}(x+1)-[x]_{q} \ln [x]_{q} . \text { Then, } \\
\mu(x)^{\prime} & =\psi_{q}(x+1)+(\ln q) \frac{q^{x}}{1-q} \ln [x]_{q} \\
& =\psi_{q}(x+1)+(\ln q) \frac{q^{x}}{1-q}\left(\ln \left(1-q^{x}\right)-\ln (1-q)\right)>0
\end{aligned}
$$

This is as a result of Lemma 2.3 and the fact that $\ln q<0$ for $q \in(0,1)$. Hence $Q(x)$ is increasing.
Next, we have,

$$
T(x, y)=\frac{Q(x+y)}{Q(x) Q(y)}=\frac{Q(x+y)}{Q(x)} \cdot \frac{1}{Q(y)} \geq \frac{1}{Q(y)}=\frac{[y]_{q}^{[y]_{q}}}{e^{[y]_{q}}[y]_{q} \Gamma_{q}(y)}
$$

since $Q(x)$ is increasing and $\Gamma_{q}(y+1)=[y]_{q} \Gamma(y)$. That implies,

$$
\begin{aligned}
T(x, y) & =\frac{[x]_{q}^{[x]_{q}}[y]_{q}^{[y]_{q}}}{[x+y]_{q}^{[x+y]_{q}}} \cdot \frac{e^{[x+y]_{q}}}{e^{[x]_{q}+[y]_{q}}} \cdot \frac{\Gamma_{q}(x+y+1)}{\Gamma_{q}(x+1) \Gamma_{q}(y+1)} \\
& =\frac{[x]_{q}^{[x]_{q}}[y]_{q}^{[y]_{q}}}{[x+y]_{q}^{[x+y]_{q}}} \cdot \frac{e^{[x]_{q}+q^{x}[y]_{q}}}{e^{[x]_{q}+[y]_{q}}} \cdot \frac{\Gamma_{q}(x+y+1)}{\Gamma_{q}(x+1) \Gamma_{q}(y+1)} \geq \frac{[y]_{q}^{[y]_{q}}}{e^{[y]_{q}[y]_{q} \Gamma_{q}(y)}}
\end{aligned}
$$

yielding the results as in (11).
Remark 2.5. Let $B_{q}(x, y)=\frac{\Gamma_{q}(x) \Gamma_{q}(y)}{\Gamma_{q}(x+y)}$ be the q-deformation of the classical Beta function. Then, inequality (11) can be rearranged as follows.

$$
B_{q}(x, y) \leq \frac{[x]_{q}^{[x]_{q}-1} e^{q^{x}}[y]_{q} \Gamma_{q}(y)}{[x+y]_{q}^{[x+y]_{q}-1}} .
$$

Theorem 2.6. Let $q \in(0,1)$ fixed, $k>0$ and $x \in(0,1)$ be such that $\psi_{(q, k)}(x+k)>0$. Then, the inequality:

$$
\begin{equation*}
\frac{\Gamma_{(q, k)}(x+y+k)}{\Gamma_{(q, k)}(x+k) \Gamma_{(q, k)}(y+k)} \geq \frac{[x+y]_{q}^{[x+y]_{q}}}{[x]_{q}^{[x]_{q}}[y]_{q} e^{q^{x}[y]_{q}} \Gamma_{(q, k)}(y)} \tag{12}
\end{equation*}
$$

is valid.
Proof. Let G and H be defined for $q \in(0,1)$ fixed, $k>0, x \in(0,1)$ and $y \in(0,1)$ by,

$$
G(x)=\frac{e^{[x]_{q}} \Gamma_{(q, k)}(x+k)}{[x]_{q}^{[x]_{q}}} \quad \text { and } \quad H(x, y)=\frac{G(x+y)}{G(x) G(y)} .
$$

In a similar fashion, let $\lambda(x)=\ln G(x)$. That is,

$$
\begin{aligned}
\lambda(x) & =[x]_{q}+\ln \Gamma_{(q, k)}(x+k)-[x]_{q} \ln [x]_{q} . \quad \text { Then, } \\
\lambda(x)^{\prime} & =\psi_{(q, k)}(x+k)+(\ln q) \frac{q^{x}}{1-q}\left(\ln \left(1-q^{x}\right)-\ln (1-q)\right)>0 .
\end{aligned}
$$

Hence $G(x)$ is increasing.
Next, observe that,

$$
H(x, y)=\frac{G(x+y)}{G(x) G(y)}=\frac{G(x+y)}{G(x)} \cdot \frac{1}{G(y)} \geq \frac{1}{G(y)}=\frac{[y]_{q}^{[y]_{q}}}{e^{[y]_{q}}[y]_{q} \Gamma_{(q, k)}(y)}
$$

since $G(x)$ is increasing and $\Gamma_{(q, k)}(y+k)=[y]_{q} \Gamma_{(q, k)}(y)$. That implies,

$$
H(x, y)=\frac{[x]_{q}^{[x]_{q}}[y]_{q}^{[y]_{q}}}{[x+y]_{q}^{[x+y]_{q}}} \cdot \frac{e^{[x]_{q}+q^{x}[y]_{q}}}{e^{[x]_{q}+[y]_{q}}} \cdot \frac{\Gamma_{(q, k)}(x+y+k)}{\Gamma_{(q, k)}(x+k) \Gamma_{(q, k)}(y+k)} \geq \frac{[y]_{q}^{[y]_{q}}}{e^{[y]_{q}[y]_{q} \Gamma_{(q, k)}(y)}}
$$

establishing the results as in (12).
Remark 2.7. Let $B_{(q, k)}(x, y)=\frac{\Gamma_{(q, k)}(x) \Gamma_{(q, k)}(y)}{\Gamma_{(q, k)}(x+y)}$ be the (q, k)-deformation of the classical Beta function. Then, inequality (12) can be written as follows.

$$
B_{(q, k)}(x, y) \leq \frac{[x]_{q}^{[x]_{q}-1} e^{q^{x}[y]_{q}} \Gamma_{(q, k)}(y)}{[x+y]_{q}^{[x+y]_{q}-1}} .
$$

3 Concluding Remarks

Some new inequalities related to (6) and (7) have been established for the q and (q, k) deformed Gamma functions. In particular, if we allow $q \rightarrow 1$ in either inequality (8) or (9), then, inequality (6) is restored as a special case. Also, by allowing $q \rightarrow 1$ in (12), then we obtain the k-analogue of inequality (11).

Acknowledgement

The authors are very grateful to the anonymous reviewers for their valuable comments which helped in improving the quality of this paper.

References

[1] W. A. Al-Salam, q-Bernoulli numbers and polynomials, Math. Nachr., 17, (1959) 239260.
[2] R. Díaz and C. Teruel, q, k-generalized gamma and beta functions, J. Nonlin. Math. Phys. 12, (2005), 118-134.
[3] T. Ernst, The different tongues of q-Calculus, Proceedings of the Estonian Academy of Sciences, 57(2) (2008), 81-99.
[4] T. Ernst, A Method for q-Calculus, Journal of Nonlinear Mathematical Physics, 10(4) (2003), 487-525.
[5] T. Ernst, q-Bernoulli and q-Euler Polynomials, an Umbral Approach, International Journal of Difference Equations, 1(1) (2006), 31-80.
[6] K. Nantomah and E. Prempeh, The q-Analogues of Some Inequalities for the Digamma Function, Mathematica Aeterna, 4(3) (2014), 281-285.
[7] K. Nantomah and E. Prempeh, Some Inequalities for the q-Digamma Function, Mathematica Aeterna, 4(5) (2014), 515-519.
[8] K. Nantomah, The (q, k)-analogues of some inequalities involving the Psi function, Global Journal of Mathematical Analysis, 2(3) (2014), 209-212.
[9] K. Nantomah, Some Gamma Function Inequalities Occurring in Probability Theory, Global Journal of Mathematical Analysis, 3(2) (2015), 49-53.
[10] K. Nantomah, Some Inequalities for the Ratios of Generalized Digamma Functions, Advances in Inequalities and Applications, Vol . 2014 (2014), Article ID 28.
[11] M. Ward, A Calculus of Sequences, Amer. J. Math., 58(2), (1936), 255266.

[^0]: ${ }^{* *}$ Edited by Erhan Set and Naim Cagman (Editor-in-Chief).

 * Corresponding Author.

