

THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR m-CONVEX FUNCTIONS IN HILBERT SPACE

Yeter Erdaş ${ }^{1, *}$ yeterrerdass@gmail.com
Erdal Unluyol ${ }^{1}$ erdalunluyol@odu.edu.tr
Seren Salaş ${ }^{1}$ <serensalas@gmail.com >
${ }^{1}$ Department of Mathematics, University of Ordu, 52000 Ordu, Turkey

Abstract

In this paper, we first define operators m-convex functions for positive, bounded, selfadjoint operators in Hilbert space via m-convex functions. Secondly, we establish some new theorems for them. Finally, we obtain the Hermite-Hadamard type inequalities for the product two operators m-convex functions in Hilbert space.

Keywords - The Hermite-Hadamard inequality, m-convex functions, operator m-convex functions, selfadjoint operator, inner product space, Hilbert space.

1 Introduction

The following inequality holds for any convex function f define on \mathbb{R} and $a, b \in \mathbb{R}$, with $a<b$

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{0}^{1} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

both inequalities hold in the reversed direction if f is concave.
The inequality (1) is known in the literature as the Hermite-Hadamard's inequality. The Hermite-Hadamard's inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's inequality. The classical HermiteHadamard inequality provides estimates of the mean value of a continuous convex function $f:[a, b] \rightarrow \mathbb{R}$. In this paper, Firstly we defined for bounded positive selfadjoint operator m-convex functions in Hilbert space, secondly established some new

[^0]theorems for them and finally Hermite-Hadamard type inequalities for product two bounded positive selfadjoint operators m-convex set up in Hilbert space.

2 Preliminary

First, we review the operator order in $B(H)$ and the continuous functional calculus for a bounded selfadjoint operator. For selfadjoint operators $A, B \in B(H)$ we write, for every $x \in H$

$$
A \leq B(\text { or } B \geq A) \text { if }\langle A x, x\rangle \leq\langle B x, x\rangle(\text { or }\langle B x, x\rangle \geq\langle A x, x\rangle)
$$

we call it the operator order.
Let A be a selfadjoint linear operator on a complex Hilbert space $(H,\langle.,\rangle$.$) and$ $C(S p(A))$ the C^{*}-algebra of all continuous complex-valued functions on the spectrum A. The Gelfand map establishes a *-isometrically isomorphism Φ between $C(S p(A))$ and the C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows [1].

For any $f, g \in C(S p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
i. $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
ii. $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi\left(f^{*}\right)=\Phi(f)^{*} ;$
iii. $\|\Phi(f)\|=\|f\|:=\sup _{t \in S p(A)}|f(t)|$;
iv. $\Phi\left(f_{0}\right)=1$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in S p(A)$

If f is a continuous complex-valued functions on $C(S p(A)$, the element $\Phi(f)$ of $C^{*}(A)$ is denoted by $f(A)$, and we call it the continuous functional calculus for a bounded selfadjoint operator A.

If A is bounded selfadjoint operator and f is real valued continuous function on $S p(A)$, then $f(t) \geq 0$ for any $t \in S p(A)$ implies that $f(A) \geq 0$, i.e $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $S p(A)$ such that $f(t) \leq g(t)$ for any $t \in S p(A)$, then $f(A) \leq f(B)$ in the operator order $B(H)$.

A real valued continuous function f on an interval I is said to be operator convex (operator concave) if

$$
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B)
$$

in the operator order in $B(H)$, for all $\lambda \in[0,1]$ and for every bounded self-adjoint operator A and B in $B(H)$ whose spectra are contained in I.

We denoted by $B(H)^{+}$the set of all positive operators in $B(H)$.
G.H. Toader [2] defines the m-convexity, on intermediate between the usual convexity and starshaped property.
Definition 2.1. [2] The function $f:[a, b] \rightarrow \mathbb{R}$ is said to be m-convex, where $m \in[0,1]$, if for $x, y \in[a, b]$ and $t \in[0,1]$ we have $f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)$

Denote by $K_{m}(b)$ the set of the m-convex functions on [a,b] for which $f(0) \leq 0$. Note that, for $m=1$, we recapture the concept of convex functions defined on $[a, b]$ and for $m=0$ we get the concept of starshaped functions on $[a, b]$. We recall that $f:[a, b] \rightarrow \mathbb{R}$ is starshaped if $f(t x) \leq t f(x)$, for all $t \in[0,1]$ and $x \in[a, b]$.

3 The Hermite-Hadamard Type Inequalities for Operator m-convex Functions in Hilbert Space

3.1 Operator m-convex Functions in Hilbert Space

The following definition is firstly defined by Yeter Erdaş
Definition 3.1. Let I be an interval in \mathbb{R} and K be convex subset of $B(H)^{+}$. A continuous function $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ is said to be operator m-convex on I for operators in K if

$$
f(t A+m(1-t) A) \leq t f(A)+m(1-t) f(A)
$$

in the operator order in $B(H)^{+}$, for all $m, t \in[0,1]$ and for every positive operators A and B in K whose spectra are contained in I.

Lemma 3.2. If f is operator m-convex on $[0, \infty)$ for operator in K , then $f(A)$ is positive for every $A \in K$.
Proof. For $A \in K$, we have

$$
\begin{aligned}
f(A) & =f\left(\frac{t A+m(1-t) A+(1-t) A+m t A}{2}\right) \\
& \leq f(t A+m(1-t) A+(1-t) A+m t A) \\
& \leq t f(A)+m(1-t) f(A)+(1-t) f(A)+m t f(A) \\
& =t f(A)+m f(A)-m t f(A)+f(A)-t f(A)+m t f(A) f(A) \\
& \leq f(A)(m+1) \\
& \leq m f(A)
\end{aligned}
$$

This implies that $f(A) \geq 0$.
Moslehian and Najafi [3] proved the following theorem for positive operators as follows:
Theorem 3.3. [3] Let $A, B \in B(H)^{+}$. Then $A B+B A$ is positive if and only if $f(A+B) \leq f(A)+f(B)$ for all non-negative operator functions f on $[0, \infty)$.

Dragomir in [4] has proved a Hermite-Hadamard type inequality for operator convex function as following

Theorem 3.4. [4] Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I. Then for all selfadjoint operators A and B with spectra in I we have the inequality

$$
\begin{aligned}
& \left(f\left(\frac{A+B}{2}\right) \leq\right) \frac{1}{2}\left[f\left(\frac{3 A+B}{4}\right)+f\left(\frac{A+3 B}{4}\right)\right] \\
& \left.\leq \int_{0}^{1} f((1-t) A+t B)\right) d t \\
& \leq \frac{1}{2}\left[f\left(\frac{A+B}{2}\right)+\frac{f(A)+f(B)}{2}\right] \\
& \left.\left(\leq \frac{f(A)+f(B)}{2}\right)\right]
\end{aligned}
$$

Let X be a vector space, $x, y \in X, x \neq y$. Define the segment

$$
[x, y]:=(1-t) x+t y ; t \in[0,1] .
$$

We consider the function $f:[x, y]: \rightarrow \mathbb{R}$ and the associated function

$$
\begin{gathered}
g(x, y):[0,1] \rightarrow \mathbb{R} \\
g(x, y)(t):=f((1-t) x+t y), t \in[0,1] .
\end{gathered}
$$

Note that f is convex on $[x, y]$ if and only if $g(x, y)$ is convex on $[0,1]$. For any convex function defined on a segment $[x, y] \in X$, we have the Hermite-Hadamard integral inequality

$$
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f((1-t) x+t y) d t \leq \frac{f(x)+f(y)}{2}
$$

which can be derived from the classical Hermite-Hadamard inequality for the convex $g(x, y):[0,1] \rightarrow \mathbb{R}$.
Lemma 3.5. Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a continuous function on the interval I. Then for every two positive operators $A, B \in K \subseteq B(H)^{+}$with spectra in I the function f is operator m-convex for operators in

$$
[A, B]:=\{(1-t) A+m t B: t \in[0,1]\}
$$

if and only if the function $\varphi_{x, A, B}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{x, A, B}(t)=\langle f((1-t) A+m t B) x, x\rangle
$$

is m-convex on $[0,1]$ for every $x \in H$ with $\|x\|=1$.
Proof. Let f be operator m-convex for operators in $[A, B]$ then for any $t_{1}, t_{2} \in[0,1]$ and $\lambda, \gamma \geq 0$ with $\lambda+\gamma=1$ we have

$$
\begin{aligned}
& \varphi_{x, A, B}\left(\lambda t_{1}+\gamma t_{2}\right)=\left\langle f\left(\left(1-\left(\lambda t_{1}+\gamma t_{2}\right) A\right)+m\left(\lambda t_{1}+\gamma t_{2}\right) B\right) x, x\right\rangle \\
= & \left\langle f\left(\lambda A+\gamma A-\lambda A t_{1}-\gamma A t_{2}+m \lambda t_{1} B+m \gamma t_{2} B\right) x, x\right\rangle \\
= & \left\langle f\left(\lambda\left[\left(1-t_{1}\right) A+m t_{1} B\right]+\gamma\left[\left(1-t_{2}\right) A+m t_{2} B\right]\right) x, x\right\rangle \\
\leq & \lambda \varphi_{x, A, B}\left(t_{1}\right) \varphi_{x, A, B}\left(t_{2}\right)
\end{aligned}
$$

showing that $\varphi_{x, A, B}$ is a m-convex function on $[0,1]$. Let now $\varphi_{x, A, B}$ be m-convex on $[0,1]$, we show that f is operator convex for operators in $[A, B]$. For every $C:=$
$\left(1-t_{1}\right) A+m t_{1} B$ and $D:=\left(1-t_{2}\right) A+m t_{2} B$ we have

$$
\begin{aligned}
\langle f((1-\lambda) C+m \lambda D) x, x\rangle= & \left\langlef \left((1-\lambda)\left[\left(1-t_{1}\right) A+m t_{1} B\right]\right.\right. \\
& \left.\left.+m \lambda\left[\left(1-t_{2}\right) A+m t_{2} B\right]\right) x, x\right\rangle \\
= & \left\langlef \left(A-t_{1} A+m t_{1} B-\lambda A+\lambda t_{1} A-m \lambda t_{1} B\right.\right. \\
& \left.\left.+m \lambda A-m \lambda t_{2} A+m^{2} \lambda t_{2} B\right) x, x\right\rangle \\
= & \left\langlef \left(A\left(1-t_{1}\right)-\lambda A\left(1-t_{1}\right)+m \lambda A\left(1-t_{2}\right)\right.\right. \\
& \left.\left.+m t_{1} B+m^{2} \lambda t_{2} B-m \lambda t_{1} B\right) x, x\right\rangle \\
= & \left\langlef \left(-\lambda\left(\left(1-t_{1}\right) A+m t_{1} B\right)+A\left(1-t_{1}\right)\right.\right. \\
& \left.\left.+m t_{1} B+m \lambda\left(A\left(1-t_{2}\right)+m t_{2} B\right)\right) x, x\right\rangle \\
= & \left\langlef \left((1-\lambda)\left(\left(1-t_{1}\right) A+m t_{1} B\right)\right.\right. \\
& \left.\left.+m \lambda\left(\left(1-t_{2}\right) A+m t_{2} B\right)\right) x, x\right\rangle \\
\leq & (1-\lambda)\langle f(C) x, x\rangle+m \lambda\langle f(D) x, x\rangle
\end{aligned}
$$

Theorem 3.6. Let $f: I \rightarrow \mathbb{R}$ be an operator m-convex function on the interval $I \subseteq[0, \infty)$ for operators in $K \subseteq B(H)^{+}$. Then for all positive operators A and B in K with spectra in I we have the inequality

$$
\begin{aligned}
f\left(\frac{A+B}{2}\right) & \leq \int_{0}^{1}[t f(A)+m(1-t) f(A)+t f(B)+m(1-t) f(B)] d t \\
& \leq(m+1)(f(A)+f(B))
\end{aligned}
$$

Proof. For $x \in H$ with $\|x\|=1$ and $t \in[0,1]$, we have

$$
\begin{equation*}
\langle[t A+m(1-t) B] x, x\rangle=t\langle A x, x\rangle+m(1-t)\langle B x, x\rangle \in I \tag{2}
\end{equation*}
$$

since $\langle A x, x\rangle \in S p(A) \subseteq I$ and $\langle B x, x\rangle \in S p(B) \subseteq I$, (2) imply that the operatorvalued integral $\int_{0}^{1} f(t A+(1-t) B) d t$ exists. Since f is operator m-convex, therefore for t in $[0,1]$ and $A, B \in K$ we have

$$
\begin{equation*}
f(t A+m(1-t) B) \leq t f(A)+m(1-t) f(B) \tag{3}
\end{equation*}
$$

integrating both sides of (3) over $[0,1]$ we get the following inequality

$$
\begin{aligned}
& \int_{0}^{1}[f(t A+m(1-t) B)] d t \leq \int_{0}^{1}[t f(A)+m(1-t) f(B)] d t \\
= & f(A)+m f(B)-f(B) \\
= & f(A)+(m-1) B f\left(\frac{A+B}{2}\right) \\
= & f\left(\frac{t A+m(1-t) A+(1-t) A+m t A+t B+m(1-t) B+(1-t) B+m t B}{2(m+1)}\right) \\
\leq & f\left(\frac{t(A+B)+m(1-t)(A+B)+(1-t)(A+B)+m t(A+B)}{2}\right) \\
\leq & t f(A)+t f(B)+m(1-t) f(A)+m(1-t) f(B)+f(A)+f(B) \\
= & -t f(A)-t f(B)+m t f(A)+m t f(B) \\
= & \int_{0}^{1} f((1-t) A+m t B) d t
\end{aligned}
$$

4 The Hermite-Hadamard Type Inequalites for Product Two Operators m-convex Functions

Let $f: I \rightarrow \mathbb{R}$ be operator m-convex and $g: I \rightarrow \mathbb{R}$ operator m-convex function on the interval I. Then for all positive operators A and B on a Hilbert space H with spectra in I, we define real functions $K(A)(x), L(A, B)(x), R(A, B)(x), S(B)(x), M(A, B)(x)$, $N(A, B)(x)$ on H by

$$
\begin{aligned}
K(A)(x) & =\langle f(A) x, x\rangle\langle g(A) x, x\rangle \\
L(A, B)(x) & =\langle f(A) x, x\rangle\langle g(B) x, x\rangle \\
R(A, B)(x) & =\langle f(B) x, x\rangle\langle g(A) x, x\rangle \\
S(B)(x) & =\langle f(B) x, x\rangle\langle g(B) x, x\rangle \\
M(A, B)(x) & =\langle f(A) x, x\rangle\langle g(A) x, x\rangle+\langle f(B) x, x\rangle\langle g(B) x, x\rangle \\
N(A, B)(x) & =\langle f(A) x, x\rangle\langle g(B) x, x\rangle+\langle f(B) x, x\rangle\langle g(A) x, x\rangle .
\end{aligned}
$$

Theorem 4.1. Let $f: I \rightarrow \mathbb{R}$ be operator m_{1}-convex and $g: I \rightarrow \mathbb{R}$ operator $m_{2^{-}}$ convex function on the interval I for operators in $K \subseteq B(H)^{+}$. Then for all positive operators A and B in K with spectra in I , the inequality

$$
\int_{0}^{1}\left[\left\langle f\left(t A+m_{1}(1-t) B\right) x, x\right\rangle\left\langle g\left(t A+m_{2}(1-t) B\right) x, x\right\rangle\right] d t
$$

$$
\leq\left(\frac{K}{3}\right)+\left(\frac{m_{2} L}{6}\right)+\left(\frac{m_{1} R}{6}\right)-\left(\frac{m_{1} m_{2} S}{3}\right)
$$

Proof. For $x \in H$ with $\|x\|=1$ and $t \in[0,1]$ we have

$$
\begin{equation*}
\langle[t A+m(1-t) B] x, x\rangle=t\langle A x, x\rangle+m(1-t)\langle B x, x\rangle \in I \tag{4}
\end{equation*}
$$

since $\langle A x, x\rangle \in S p(A) \subseteq I$ and $\langle B x, x\rangle \in S p(B) \subseteq I$. Continuity of f, g and (4) imply that the operator valued integrals $\int_{0}^{1} f\left(t A+m_{1}(1-t) B\right) d t, \int_{0}^{1} g\left(t A+m_{2}(1-t) B\right) d t$ and $\int_{0}^{1}(f g)(t A+m(1-t) B) d t$ exist. Since f, g are operator convex, therefore for $t \in[0,1]$ and $t \in[0,1]$ we have

$$
\begin{align*}
& \left\langle f\left(t A+m_{1}(1-t) B\right) x, x\right\rangle \leq t\langle f(A) x, x\rangle+m_{1}(1-t)\langle f(B) x, x\rangle \\
& \left\langle g\left(t A+m_{2}(1-t) B\right) x, x\right\rangle \leq t\langle g(A) x, x\rangle+m_{2}(1-t)\langle g(B) x, x\rangle \\
& \quad\left(\left\langle f\left(t A+m_{1}(1-t) B\right) x, x\right\rangle\right)\left(\left\langle g\left(t A+m_{2}(1-t) B\right) x, x\right\rangle\right) \\
& \quad \leq t^{2}\langle f(A) x, x\rangle\langle g(A) x, x\rangle+t m_{2}(1-t)\langle f(A) x, x\rangle\langle g(B) x, x\rangle \tag{5}\\
& \quad+t m_{1}(1-t)\langle f(B) x, x\rangle\langle g(A) x, x\rangle \\
& \quad+m_{1} m_{2}(1-t)^{2}\langle f(B) x, x\rangle\langle g(B) x, x\rangle
\end{align*}
$$

Integrating both sides of (5) over $[0,1]$, we get the following inequality

$$
\begin{gathered}
\int_{0}^{1}\left[\left\langle f\left(t A+m_{1}(1-t) B\right) x, x\right\rangle\left\langle g\left(t A+m_{2}(1-t) B\right) x, x\right\rangle\right] d t \leq \\
\left(\frac{K}{3}\right)+\left(\frac{m_{2} L}{6}\right)+\left(\frac{m_{1} R}{6}\right)-\left(\frac{m_{1} m_{2} S}{3}\right)
\end{gathered}
$$

Theorem 4.2. Let $f: I \rightarrow \mathbb{R}$ be operator m_{1}-convex and $g: I \rightarrow \mathbb{R}$ operator $m_{2^{-}}$ convex function on the interval I for operators in $K \subseteq B(H)^{+}$. Then for all positive operators A and B in K with spectra in I , the inequality

$$
\begin{gathered}
\left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle \\
\leq\left[\frac{1-m_{1} m_{2}}{3}+\frac{m_{1}+m_{2}}{6}\right] M(A, B)(x) N(A, B)(x)
\end{gathered}
$$

Since f is operator m_{1}-convex and g is operator m_{2}-convex, for any $t \in I$ and any $x \in H$ with $\|x\|=1$ we observe that

$$
\begin{aligned}
& \quad\left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle \\
& \leq\left\langle\left[t f(A)+m_{1}(1-t) f(A)+t f(B)+m_{1}(1-t) f(B)\right] x, x\right\rangle \\
& \quad\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle \\
& \leq\left\langle\left[t g(A)+m_{2}(1-t) g(A)+t g(B)+m_{2}(1-t) g(B)\right] x, x\right\rangle \\
& \leq \quad\left(\left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle\right)\left(\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle\right) \\
& +\quad t^{2}\langle f(A) x, x\rangle\langle g(A) x, x\rangle+t m_{2}(1-t)\langle f(A) x, x\rangle\langle g(A) x, x\rangle\langle g(B) x, x\rangle \\
& +\quad t m_{2}(1-t)\langle f(A) x, x\rangle\langle g(B) x, x\rangle \\
& +\quad t m_{1}(1-t)\langle f(A) x, x\rangle\langle g(A) x, x\rangle+m_{1} m_{2}(1-t)^{2}\langle f(A) x, x\rangle\langle g(A) x, x\rangle \\
& +\quad t m_{1}(1-t)\langle f(A) x, x\rangle\langle g(B) x, x\rangle+m_{1} m_{2}(1-t)^{2}\langle f(A) x, x\rangle\langle g(B) x, x\rangle \\
& +\quad t^{2}\langle f(B) x, x\rangle\langle g(A) x, x\rangle+t m_{2}(1-t)\langle f(B) x, x\rangle\langle g(A) x, x\rangle \\
& +\quad t^{2}\langle f(B) x, x\rangle\langle g(B) x, x\rangle+t m_{2}(1-t)\langle f(B) x, x\rangle\langle g(B) x, x\rangle \\
& +\quad t m_{1}(1-t)\langle f(B) x, x\rangle\langle g(A) x, x\rangle+m_{1} m_{2}(1-t)^{2}\langle f(B) x, x\rangle\langle g(A) x, x\rangle \\
& +t m_{1}(1-t)\langle f(B) x, x\rangle\langle g(B) x, x\rangle+m_{1} m_{2}(1-t)^{2}\langle f(B) x, x\rangle\langle g(B) x, x\rangle
\end{aligned}
$$

Integrating both sides of (6) over $[0,1]$ we get the following inequality

$$
\begin{gathered}
\left\langle f\left(\frac{A+B}{2}\right) x, x\right\rangle\left\langle g\left(\frac{A+B}{2}\right) x, x\right\rangle \\
\leq\left[\frac{1-m_{1} m_{2}}{3}+\frac{m_{1}+m_{2}}{6}\right] M(A, B)(x) N(A, B)(x)
\end{gathered}
$$

and this finishes the proof.

References

[1] T. Furuta, J. Mićić, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[2] G.H. Toader, Some generalisations of the convexty, Proc. Colloq. Approx. Optim, Cluj-Napoca, (1984), 329-338.
[3] M.S. Moslehian, H. Najafi, Around operator monotone functions. Integr. Equ. Oper. Theory. doi: 10.1007/s00020-011-1921-0, 71:575-582, 2011.
[4] S.S. Dragomir, The Hermite-Hadamard type inequalites for operator convex functions, Appl. Math. Comput., 218(3) (2011) 766-772.

[^0]: ${ }^{* *}$ Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).

 * Corresponding Author.

