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Introduction 

Medical image segmentation represents a highly sensitive 

and challenging field with significant impacts on human 

health. Challenges such as overlapping cells, differentiation 

of retinal blood vessels into arteries and veins, skin lesions 

obscured by hair, and polyps of various shapes and sizes 

exemplify the difficulties faced in this domain. However, 

recent years have witnessed rapid progress and significantly 

improved success rates in various areas of medical image 

segmentation, including retina [1], cell [2], mammogram 

[3], skin [4], and polyp segmentation [5], driven by 

advancements in deep learning methods. These 

developments constitute a significant leap forward in the 

field of medical image analysis, enhancing not only 

diagnostic accuracy but also streamlining workflows within 

medical practices. The integration of deep learning into 

medical imaging paves the way for more precise, efficient, 

and potentially life-saving diagnostic procedures.   

Polyps, which are abnormal tissue growths developing on 

surfaces such as the colon, rectum, and stomach, represent 

one of the primary areas where deep learning architectures 

have been extensively applied in medical fields. Although 

polyps may appear benign, they increase the risk of cancer. 

According to cancer statistics published in 2022, colon and 

rectum cancer ranks third worldwide in cancer-related 

deaths [6].  

The early detection of polyps can facilitate timely treatment 

options and potentially reduce mortality rates associated 

with polyp-related complications. To achieve early 

detection, automated segmentation systems are essential. 

However, the segmentation of polyps is challenged by their 

irregular shapes, size variations, and differences in location 

and color. To address these challenges, a significant number 

of studies have been conducted in the literature. These 

studies and advanced methodologies are discussed in 

greater detail under the 'Related Work' section. 

Related work 

Traditional methods of polyp segmentation rely on manual 

feature extraction processes [7],[8]. With the advent of deep 

neural network architectures that minimize manual 

intervention by extracting semantic information from high-

dimensional images, researchers have increasingly focused 

on leveraging these architectures.  

Gangrade et al.[9] proposed a modified DeepLabV3+ 

architecture for polyp segmentation from colonoscopy 

images. This architecture is comprised of encoder and 

decoder layers. The encoder utilizes a pre-trained dilated 
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ABSTRACT 

 
 

Polyps are abnormal tissue growths that often serve as early indicators for various types of cancer. 

Early detection is crucial in the treatment of diseases like colorectal cancer, which has a high mortality 
rate. There is a significant need for automated diagnostic systems to detect these cancers efficiently. This 

article introduces a deep learning-based diagnostic system using the Deeplabv3+ architecture, which is 

enhanced by integrating four different backbone networks: Model 1 (DeeplabV3+), Model 2 (ResNet50), 
Model 3 (SqueezeNet), and Model 4 (VGG16). The enhanced architectures have been tested on the 

publicly available Kvasir-SEG and CVC-ClinicDB datasets for the task of polyp segmentation. 

Experimental results indicate that the best segmentation performance on the Kvasir-SEG dataset was 
achieved with Model 1, showing a mean Dice coefficient (mDice) of 0.858, a mean Intersection over 

Union (mIoU) of 0.850, an accuracy (Acc) of 0.948, a recall of 0.824, and a precision (Pr) of 0.896. For 

the CVC-ClinicDB dataset, the highest metrics were observed with Model 2 for mDice (0.914) and mIoU 
(0.912), and Model 1 for specificity (Sp) at 0.996 and precision at 0.959, whereas Model 4 exhibited the 

highest accuracy of 0.974. These results demonstrate the effectiveness of our models in automating the 

detection of polyps, potentially aiding in the early diagnosis of colorectal cancer. 
Doi: 10.24012/dumf.1517112 
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convolutional residual network to optimally achieve feature 

map resolution. The encoder-decoder structures include the 

Atrous Spatial Pyramid Pooling (ASPP) module and the 

ResNet101 backbone used in the proposed model. ASPP 

generates a multi-scale feature map by employing atrous 

convolution and global average pooling. Zhang et al. [5] 

have proposed the Dual-Branch Multi-İnformation 

Aggregation Network (DBMIANet) method to segment the 

same type of polyps reliably and effectively. DBMIA-Net 

employs three auxiliary modules to enhance its feature 

extraction and segmentation capabilities. These are the 

Adaptive Channel-Wise Graph Convolution (ACGC), 

Global Information Aggregation (GIA), and Edge 

Information Aggregation (EIA) modules. These modules 

are utilized by a transformer encoder and a Convolutional 

Neural Networks (CNN) encoder. The GIA module is used 

in aggregating global information, whereas the EIA module 

is employed for edge information aggregation. The ACGC 

module has been developed to improve the capability of 

learning channel feature associations representation. Li et 

al. [10] have proposed a model to address the challenge of 

detecting small polyps. The proposed model utilizes a two-

stage transfer learning approach. In the first stage, the 

network is trained to identify specific areas of polyp lesions 

and to save initial weights. The second stage employs 

transfer learning to segment the relevant area in more detail. 

A Pyramid Vision Transformer (PVT) has been used as the 

feature backbone.  

Li et al. [11] proposed a cross-level information fusion and 

guidance-oriented approach to polyp segmentation 

networks. The method employs a transformer encoder to 

build a robust feature representation. Modules such as the 

Edge Feature Processing Module (EFPM) and Crosslevel 

İnformation Processing Module (CIPM) are utilized to 

enhance the feature information coming from the encoders. 

EFPM focuses on the boundary information of polyps and 

is used to gather and process multi-scale features 

transmitted by various encoder layers. An İnformation 

Guidance Module (IGM) has been suggested to combine 

the processed features of EFPM and CIPM, maximizing the 

segmentation effect. Jia et al. [12] have proposed a semi-

supervised framework named PolypMixNet, aimed at 

achieving colorectal polyp segmentation. The framework 

utilizes a mean teacher architecture and novel augmentation 

techniques within its model architecture. PolypMixNet 

includes a Polyp-Aware Mix-Up Algorithm (PolypMix) 

and a dual-level consistency regularization. PolypMix 

enhances the diversity of training data and addresses class 

imbalance in colonoscopy datasets. He et al. [13] introduced 

the Boundary-Guided Filter Network (BGF-Net), known 

for achieving enhanced medical image segmentation. In the 

proposed model, DeepLabV3+ has been selected as the 

backbone for BGF-Net. BGF-Net is composed of four main 

components: ResNet-101, Channel Boundary Guided 

(CBG), Spatial Boundary Guided (SBG), and Boundary 

Guided Filter (BGF). During the encoding process, CBG is 

connected to ResNet-101 to extract channel weights about 

boundary features. SBG is designed to capture spatial 

weights and to guide and optimize low-level features. BGF 

directs and preserves appropriate segment boundaries 

through refined boundary resolution. Liu et al. [14] have 

proposed a novel Feature Combination Network (FCA-Net) 

for accurately detecting polyp sizes and locations. The 

proposed model comprises three modules: the Edge 

Perception Module (EPM), the Boundary-Guided Feature 

Aggregation Module (BFAM), and the Iterative Context 

Aggregation Module (ICAM). EPM is capable of 

simultaneously extracting initial boundary guidance maps 

from both low and high-level features. BFAM enhances 

hierarchical features, better preserves boundary details, and 

recalibrates positioned objects by integrating boundary 

information into the segmentation network. ICAM employs 

a contextaware approach to better leverage dependencies 

between features at different scales. Wang et al. [15] 

introduced CPSNet, a novel model for concealed polyp 

segmentation. CPSNet consists of three main modules: the 

Deep Multi-Scale Feature Fusion Module (DMF), the 

Camouflaged Object Detection Module (CDM), and the 

Multi-Scale Feature Enhancement Module (MFEM). These 

modules work collaboratively to enhance the segmentation 

process, increasing both resilience and accuracy. The model 

employs the DMF module for the progressive fusion of 

features, gathering structural and semantic information of 

polyps from deep features. CDM is used in shallow features 

to effectively identify camouflaged and concealed polyps. 

Furthermore, MFEM has been developed to seamlessly 

combine shallow and deep features, considering both local 

and global perspectives.  

Liu et al. [16] detail the components of the proposed CAFE-

Net architecture, which includes the PVT as its backbone, 

the Feature Completion and Exploration Module (FSEM), 

the Cross-Attention Decoder Module (CADM), and the 

Multi-Scale Feature Aggregation (MFA). During the 

decoder phase, CADM has been utilized to successfully 

amalgamate high and low-level features. Shao et al. [17] 

highlight that the variability in shapes and sizes of polyps 

poses challenges in early diagnosis. To address this issue, 

the Adaptive Feature Aggregation Network (AFANet) has 

been proposed. The proposed model is composed of the 

Multi-modal Balancing Attention Module (MMBA) and the 

Global Context Module (GCM). The MMBA module 

facilitates the extraction of enhanced local features by 

utilizing contextual information in the foreground, 

background, and edge regions of images, paying special 

attention to these areas. The GCM module, on the other 

hand, captures the global contextual features from the top 

of the encoder to examine the pathological image's global 

contextual characteristics in greater detail, and then 

transfers these features to the decoder layer. Muhammad et 

al. [18] have proposed a novel polyp segmentation method 

known as MMFIL-Net. The proposed model incorporates 

the Hierarchical Multi-Source Feature Interaction Module 

(HMFIM) and Multi-Source Feature Interaction Blocks 

(MFIB). MFIB aims to achieve generalized performance by 

manipulating multi-level and multi-source features to 

minimize the differences between low and high-level 

feature maps. Additionally, the Multiple Receptive Field 

Feature Interaction Block (MRFFIB) addresses 

segmentation issues of polyps of various sizes. To tackle the 

challenge of detecting and segmenting early-stage polyps 
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with ambiguous boundary information, the Dual Source 

Attention Fusion Block (DSAFB) was developed. The 

model utilizes EfficientNet-B0 as its encoder block. Yue et 

al. [19] have introduced the Boundary Uncertainty Aware 

Network (BUNet) to enhance polyp detection. Emphasizing 

the awareness of the shapes and sizes of polyps, a PVT 

encoder has been used to learn multi-scale feature 

representations. For low-level features, the Boundary 

Exploration Module (BEM) was preferred. Utilizing 

boundary information from BEM, the Boundary 

Uncertainty Aware Module (BUM) was proposed for 

detecting error-prone areas in high-level features. The 

pyramid image transformer PVT-V2 was employed to 

extract multi-scale and robust features. BUM consists of 

two parallel convolutional branches, which are supervised 

by the ground truths of the polyp and background. By taking 

the difference between feature maps generated from these 

branches, boundary uncertainty regions are identified, 

incorporating boundary cues from the BEM module.  

Ahmed and Hasan [20] proposed a Twin Segmentation 

Network (Twin-SegNet) to enhance segmentation 

performance by merging polyp and background 

reconstructions. The model is structured into three main 

components: polyp and background segmentation models, 

the Partial Channel Recalibration (PCR) section, and the 

merging section. To ensure accurate segmentation of polyp 

regions and the background, mean squared error has been 

utilized. The Wavelet Convolutional Block (WCB) is 

recommended for edge information, while the Partial 

Channel Recalibration (PCR) block is proposed to allow for 

mutual feature exchange. In the initial part, the final 

convolution layer and sigmoid activation are extracted. The 

concluding part contains a final convolution layer followed 

by a sigmoid to generate the foreground and background 

segmentation maps. Fan et al. [21] have proposed Super-

Resolution-Assisted Small Targets Polyp Segmentation 

Network (SRSegNet), emphasizing unified learning and 

multi-task learning. The proposed model consists of two 

main components. Firstly, a method for joint learning of 

high and low resolutions is utilized. It comprises two sub-

segmentation branches that process the network's high and 

low-resolution inputs simultaneously. Each branch extracts 

features at different resolution levels and collectively they 

extract the network's entire feature set. Secondly, a multi-

task learning approach is employed. This approach includes 

two sub-branches within the network, each conducting two 

different tasks simultaneously: low-resolution 

segmentation and super-resolution. Liu et al. [22] proposed 

the Multi-level Feature Fusion Network (MLFF-Net) to 

enhance segmentation performance by integrating multi-

level feature fusion and attention mechanisms. The network 

is comprised of three modules: the Multi-scale Attention 

Module (MAM), the High-level Feature Enhancement 

Module (HFEM), and the Global Attention Module (GAM). 

MAM collects polyp details and information at various 

scales from the shallow outputs of the encoder. In HFEM, 

deeper features from the encoders are interlinked, 

enhancing the overall feature set. Meanwhile, the attention 

mechanism within HFEM reorganizes the importance of the 

combined features, dampening irrelevant components while 

accentuating information critical to the task. GAM merges 

information from both encoder and decoder features and is 

used to model dependencies between different regions of an 

image, ensuring the model accounts for information from 

more distant. Pan et al. [23] proposed A Global Guided 

Local Feature Stepwise Aggregation Network for polyp 

segmentation (GLSNet) to improve performance in polyp 

segmentation. The model incorporates three modules: the 

Spatial Feature Enhancement (SFE) module, the Globally 

Guided Local Feature Enhancement (GLFE) module, and 

the Feature Stepwise Aggregation (FSA) module. The SFE 

module enhances the spatial features of polyps, allowing for 

the acquisition of more detailed information about them. 

The GLFE module utilizes high-level features to capture 

noise in low-level features and uncovers polyp information 

hidden within superficial features. Lastly, the FSA module 

combines positional and semantic information of polyps 

across different scales to achieve the final segmentation 

results.  

Lin et al. [24] introduced CSwinDoubleU-Net, a novel dual 

U-shaped image segmentation network that combines an 

interlaced convolutional structure with Shifted Windows 

(Swin) Transformer to address segmentation challenges 

such as differentiation between polyp regions and 

backgrounds and motion blur. The model is a CNN-based 

structure featuring a U-shaped encoder and decoder. The 

first U-shaped encoder network ensures the precise location 

of encoded features at each step by considering positional 

information, achieved through multiple convolutional 

layers. Subsequently, the second U-shaped encoder 

network garners additional global feature information using 

Swin Transformer layers with the shifted window 

technique. Finally, a Convolution Feature And Self-

Attention Feature Fusion Module (CSFFM) has been 

developed to merge local convolutional features from the 

first U-shaped structure with global self-attention features 

from the second U-shaped structure. Liu and Song [25] 

proposed Attention Combined Pyramid Vision Transformer 

(Att-PVT), a novel approach that combines CNN and PVT 

to accurately detect the position and size of polyps. The 

proposed model consists of three main components: 

Multidimensional Information Extraction (MIE), Cascaded 

Context Integration (CCI), and Multilevel Feature Fusion 

(MFF). Att-PVT utilizes feature maps through the MIE 

module. CCI aims to learn semantic and spatial information 

by adaptively combining the top three layers of polyp 

features. The MFF module integrates boundary information 

from a higher-level global map with lower-level layers. 

This module is crucial for the accurate segmentation of 

colorectal polyps. Nguyen and Nguyen [26] proposed 

PolyPooling, a model designed for the precise segmentation 

of polyps. The encoder utilizes PoolFormer, employing a 

hierarchical structure to encode multilevel features. For 

decoding, the model leverages the Hamburger module and 

the Convolutional Block Attention Module (CBAM). The 

SegFormer decoder processes blocks in parallel with 

associated MLP modules before combining them. Within 

the proposed model, the Channel-wise Feature Pyramid 

(CFP) and refinement module are used in conjunction with 

the Pooling Reverse Attention module (Pooling-RA). CFP 
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enables parallel learning while capturing finer details. The 

Pooling-RA module is suggested to mitigate computational 

complexity. Huang et al. [27] proposed a U-Net neural 

network model to enhance segmentation accuracy rates. 

The traditional U-Net serves as the foundational 

architecture for Reparameterized Convolutional Network 

(RCNU-Net). For segmentation, a specific loss calculation 

method known as CDLoss is employed within the proposed 

model. To prevent gradient loss, a multi-branched structural 

model is utilized. The CBAM acts as a crucial bridge by 

expanding the receptive field of filters in both channel and 

spatial dimensions. This facilitates a secondary feature 

extraction that leverages attention benefits for superior 

contextual information aiding segmentation. This study 

employs a joint loss calculation method that combines both 

Cross-Entropy Loss (CELoss) and Dice Loss in the overall 

architecture.  

Despite new methods emerging in the literature for polyp 
segmentation, researchers have yet to fully overcome the 
challenges encountered in polyp segmentation. This field 
remains highly current and exciting. In this article, unlike 
other literature studies, the performance of the DeeplabV3+ 
architecture's backbone networks, which have provided 
quite successful results in segmentation processes, is 
examined. Four different CNN architectures were applied 
to the backbone network of the DeepLabV3+ architecture: 
Model 1 (DeepLabV3+), Model 2 (ResNet50), Model 3 
(SqueezeNet), and Model 4 (VGG16); and the results were 
tested on two significant datasets. 

The organization of the rest of the paper is as follows: In the 

Materials and methods section, we present the Used 

datasets, DeepLabV3+ architecture, Evaluation metrics and 

Implementation details. Results section contains the results 

section, which presents the experimental studies and results. 

The last section includes Discussion and conclusion. 

Material and method 

Used datasets 

In this article, experiments were conducted on the two most 

preferred datasets in polyp segmentation studies to compare 

and evaluate the models used with the latest state-of-the-art 

(SOTA) methods. These datasets are the publicly available 

Kvasir-SEG dataset [28] and the CVC-ClinicDB dataset 

[29]. 

The Kvasir-SEG dataset, created by expert clinicians in 

2020, comprises a total of 1000 colonoscopy images. The 

resolution of these images varies between 1920x1072 and 

332x487. Ground truth (GT) images are available for all 

1000 images. The CVC-ClinicDB dataset, introduced in 

2015, consists of a total of 612 colorectal images obtained 

from 31 colorectal sequences. Ground truth images are also 

available for each image in this dataset. 

DeepLabV3+ architecture 

The DeepLabV3+ architecture consists of encoder and 

decoder modules [30]. The encoder is used to reduce feature 

maps and extract a set of semantic features, while the 

decoder is used to restore spatial information and generate 

more explicit segmentation features. The DeepLabV3+ 

architecture is an enhancement of the DeepLabV3 

architecture. This network architecture adds a decoding 

module based on DeepLabV3 and the output combination 

of the encoder module becomes the input to the decoder 

module. The architecture broadly employs a backbone 

network and an ASPP mechanism. The ASPP mechanism 

consists of one 1 × 1 atrous convolution and three 3 × 3 

atrous convolutions with atrous rates of 6, 12, and 18, 

respectively, along with a global pooling layer. The four 

convolution operations and one pooling layer are processed 

in parallel. The backbone network is utilized to extract 

semantic information of features [31]. The original 

DeepLabV3+ architecture employs the Xception model 

Chen et al. [30] as its backbone network. Features from the 

Backbone Network and ASPP mechanism are subjected to 

4 times subsampling. Fig. 1 shows the DeepLabV3+ 

architecture. In this article, an end-to-end framework using 

the DeepLabV3+ architecture for the automatic 

segmentation of polyps has been developed. DenseNet [32], 

ResNet50 [33], SqueezeNet [34], and VGG16 [35] models 

were used as the Backbone Network, and the segmentation 

success of the architecture was tested across different 

backbone networks.  

The DenseNet architecture derives its name from "Densely 
Connected Convolutional Networks." It is distinguished by 
its dense connections, allowing each layer to receive inputs 
from all preceding layers. This structure promotes the reuse 
of features, increases the model's parameter efficiency, and 
facilitates more effective gradient propagation through deep 
networks. As a result, high performance is achieved with 
fewer parameters, even in deeper networks.  

The ResNet50 architecture is a popular CNN architecture 

that utilizes the residual learning approach for deep 

learning. Thanks to residual blocks, it enables efficient 

transmission of gradients to deeper layers, thus overcoming 

the vanishing gradient problem encountered with very deep 

networks and facilitating easier model training. The 

SqueezeNet architecture offers exceptional parameter 

efficiency among CNN architectures. It uses 'fire' modules 

in its structure and directly classifies the feature maps of 

each class using global average pooling instead of fully 

connected at the last layer, thus significantly reducing the 

model size.  

The VGG16 architecture is a CNN architecture that 
demonstrates that depth can improve model performance. 
In its structure, 3x3 convolutional filters and maximum 
pooling layers are sequentially ordered and complemented 
by three dense layers. Each convolution block improves in-
depth feature extraction by increasing the number of filters, 
and the ReLU activation function is used.  

Pre-trained CNN networks serve as the "backbone" of the 

model by extracting low-level features from the input 

image. Using DenseNet architecture as the backbone 

network for pre-trained DeepLabV3+ architecture is 

referred to as Model 1, utilizing ResNet 50 architecture is 

named Model 2, employing SqueezeNet architecture is 

named Model 3, and utilizing VGG16 architecture is named 

Model 4.
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Figure 1. DeepLabV3+ architecture 

.

Evaluation metrics 

There are many different evaluation metrics commonly 

used in the field of medical image segmentation. This article 

has opted for the most frequently used evaluation metrics, 

and Equations (1)- (7) provide the mathematical 

expressions for these metrics. In the mathematical 

expressions, the terms FN, FP, TP, and TN are used to 

denote the number of false negatives, false positives, true 

positives, and true negatives, respectively.   

𝑚𝐷𝑖𝑐𝑒 =
1

1 + 𝑘
∑

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑘

𝑖=0

 (1) 

𝑚𝐼𝑜𝑈 =
1

1 + 𝑘
∑

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑘

𝑖=0

 (2) 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

𝑀𝐴𝐸 =
1

𝑤 𝑥 𝐻
∑ ∑ | 𝑆(𝑖, 𝑗) − 𝐺(𝑖, 𝑗)

𝐻

𝑖=1

𝑤

𝑖=1

 (7) 

Implementation details 

All CNN architectures integrated into the backbone 

network of the DeepLabV3+ architecture have been trained 

using the TensorFlow framework on an NVIDIA RTX 

A4000 GPU. The same set of hyperparameters has been 

chosen for each model. These parameters are presented in 

Table 1. 

Table 1. Optimal hyper-parameter values. 

Hyper-Parameter Value 

Learning rate 0,0001 

Batch size 8 

Optimizer Adam 

Activation function ReLU 

 

Results 

The datasets used in polyp segmentation with the 

DeepLabV3+ architecture have been divided into training, 
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validation, and testing sets. Each dataset was shuffled 

before being fed into the network and randomly split into 

80% for training and 20% for testing. 20% of the data in the 

training dataset was used for validation. Accordingly, of the 

Kvasir-SEG dataset, 640 were used for training, 200 for 

testing, and 160 for validation. For the CVC-ClinicDB 

dataset, 392 were used for training, 122 for testing, and 98 

for validation.  

The experimental results obtained from the integration of 

the DeepLabV3+ architecture with different CNN 

architectures have been presented in terms of mDice and 

mIoU evaluation metrics for the Kvasir-SEG and CVC-

ClinicDB datasets, respectively, in Fig. 2 and Fig. 3.  

 

Figure 2. Results from the Kvasir-seg dataset. 

According to Fig. 2, the evaluation metrics for the Kvasir-

SEG dataset results are displayed, indicating that the best 

performance in polyp segmentation was achieved with 

Model 1, while the lowest performance was observed with 

Model 3.  

 

Figure 3. Results from the CVC-ClinicDB dataset. 

According to Fig. 3, the evaluation metrics for the results 

on the CVC-ClinicDB dataset are displayed, indicating that 

the best performance in polyp segmentation was achieved 

with Model 2, while the lowest performance was observed 

with Model 3. 

The quantitative findings of the models and their 

comparison with SOTA methods are presented in Table 2. 

The performance success of SOTA methods is derived from 

the article by [9]. Gangrade et al. [9], conducted 

experiments with a 256x256 image size and training for 25 

epochs. Additionally, the learning rate was set at 0.0002, 

and the Adam optimizer was chosen as the optimization 

method.  

The dataset was divided into 80% training, 10% validation, 

and 10% testing. For the comparison to be fair, it's 

necessary to keep the hyper-parameters consistent; 

however, this article has conducted a comparison with 

hyper-parameter analysis. Gangrade et al. [9] trained for 25 

epochs, but this was not considered sufficient for updating 

the weights. There might have been a case of overfitting. 

Choosing a learning rate of 0.0002 can increase the 

likelihood of the network getting stuck in local minima and 

extend the time it takes to reach the global minimum. The 

purpose of this table is to display the performance of 

methods on datasets. Thus, it demonstrates the level at 

which models obtained through the integration of different 

CNN architectures with DeepLabV3+ architecture stand in 

the literature.  

In this article, data augmentation was not performed on the 

two datasets used, and the data were not subjected to 

preprocessing. Due to the images in the dataset being of 

various resolutions, the images were provided to the 

network architectures at a resolution of 256x256.  

Fig. 4 and Fig. 5 display some example qualitative results 

of experiments conducted on the Kvasir-SEG and CVC-

ClinicDB datasets, respectively. In these visuals, the first 

column represents images from the original dataset. The 

second column represents the ground truth (GT) images. 

The last four columns show the segmentation results for 

Model 1, Model 2, Model 3, and Model 4, respectively.  

Looking at the test images provided in Fig. 4, it can be 

observed that Models 3 and Model 4 have low segmentation 

success in the third image. This situation indicates that these 

architectures struggle with images of non-polypoid lesions. 

When looking at the test images provided in Fig. 5, it is 

observed that Model 3 is the most challenged. Upon 

examining the visual results, it can be concluded that the 

SqueezeNet architecture performs weaker as a backbone for 

DeepLabV3+ compared to other architectures. 
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Test Image GT Model 1 Model 2 Model 3 Model 4

 

Figure 4. Kvasir-seg dataset segmentation results. 

 

Test Image GT Model 1 Model 2 Model 3 Model 4

 

Figure 5. CVC-ClinicDB dataset segmentation results. 

 

Discussion and conclusion 

Polyps, although generally benign structures, can be 

considered precancerous lesions in some cases. The early 

diagnosis and treatment of these structures are of great 

importance, especially in preventing serious health issues 

like colorectal cancer.  

This article presents polyp segmentation on colonoscopy 

images using the DeepLabV3+ architecture with various 

backbone networks. In the method, pre-trained CNN  



DUJE (Dicle University Journal of Engineering) 15:4 (2024) Page 797-805 

 

804 
 

 

networks are used as the backbone for the DeepLabV3+ 

architecture. This approach allows the network to adapt 

more quickly to datasets by leveraging what it has learned 

from previous tasks, achieving higher performance with 

less input.  

The performance of the conducted study has been compared 

with other SOTA methods in the literature. Upon examining 

Table 2, it is observed that SOTA methods yield different 

results for each dataset. According to the Table 2, the best 

result on the Kvasir-SEG dataset was obtained with the 

DeepLabV3+ architecture's Inception backbone.  

However, the best result on the CVC-ClinicDB dataset was 

achieved with Model 2, which uses the ResNet50 

architecture as its backbone network. Experimental studies 

have been evaluated using metrics such as mDice, mIoU, 

Acc, Recall, SP, and MAE. According to these metric 

results, the worst backbone network for both datasets was 

the SqueezeNet architecture. In the study, experiments were 

conducted on raw data without any data augmentation or 

preprocessing. While this approach may reduce the models' 

generalization ability, it has sped up the analysis of the 

models' performance on raw data. For the future, it is 

recommended to modify the DeepLabV3+ architecture with 

the Resnet50 backbone network to increase the models' 

robustness and generalizability. 
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