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1 Introduction

The notion of a multiset is well established both in mathematics and computer
science [1, 2, 7, 10, 11, 14, 15]. In mathematics, a multiset is considered to be the gen-
eralization of a set. In classical set theory, a set is a well-defined collection of distinct
objects. If repeated occurrences of any object is allowed in a set, then a mathematical
structure, that is known as multiset (mset, for short), is obtained [3, 8, 11, 12, 13, 16].
For the sake of convenience a mset is written as {k1/x1, k2/x2, ..., kn/xn} in which
the element xi occurs ki times. We observe that each multiplicity ki is a positive in-
teger. The number of occurrences of an object x in a mset A, which is finite in most
of the studies that involve msets, is called its multiplicity or characteristic value,
usually denoted by mA(x) or CA(x) or simply by A(x). One of the most natural and
simplest examples is the mset of prime factors of a positive integer n. The number
504 has the factorization 504 = 233271 which gives the mset M = {3/x, 2/y, 1/z}
where CM(x) = 3, CM(y) = 2, CM(z) = 1.
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Classical set theory states that a given element can appear only once in a set,
it assumes that all mathematical objects occur without repetition. So, the only
possible relation between two mathematical objects is either they are equal or they
are different. The situation in science and in ordinary life is not like this. In the
physical world it is observed that there is enormous repetition. For instance, there are
many hydrogen atoms, many water molecules, many strands of DNA, etc. Coins of
the same denomination and year, electrons or grains of sand appear similar, despite
being obviously separate. This leads to three possible relations between any two
physical objects; they are different, they are the same but separate or they coincide
and are identical. For the sake of definiteness we say that two physical objects are
the same or equal, if they are indistinguishable, but possibly separate, and identical
if they physically coincide.

A wide application of msets can be found in various branches of mathematics.
Algebraic structures for multiset space have been constructed by Ibrahim et al. in
[9]. Application of mset theory in decision making can be seen in [17]. In 2012,
Girish and Sunil [5] introduced multiset topologies induced by multiset relations.
The same authors further studied the notions of open sets, closed sets, basis, sub-
basis, closure, interior, continuity and related properties in M-topological spaces in
[6]. In 2015, El-Sheikh et al. [4] introduced some types of generalized open msets
and their properties.

In this paper, we extend the separation axioms Ti(i = 0, 1, 2, 3, 4, 5, 21
2
) on multiset

topological space (M, τ) and study some of their properties. The behaviour of these
separation axioms under the hereditary property is investigated.

2 Preliminaries

Definition 2.1. [10] A mset M drawn from the set X is represented by a count
function CM defined as CM : X → N where N represents the set of non-negative
integers.

Here CM(x) is the number of occurrences of the element x in the mset M . We
present the mset M drawn from the set X = {x1, x2, x3, ..., xn} as
M = {m1/x1,m2/x2,m3/x3, ..., mn/xn} where mi is the number of occurreneces of
the element xi, i = 1, 2, 3, ..., n in the mset M . However, those elements which are
not included in the mset M have zero count.

Definition 2.2. [10] A domain X, is defined as a set of elements from which msets
are constructed. The mset space [X]w is the set of all msets whose elements are in
X such that no element in the mset occurs more than w times.

The mset space [X]∞ is the set of all msets over a domain X such that there is no
limit on the number of occurrences of an element in a mset. If X = {x1, x2, ..., xk},
then [X]w = {{m1/x1,m2/x2, ...., mk/xk} : for i = 1, 2, ..., k; mi ∈ {0, 1, 2, ..., w}}.
Definition 2.3. [10] Let M and N be two msets drawn from a set X. Then:

1. M = N if CM(x) = CN(x) for all x ∈ X.
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2. M ⊆ N if CM(x) ≤ CN(x) for all x ∈ X.

3. P = M ∪ N if CP (x) = Max {CM(x),CN(x)} for all x ∈ X.

4. P = M ∩ N if CP (x) = Min {CM(x),CN(x)} for all x ∈ X.

5. P = M ⊕ N if CP (x) = Min {CM(x) + CN(x) , w} for all x ∈ X.

6. P = M ª N if CP (x) = Max {CM(x) - CN(x) , 0} for all x ∈ X where ⊕ and
ª represent mset addition and mset subtraction respectively.

Definition 2.4. [10] Let M be a mset drawn from the set X and if CM(x)=0 ∀x∈X.
Then, M is called empty set and denoted by φ i.e., φ(x)=0 ∀x ∈ X .

Definition 2.5. [5] (Whole submset) A submset N of M is a whole submset of M
with each element in N having full multiplicity as in M i.e., CN(x) = CM(x) for
every x in N .

Definition 2.6. [5] (Partial Whole submset) A submset N of M is a partial whole
submset of M with at least one element in N having full multiplicity as in M i.e.,
CN(x) = CM(x) for some x in N .

Definition 2.7. [5] (Full submset) A submset N of M is a full submset of M if each
element in M is an element in N with the same or lesser multiplicity as in M i.e.,
M∗ = N∗ with CN(x) 6 CM(x) for every x in N .

Remark 2.1. [5] Empty set φ is a whole submset of every mset but it is neither a
full submset nor a partial whole submset of any nonempty mset M .

Example 2.1. [5] Let M = {2/x, 3/y, 5/z} be a mset. Then:

1. A submset {2/x,3/y} is whole submset and partial whole submset of M but it
is not full submset of M.

2. A submset {1/x,3/y,2/z} is partial whole submset and full submset of M but
it is not a whole submset of M.

3. A submset {1/x,3/y} is partial whole submset of M which is neither whole
submset nor full submset of M.

Definition 2.8. [1] (Power Whole Mset) Let M ∈ [X]w be a mset. The power
whole mset of M denoted by PW (M) is defined as the set of all whole submsets of
M i.e., for constructing power whole submsets of M , every element of M with its full
multiplicity behaves like an element in a classical set. The cardinality of PW (M) is
2n where n is the cardinality of the support set (root set) of M .

Definition 2.9. [5] (Power Full Mset) Let M ∈ [X]w be a mset. The power full
mset of M denoted by PF (M) is defined as the set of all full submsets of M . The
cardinality of PF (M) is the product of the counts of the elements in M .

Remark 2.2. [5] PW (M) and PF (M) are ordinary sets whose elements are msets.
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If M is an ordinary set with n distinct elements, then the power set P (M) of
M contains exactly 2n elements. If M is a multiset with n elements (repetitions
counted), then the power set P (M) contains strictly less than 2n elements because
singleton submsets do not repeat in P (M). In classical set theory, Cantor’s power set
theorem fails for msets. It is possible to formulate the following reasonable definition
of a power mset of M for finite mset M that preserves Cantor’s power set theorem.

Definition 2.10. [5] (Power Mset) Let M ∈ [X]w be a mset. The power mset P (M)
of M is the set of all submsets of M . We have N ∈ P (M) if and only if N ⊆ M . If

N = φ, then N∈1P(M). If N 6= φ, then N ∈k P (M) where k =
∏

z

( | [M ]z |
| [N ]z |

)
, the

product
∏

z is taken over by distinct elements of z of the mset N and | [M ]z |= m

iff z ∈mM, | [N ]z |= n iff z ∈n N , then

( | [M ]z |
| [N ]z |

)
=

(
m
n

)
= m!

n!(m−n)!

The power set of a mset is the support set of the power mset and is denoted by
P ∗(M). The following theorem shows the cardinality of the power set of a mset.

Theorem 2.1. [12] Let P (M) be a power mset drawn from the mset
M = {m1/x1,m2/x2, ..., mn/xn} and P ∗(M) be the power set of a mset M . Then,
Card(P ∗(M)) = Πn

i=1 (1+mi).

Definition 2.11. [5] Let M ∈ [X]w and τ ⊆ P ∗(M). Then, τ is called a multiset
topology on M if τ satisfies the following properties:

1. The mset M and the empty mset φ are in τ .

2. The mset union of the elements of any subcollection of τ is in τ .

3. The mset intersection of the elements of any finite subcollection of τ is in τ .

Hence, (M, τ) is called M-topological space. Each element in τ is called open mset.

Definition 2.12. [6] Let (M, τ) be a M-topological space and N is a submset of M .
The collection τN = {U∗ : U∗ = N ∩ U,U ∈ τ} is a M-topology on N , called the
subspace M-topology.

Definition 2.13. [6] A submset N of a M-topological space M in [X]w is said to be
closed if the mset M ªN is open.

Remark 2.3. [5] The complement of any submset N in a M-topological space (M, τ)
is mset subtraction from M i.e., N c = M ªN .

Definition 2.14. [6] Given a submset A of a M-topological space M in [X]w, the
interior of A is defined as the mset union of all open msets contained in A and is
denoted by Int(A).
i.e., Int(A) = ∪{G ⊆ M : G is an open mset and G ⊆ A}
and CInt(A)(x) = max{CG(x) : G ⊆ A}.
Definition 2.15. [6] Given a submset A of a M-topological space M in [X]w, the
closure of A is defined as the mset intersection of all closed msets containing A and
is denoted by Cl(A).
i.e., Cl(A) = ∩{K ⊆ M : K is a closed mset and A ⊆ K}
and CCl(A)(x) = min{CK(x) : A ⊆ K}.
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Definition 2.16. [13] Two msets A and B are said to be similar msets if for all x
(x ∈ A ⇔ x ∈ B), where x is an object. Thus, similar msets have equal root sets
but need not be equal themselves.

Definition 2.17. [1] Let M be a mset and if x ∈m M , x ∈n M . Then, m = n.

3 Separation Axioms on Multiset Topological Space

3.1 M-To-space

Definition 3.1. A mset M is called a whole M-singleton and denoted by {k/x} if
CM : X → N such that CM(x) = k and CM(x′) = 0 ∀ x′ ∈ X − {x}.

Note that if x ∈k M means CM(x) = k, so {k/x} is called whole M-singleton
submset of M and {m/x} is called M-singleton where 0 < m < k.

Definition 3.2. Let (M, τ) be a M-topological space. If for every two M-singletons
{k1/x1}, {k2/x2} ⊆ M such that x1 6= x2, then there exist V, U ∈ τ such that
({k1/x1} ⊆ V and {k2/x2} * V ) or ({k1/x1} * U and {k2/x2} ⊆ U). Hence,
(M, τ) is M-To-space. i.e., there exists τ -open mset which contains one of the msets
{k1/x1}, {k2/x2} but not the other.

Theorem 3.1. The property of being M-To-space is a hereditary property.

Proof. Let (M, τ) be a M-To-space and N ⊆ M s.t. (N, τN) is M-topology on N
where τN = {N∩G : G ∈ τ}. Now, we want to prove that (N, τN) is M-To-space. Let
{k1/x1}, {k2/x2} ⊆ N s.t. x1 6= x2, then {k1/x1}, {k2/x2} ⊆ M such that x1 6= x2.
Since, (M, τ) is M-To-space. Then, there exist H, G ∈ τ such that ({k1/x1} ⊆ H,
{k2/x2} * H) or ({k1/x1} * G, {k2/x2} ⊆ G). Therefore, ({k1/x1} ⊆ N ∩ H,
{k2/x2} * N ∩H) or ({k1/x1} * N ∩G, {k2/x2} ⊆ N ∩G) and N ∩H,N ∩G ∈ τN .
Hence, (N, τN) is M-To-space.

Example 3.1. Let M = {2/a, 3/b, 1/c} be a mset and τ = {φ,M, {2/a}, {3/b},
{2/a, 3/b}, {2/a, 1/c}}. It’s clear that, (M, τ) is M-To-space. Let N = {1/a, 2/b} ⊆
M . Then, τN = {φ,N, {1/a}, {2/b}}. Hence, (N, τN) is M-To-space.

Theorem 3.2. If (M,τ1) is M-To-space and τ1 6 τ2, then (M, τ2) is also a M-To-space.

Proof. Immediate.

3.2 M-T1-space

Definition 3.3. Let (M, τ) be a M-topological space. If for every two M-singletons
{k1/x1}, {k2/x2} ⊆ M s.t. x1 6= x2, then there exist G,H ∈ τ s.t. {k1/x1} ⊆ H,
{k2/x2} * H and {k1/x1} * G, {k2/x2} ⊆ G. Hence, (M, τ) is M-T1-space.

Theorem 3.3. Every M-T1-space is M-To-space.

Proof. Straightforward.

Remark 3.1. The converse of Theorem 3.3 is not true in general as shown in the
following example.
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Example 3.2. Let M = {2/a, 3/b, 1/c} be a mset and τ = {φ,M, {2/a}, {3/b},
{2/a, 3/b}, {2/a, 1/c}}, it’s clear that (M,τ) is M-To-space, but not M-T1-space, be-
cause ∃{2/a}, {1/c} ⊆ M s.t. a 6= c and all open msets contain 1/c, contain 2/a in
the same time.

Theorem 3.4. The property of being M-T1-space is a hereditary property.

Proof. Similar to the proof of Theorem 3.1.

Theorem 3.5. Let (M, τ) be a M-topological space. If {k/x} is τ -closed ∀ x ∈ M∗,
k = CM(x). Then, (M, τ) is M-T1-space. i.e., if every whole M-singleton is closed,
then (M, τ) is M-T1-space.

Proof. Let {l1/x1}, {l2/x2} ⊆ M s.t. x1 6= x2, by hypothesis {k1/x1}, {k2/x2}
are τ -closed msets on M where k1 = CM(x1), k2 = CM(x2). Then, {k1/x1}c, {k2/x2}c ∈
τ s.t. {l1/x1} ⊆ {k2/x2}c, {l2/x2} * {k2/x2}c and {l1/x1} * {k1/x1}c, {l2/x2} ⊆
{k1/x1}c. Hence, (M, τ) is M-T1-space.

Corollary 3.1. Let (M, τ) be a M-topological space. If every finite whole submset
of M is τ -closed mset, then (M, τ) is M-T1-space.

Proof. Clear (by using the above theorem).

Remark 3.2. Every discrete M-topology (M,P ∗(M)) is M-T1-space. But, if M is
a finite mset and (M, τ) is M-T1-space ; τ = P ∗(M) [Discrete M-topology]. As
shown in example 3.3.

Example 3.3. Let M = {2/a, 3/b, 1/c}, τ = {φ,M, {2/a}, {3/b} , {1/c}, {2/a, 3/b},
{2/a, 1/c}, {3/b, 1/c}} 6= P ∗(M). But, (M, τ) is M-T1-space.

Remark 3.3. For a finite mset M , the smallest M-T1-space is PW (M).

Theorem 3.6. If (M, τ1) is a M-T1-space and τ1 6 τ2, then (M, τ2) is a M-T1-space.

Proof. Immediate.

3.3 M-T2-space

Definition 3.4. Let (M, τ) be a M-topological space. If for every two M-singletons
{k1/x1}, {k2/x2} ⊆ M s.t. x1 6= x2, then there exist G,H ∈ τ s.t. {k1/x1} ⊆ G,
{k2/x2} ⊆ H and G ∩H = φ. Hence, (M, τ) is M-T2-space.

Example 3.4. Every discrete M-topology (M,P ∗(M)) is M-T2-space.

Example 3.5. Every indiscrete M-topology (M, τ) is not M-T2-space where M has
more than or equal two different M-points.

Theorem 3.7. The property of being M-T2-space is a hereditary property.

Proof. Let (M,τ) be a M-T2-space, N ⊆ M and let (N, τN) be a subspace of
(M, τ). Now, we want to prove that (N, τN) is M-T2-space. Let {k1/n1}, {k2/n2} ⊆
N s.t. n1 6= n2. Since, (M, τ) is M-T2-space. Then, there exist G,H ∈ τ s.t.
{k1/n1} ⊆ G, {k2/n2} ⊆ H and G ∩ H = φ. By a definition of the subspace, we
have: N ∩ G , N ∩ H ∈ τN . Therefore, {k1/n1} ⊆ N ∩ G and {k2/n2} ⊆ N ∩ H.
Since, G ∩H = φ. Then, (G ∩N) ∩ (H ∩N) = (G ∩H) ∩N = φ ∩N = φ. Hence,
(N, τN) is M-T2-space.
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Theorem 3.8. If (M, τ1) is a M-T2-space and τ1 6 τ2, then (M, τ2) is also a M-T2-
space.

Proof. Immediate.

Theorem 3.9. Every M-T2-space is a M-T1-space.

Proof. Let (M, τ) be a M-T2-space. Also, assume that {k1/m1}, {k2/m2} ⊆ M
s.t. m1 6= m2. Then, ∃ G,H ∈ τ s.t. {k1/m1} ⊆ G, {k2/m2} ⊆ H and G ∩ H =
φ. Since, G ∩ H = φ , {k1/m1} ⊆ G, {k2/m2} ⊆ H then {k1/m1} * H and
{k2/m2} * G. Consequently, we have G,H ∈ τ s.t. {k1/m1} ⊆ G,{k2/m2} * G
and {k1/m1} * H,{k2/m2} ⊆ H. Hence, (M,τ) is M-T1-space.

3.4 M-T3-space

Definition 3.5. Let (M, τ) be a M-topological space. If for all F ∈ τ c, ∀ {k/x} * F ,
then there exist G,H ∈ τ s.t. F ⊆ G, {k/x} ⊆ H and G ∩H = φ. Hence, (M, τ) is
M-regular space.

Definition 3.6. A M-topological space (M, τ) is said to be a M-T3-space if:

1. (M,τ) is M-regular space.

2. (M,τ) is M-T1-space.

Example 3.6. Every discrete M-topology (M,P ∗(M)) is M-T3-space.

Theorem 3.10. The property of being M-regular space is a hereditary property.

Proof. Let (M, τ) be a M-regular space and N ⊆ M . Let (N, τN) be subspace of
(M, τ). Now, we want to prove that (N, τN) is M-regular space. Let B be τN -closed
submset of N and {k/n} ⊆ N s.t. {k/n} * B, then there exists F is τ -closed submset
of M s.t. B = F ∩N . Since, {k/n} * B. Then, {k/n} * F . As (M, τ) be M-regular
space, ∃ G,H ∈ τ s.t. F ⊆ G, {k/n} ⊆ H and G ∩H = φ. Then, F ∩N ⊆ G ∩N
[i.e., B ⊆ G∩N ], {k/n} ⊆ H∩N and (G∩N)∩(H∩N) = (G∩H)∩N = φ∩N = φ.
Hence, (N, τN) is M-regular space.

Corollary 3.2. Every subspace of M-T3-space is also a M-T3-space.

Theorem 3.11. Every M-T3-space is a M-regular space.

Proof. Clear by using the definition 3.6.

Remark 3.4. The converse of Theorem 3.11 is not true in general as shown by the
following example.

Example 3.7. Let M = {2/a, 3/b, 1/c} and τ = {φ,M, {3/b}, {2/a, 1/c}}. Then,
τ c = {φ,M, {2/a, 1/c}, {3/b}}. Hence, (M, τ) is a M-regular space but not a M-T1-
space.
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3.5 M-T4-space

Definition 3.7. Let (M, τ) be a M-topological space. If for all F1, F2 ∈ τ c s.t.
F1 ∩F2 = φ, then there exist G,H ∈ τ s.t. F1 ⊆ G, F2 ⊆ H and G∩H = φ. Hence,
(M, τ) is M-normal space.

Definition 3.8. A M-topological space (M, τ) is said to be a M-T4-space if:

1. (M,τ) is M-normal space.

2. (M,τ) is M-T1-space.

Theorem 3.12. Every closed subspace of M-normal space is also a M-normal space.

Proof. Let (M, τ) be a M-normal space. Also, assume that N ⊆ M s.t. N
is τ -closed submset of M . Now, we want to prove that (N, τN) is also M-normal
space. Let B1, B2 be τN -closed submsets of N s.t. B1 ∩ B2 = φ. Then, there exist
τ -closed submsets F1, F2 of M s.t. B1 = F1 ∩ N, B2 = F2 ∩ N . Since, F1, F2, N
are τ -closed submsets of M . Then, F1 ∩N , F2 ∩N are τ -closed submsets of M i.e.,
B1 and B2 are τ -closed submsets of M s.t. B1∩B2 = φ. Since, (M, τ) is a M-normal
space. Thus, ∃ G,H ∈ τ s.t. B1 ⊆ G, B2 ⊆ H and G ∩ H = φ. Since, B1 ⊆ N
and B1 ⊆ G. Therefore, B1 ⊆ G ∩ N and similarly B2 ⊆ H ∩ N . But, G,H ∈ τ .
Then, G ∩ N, H ∩ N ∈ τN . Consequently, ∃ G ∩ N, H ∩ N ∈ τN s.t. B1 ⊆ G ∩ N ,
B2 ⊆ H ∩N and (G ∩N) ∩ (H ∩N) = (G ∩H) ∩N = φ ∩N = φ. Hence, (N, τN)
is a M-normal space.

Corollary 3.3. The property of being M-T4-space is topological property.

3.6 M-T5-space

Definition 3.9. Let (M, τ) be a M-topological space and let A, B ⊆ M be two
non-empty msets. Then, we say that: A, B are separated msets if A ∩ B = φ,
A ∩B = φ.

Definition 3.10. A M-topological space (M, τ) is said to be M-completely normal
space iff for any two separated submsets A, B of M there exist G,H ∈ τ s.t. A ⊆ G,
B ⊆ H and G ∩H = φ.

Theorem 3.13. Every M-completely normal space is M-normal space.

Proof. Let (M, τ) be a M-completely normal space. Now, we want to show
that (M, τ) is a M-normal space. Let A, B be any two τ -closed submsets of M
s.t. A ∩ B = φ. Then, A = A and B = B. Hence, A ∩ B = φ and A ∩ B = φ.
Consequently, A, B are separated msets. Since, (M, τ) is a M-completely normal
space and A, B are separated msets. Therefore, there exist G, H ∈ τ s.t. A ⊆ G,
B ⊆ H and G ∩H = φ. Hence, (M, τ) is a M-normal space.

Theorem 3.14. The property of being M-completely normal space is a hereditary
property.

Proof. Immediate.

Definition 3.11. A M-topological space (M, τ) is said to be a M-T5-space if:
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1. (M,τ) is M-completely normal space.

2. (M,τ) is M-T1-space.

Theorem 3.15. Every M-T5-space is a M-T4-space.

Proof. Straightforward.

Theorem 3.16. The property of being M-T5-space is a hereditary property.

Proof. Immediate.

3.7 M-T2 1
2
-space

Definition 3.12. Let (M, τ) be a M-topological space. If for every two M-singleton
{k1/x1}, {k2/x2} ⊆ M such that x1 6= x2, then there exist G,H ∈ τ such that
{k1/x1} ⊆ G, {k2/x2} ⊆ H and G ∩H = φ. Hence, (M, τ) is M-T2 1

2
-space.

Example 3.8. Every discrete M-topology (M,P ∗(M)) is M-T2 1
2
-space.

Theorem 3.17. The property of being M-T2 1
2
-space is a hereditary property.

Proof. Let (M, τ) be a M-T2 1
2
-space, N ⊆ M and let (N, τN) be a subspace of

(M, τ). Now, we want to prove that (N, τN) is M-T2 1
2
-space. Let {k1/n1}, {k2/n2} ⊆

N such that n1 6= n2. Since, N ⊆ M and (M, τ) is M-T2 1
2
-space. Then, there exist

G,H ∈ τ such that {k1/n1} ⊆ G, {k2/n2} ⊆ H and G ∩H = φ. By a definition of
the subspace, we have: (N ∩ G), (N ∩H) ∈ τN . Therefore, {k1/n1} ⊆ N ∩ G and
{k2/n2} ⊆ N ∩H. Also, (G ∩N)∩ (H ∩N) ⊆ (G∩N)∩ (H ∩N) = (G∩H)∩N =
φ ∩N = φ. Thus, (G ∩N) ∩ (H ∩N) = φ. Hence, (N, τN) is M-T2 1

2
-space.

Theorem 3.18. If (M, τ1) is a M-T2 1
2
-space and τ1 6 τ2, then (M, τ2) is also a

M-T2 1
2
-space.

Proof. Straightforward.

Theorem 3.19. Every M-T2 1
2
-space is a M-T2-space.

Proof. Let (M, τ) be a M-T2 1
2
-space and assume that {k1/m1}, {k2/m2} ⊆ M

such that m1 6= m2 . Then, there exist G,H ∈ τ such that {k1/m1} ⊆ G, {k2/m2} ⊆
H and G ∩H = φ. Since, G ⊆ G, H ⊆ H. Therefore, G ∩H = φ. Hence, (M, τ) is
M-T2-space.

4 Conclusion

In this paper we introduce the separation axioms on mset topological spaces based on
the singleton mset {m/x}. This approach contains all multi-points which considered
as a submset. The behavior of these axioms under some types of mapping have
obtained. In the future, we study another topological property such as connected,
some types of submsets and mappings on these spaces.
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