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Abstract: Ant colony optimization (ACO) algorithm is one of the artificial intelligence methods used in
structural optimization. Values of some optimization parameters must be determined before the
optimization process in most of the artificial intelligence based optimization algorithms. Determination of
the values of these optimization parameters is essential especially for the time required for the
optimization process and the quality of results achieved. Pheromone update coefficient, number of ants in
the colony, number of depositing ants, penalty coefficient are the main optimization parameters in ACO
algorithm. This study is focused on the number of ants in the ant colony. This research is realized using
the optimization of grillage structure which is one of the well-known optimization problems in the
literature. Minimization of the weight of structure is the objective function of the optimization problem,
and the member sizes of grillages are considered as discrete design variables. Displacement and strength
restrictions are considered as constraints according to manual of LRFD-AISC. A computer program is
coded in BASIC to accomplish the structural design and optimization procedures. Numerical examples
from literature are optimized using different number of ants to determine the effect of the number of ants
on the optimization process. At the end of the study, some inferences are presented on the number of ants
to be used in the colony.
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Izgara Sistemlerin Optimizasyonu Uzerinden Karmca Koloni Optimizasyon Algoritmasinda
Karinca Sayisimin Belirlenmesi

Oz: Karimca koloni optimizasyon algoritmasi, yapisal optimizasyonda kullanilan yapay zekaya dayali
yontemlerden biridir. Yapay zekaya dayali optimizasyon algoritmalarinin ¢ogunda bazi optimizasyon
parametrelerinin  degerleri optimizasyon siirecinin Oncesinde belirlenmesi gerekmektedir. Bu
optimizasyon parametrelerinin degerlerinin belirlenmesi 6zellikle optimizasyonun islemi i¢in gerekli siire
ve ulagilan sonuglarin niteligi agisindan 6nemlidir. Feromon giincelleme katsayisi, kolonideki karinca
sayisi, feromon birakacak karinca sayisi, ceza katsayisi karinca koloni algoritmasindaki baglica
optimizasyon parametreleridir. Bu ¢aligma ise kolonideki karinca sayisina odaklanmaktadir. Bu arastirma,
literatiirde sik¢a ele alinan optimizasyon problemlerinden biri olan, 1zgara sistemlerin optimizasyonu
iizerinden gergeklestirilmistir. Yapr agirhiginin minimum degerinin  belirlenmesi optimizasyon
probleminin amag fonksiyonu ve 1zgara sitemin olusturan elemanlarin enkesit ebatlar1 ise ayrik tasarim
degiskenleri olarak dikkate alinmistir. Yerdegistirme ve dayanim limitleri “LRFD-AISC” yonetmeligine
gore sinirlayicilar olarak alimmistir. Yapisal tasarim ve optimizasyon siireci igin gerekli islemleri yapmak
iizere “BASIC" dilinde bir bilgisayar programi kodlanmistir. Karinca sayisinin optimizasyon siireci
iizerindeki etkisini belirlemek igin literatiirden secilen sayisal ornekler farkli karinca sayilari kullanilarak
optimize edilmistir. Calismanin sonucunda, kolonide kullanilmasi gereken karinca sayisina iligkin bazi
¢ikarimlar sunulmustur.
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1. INTRODUCTION

Structural optimization problems are one of the important application areas for the artificial
intelligence based optimization algorithms in the academic literature. Many different artificial
intelligence based algorithms, e.g. genetic algorithm, simulated annealing, particle swarm,
harmony search, cuckoo search, artificial bee colony, teaching-learning based algorithm, firefly
algorithm etc., have been used for optimization of structural optimization problems since 1990s
(Daloglu et al., 2017; Kaveh et al., 2017; Aydogdu et al., 2016; Moezi et al., 2015; Mashayekhi
etal., 2016; Tort et al., 2017; Farshchin et al., 2016; Carbas, 2016; Carbas et al., 2013). Another
one of these algorithms is the ACO algorithm which is used in this study. ACO algorithms
mimic the ability of ant colonies to find the shortest path between food source and nest (Dorigo,
1992).

Generally, artificial intelligence based optimization algorithms need an iterative search
process to reach optimum results. Each of these algorithms have some optimization parameters;
and, values of these parameters must be determined carefully to reach the best results as soon as
possible. In an ACO algorithm, pheromone update coefficient, number of ants in colony,
number of depositing ants and penalty coefficient are the main optimization parameters. This
study focuses on the number of ants in the colony.

Grillages are selected as structural optimization problem in the study. Cross-sectional sizes
of girders are considered as discrete design variables; and, a list of W-sections is predetermined
for possible values. Displacement, flexural and shear strength are constrained according to
LRFD-AISC Manual of Steel Construction (1999). Weight of the structure is considered as
objective function of the optimization problem.

Artificial intelligence based algorithms was used in optimization of grillages previously,
e.g. Saka et al. (2000) used genetic algorithm (GA), Saka and Erdal (2009) used a harmony
search based optimization (HSBO) algorithm, Kaveh and Talatahari (2010) used the charged
system search (CSS) algorithm, Kaveh and Talatahari (2012) used a hybrid combining charged
system search and particle swarm optimization (PSO) algorithm, and Dede (2013) used teaching
learning based optimization (TLBO) algorithm.

A computer program is coded in Basic to accomplish the necessary calculations for the
optimization and design procedures. A numerical example from the literature is optimized
several time considering different member grouping using this computer program.

A simplified ant colony optimization (SACQ) algorithm which uses a simpler formulation
than those of in the literature is used in this study (Aydin and Yilmaz, 2014; Aydin, 2016). The
purpose of this study is to determine how the number of ants affects the optimization process.
For this purpose, structural system selected is optimized using different ant colonies which have
different number of ants. Consequently, relation among the number of ants, the quality of the
results and the number of iteration is researched.

A similar study was realized for the determination of effective number of depositing ants by
Aydin (2016); and it was concluded that the better results were reached in the case of using
lesser number of depositing ants. In that study, it was also recommended the use of elitist
approach in which only the best ant deposit pheromone. Accordingly, it is supposed in in this
study that only the best ant deposits pheromone.

2. STRUCTURAL OPTIMIZATION PROBLEM
2.1. Objective Function

In optimization of steel structures, weight of the structure is generally selected as
optimality criterion instead of the structural cost. Therefore, the aim is to find out the minimum-
weighted structure in optimization of a steel grillage structure, and objective function (W) of the
optimization problem can be formulated as
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W =_nzm:Gi|i (1)

where, nm is the number of members in the grillage structure, G; is the unit weight of the
member i and I; is the length of the member i.

In the equation given above, the number of member and the length of member are design
parameters of the structure and values of them do not change during the optimization process.
Design variables are cross-sectional size of the members which is represented by the unit weight
of member in equation (1). A discrete optimization is realized in this study; and, W sections list
of LRFD-AISC Manual of Steel Construction (1999) is considered for the values of the design
variables. Therefore, determination of the minimum-weighted structure means determination of
the suitable values for the unit weight of the members from the considered list.

2.2. Penalized Objective Function

There is no doubt that minimum-weighted structure is constituted by using the minimum
values of design variables; but, on the other hand, the structure must satisfy the constraints. So,
in fact, the aim of the structural optimization is to find out the structure which do not violate the
constraints. Accordingly, the objective function must be transformed to a penalized form
depending on the violation of the constraints. A penalized objective function (®) is calculated
for this transformation using the technique of Rajeev and Krishnamoorthy (1992) as

®=W-[1+K-P] )

where K is the penalty coefficient which is used to determine how the constraints affect the
penalized objective function, P is the penalty function which is calculated according to violation
of constraints. In the general form, penalty function can be formulated as

P=3p ®

where nc is the number of constraints, p; is the penalty violation factor of the constraint i and it
is determined in normalized form with the equation given below.

pi:i_l if 0i > 0y

gu,i Y
(4)
p,=0 if 0, =0,

In this equation, g; and g,; are the calculated value and restriction for the constraint i,
respectively.

2.3. Constraints

Strength (for flexure and shear) according to LRFD-AISC Manual of Steel Construction
(1999) and displacement constraints are considered in this study as explained below.

2.3.1. Flexural Strength Constraint

Flexural strength constraint is expressed in the accordance with the regulations under
consideration as given below.
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M,; <¢M,, i=12,..nm (5)
In this control for the member i, My; is the factored service load moment and oM,; is the
flexural design strength where o is the resistance factor given as 0.9 for flexure, M, is the
nominal flexural strength which is calculated according to AISC-LRFD (1999) for laterally
supported rolled beams depending on the slenderness () as

M,=FzZ,<15FS, if A<

y=X p
A=Ay
M, = |\/||[,—(|v|p—|v|r)/1 it Ap<ash (6)
r p
M., = Fy S, it A4

where M, is the plastic moment, F, is the yield strength of the material, Z, is the plastic
modulus, Sy is the section modulus, F, is critical stress given as 0.69E/A%, M, is the buckling
moment and M is calculated as

F Sy  forbucklingof flange
M, = . (7
ReFyt Sy forbucklingof web

in which

= Py —F @®)
=min 8
: F

yw

In equations (7) and (8), F, is the compressive residual stress in flange given as 69 MPa; F and
F,w are the yield strength of flange and web, respectively; R. is the hybrid girder factor given as
1.0 for non-hybrid girders. In equation (6), the values of A, A, and A, are calculated for
compression flange and web, respectively, as

by
2ty
A, =0.38 E i
p =0 F_y for compression flange 9)
A, =0.83 /E
F

and
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A=—

Ly

Ap =3.76 /E for web (10)
F
y
A, =5.70 }E
Fy

where by is the width of flange, t; and t,, are the thickness of flange and web, respectively, h is
clear height of the web (excluding fillets) and E is the young modulus of the material.

In this study, it is considered that grillages are constituted by hot rolled W sections;
therefore, web local buckling is not considered as a constraint. The nominal flexural strength
must be less than or equal to plastic moment of the cross section for all three cases of the
slenderness ratio.

2.3.2. Shear Strength Constraint

Shear strength constraint to the regarded regulation is also expressed as
Vi <oV, 1=12,..,nm (11)

where for the member i, V; is the shear force according to the factored service load and oV, is
the shear design strengths where @ is the resistance factor given as 0.9 for shear, V, is the
nominal shear strength which is calculated according to AISC-LRFD (1999) for rolled beams as

0.6 Ay if hit, <2.45[E/F,,

V, =40.6f,, A, (2.45.[E/F,,) if 245[E/F,, <h/t,<3.07./E/F,, (12)

A,(452E)/(h/t,)?  if 3.07,[E/Fy, <h/t, <260

where A,, is cross sectional area of the web.
2.3.3. Displacement Constraint

In this study, maximum vertical displacements of some points in the grillage are
constrained with the equation as given below.

Oj < 0y 1=12,..,ncp (13)
where &; and 9,; are the calculated and the allowable displacement of joint i, respectively; ncp is
the number of points whose displacements is restricted.

3. OPTIMIZATION OF THE STRUCTURE USING SACO

Ant colonies need new food sources to survive; accordingly, the principle duty of an ant in
the colony is to find new food sources and to carry the foods to the nest. In natural habitat, there
are generally more than one possible route between the food source and the nest. Ant colonies
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must find out the shortest one among the probable routes for efficiency. Ants overcome this
difficult task skillfully using a chemical material named as pheromone which is leaved on the
route between the food source and the nest by ants. Amount of pheromone in a shorter route is
more than a longer one because of evaporation. A new ant from the nest will follow the
previous pheromones with a strong possibility, which means the following of the shorter route.
Therefore, the shortest route will be find out by ant colony after a duration.

The ability of ants to find the shortest route between the food source and the nest was
simulated by Dorigo (1992) to constitute a new optimization method named as ACO at the
beginning of nineties. After that, ACO is used for different optimization problems one of which
is structural optimization. Different versions of ACO are also used in the literature (Camp and
Bichon, 2004; Hasangebi et al., 2011; Aydogdu and Saka, 2012). The SACO algorithm
preferred in this study is used previously by Aydin and Yilmaz (2014) and Aydin (2016).

In a discrete optimization problem, probable values of design variables are determined
before the optimization process. These probable values are similar to probable routes in natural
habitat of ants; accordingly, ants in the colony are represented by probable solutions of the
optimization problem. Adaptation of natural process of ant colonies to a discrete optimization
problem is illustrated in Figure 1. The example problem in the figure have two design variable
which have four and three probable values, respectively.

first
design
variable second
design
ant variable
colony N Y solutions
_—
- - W \4,\ " - W1
[N
-+ as — fg\ﬁ —7 W2
- | T ” - W3
45 B
- R };i ’: \/M//M/* Wa
®

probable values for
design variables

Figure 1:
Adaptation of natural process of ant colonies to a discrete optimization problem

It can be seen from Fig. 1 that each ant in the colony has a route to objective function; and,
station of these routes are the probable values of design variables. Amounts of the pheromone
on the probable values are represented by colors; accordingly, darker color demonstrate more
pheromone. In SACO, amounts of pheromone are the selection probability of related values,
and total amount of pheromone on the probable values of any design variable is equal to 1
(100%). It is supposed that there is equal amount of pheromone on each probable value of any
design variable initially, and it is calculated as

1
pre = L
= (14)

where Ph; is initial amount of pheromone on the j™ probable value of i" design variable; nv; is
the number of probable values for i"" design variable.

In this study elitist approach is considered as mentioned before; it means that only the best
ant in the colony leaves pheromone on its route. Therefore, the amounts of the pheromone on
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probable values used by the best ant are increased while the others are reduced. Reducing of
pheromones on some probable values is similar to the evaporation in natural ant colony process.
These modifications in pheromone amounts are named as pheromone update process which is
formulated as given below.

Ph; = Phi™*- 1-FWi) 5 forthebestant
nv, -1
1-Ph? o
- i F-ny
Phj = " — fortheotherants
Ph; ny, -1

where Phi,-k is the amount of pheromone on j™ probable value of i design variable at the
iteration k; F is the pheromone update coefficient which determines the increment percentage of
pheromones. Optimization process continues till the amount of pheromone in any value for each
design variable reaches to the predetermined percentage.

4. NUMERICAL EXAMPLE

A 40-member grillage is selected as the numerical example from the literature to determine
the suitable number of ant in the SACO algorithm. Dimensions, restraints and the loading
condition of the selected grillage is shown in Fig. 2 where q=200 kN. Material properties are
taken as: yield stress is 250 MPa, modulus of elasticity is 205 kN/mm2, and shear modulus is 81
kN/mm2. Total 272 W sections from W100x19.3 to W1100x499 from the list of LRFD-AISC
Manual of Steel Construction (1999) are considered for probable values of design variables.
Vertical displacements of 4 points in the center of grillage are restricted as the maximum 25
mm.

Figure 2:
40-member grillage structure

Different grouping approaches are used in this study to consider the effect of number of
design variables. Members of grillage are collected in two, four and twelve groups in the first
(grouping a), the second (grouping b) and the third (grouping c) approach, respectively, as
illustrated in Fig. 3.
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(a) (b) (©)
Figure 3:

Member grouping for (a) the first, (b) the second and (c) the third approach

For each of the three grouping approaches, grillage structure is optimized using colonies
with 5, 10, 20, 40, 80, 160, 320 and 640 number of ants. The other optimization parameters are
considered for all of optimization realized as

Penalty coefficient (K): 0.1 ~ 0.5
Pheromone update coefficient (F): 0.02
Conversion percentage: 50%
Maximum number of iterations: 500

Results of the optimization process are given in Table 1, Table2 and Table 3 for the first,
the second and the third grouping approach, respectively.

Table 1. Optimum results for the first grouping approach (grouping a)

Number

5 10 20 40 80 160 320 640
of ants

Groupl  W760x220 W840x176 W=840x176 W840x176 WB840x176 W=840x176 W840x176 \WB840x176

Group 2 W200x15 W100x19.3 W200x15 W200x15 W150x13.5 W150x13.5 W150x13.5 W150x13.5

Iteration 163 75 102 74 a7 54 45 38

Weight (kg) 9572 8002 7782 7782 7712 7712 7712 7712

Table 2. Optimum results for the second grouping approach (grouping b)

Number of

5 10 20 40 80 160 320 640
ants

Group 1 W610x92  W360x51 W250x17.9 WA410x46.1 W360x44 W310x38.7 W200x15 W410x46.1

Group2  W920x201 W1000x222 W1000x222 W920x223 W1000x222 W1000x222 W1000x222 W1000x222

Group 3 W360x44  W200x15  W360x44  W150x18  W200x15  W310x21 WA410x46.1 W150x13.5

Group 4 W310x67  W530x66 ~ W410x67  W530x66 ~ W530x66 ~ W460x68  WA460x52  W530x66

Iteration 317 252 164 163 141 123 69 87

Weight (kg) 8016 7476 7605 7463 7360 7453 7198 7353

It is shown in Table 1, Table 2 and Table 3 that the best weights are obtained using 80, 320
and 640 ants for the first, the second and the third grouping approach, respectively. All of the
results of three approaches are collected in a graph in Fig. 4 to clarify how the number of ants
affect the optimization process. Variations of the number of iterations and the number of
analysis versus the number of ants are illustrated in Fig. 5 and Fig. 6 for all of three grouping
approaches.
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Table 3. Optimum results for the third grouping approach (grouping c)

Number of 5 10 20 40 80 160 320 640
ants
Group 1 W360x64  W460x52  W310x52 WA410x38.8 W410x38.8 W460x52 W310x23.8 W410X46.1
Group 2 W410x67  W530x72  W360x51  W360x51  W360x51 WA410x38.8 W310x21  W460X52
Group3  WA410x38.8 W410x38.8 W250x28.4 W360x32.9 W150x18 W200x22.5 W200x15 W200X15
Group4  W760x161 W690x152 W690x152 W690x170 W840x176 W=840x193 W760x173 W760X147
Group5  W920x201 W=840x251 W1000x222 W1000x222 W920x201 W920x201 W920x201 W920X223
Group6  W920x271 W840x251 W920x223 W1000x249 W1000x249 W920x238 W1000x272 \W1000x222
Group7  W310x23.8 W360x39 W250x17.9 W310x21 W360x32.9 W250x28.4 W460x52 W250x17.9
Group 8 W360x39 W310x32.7 W150x18 W310x21 W310x28.3 W310x28.3 W360x51 W250X22.3
Group9  W360x57.8 W200x26.6 W100x19.3 W250x22.3 W310x23.8 W250x17.9 W250x22.3 W310X21
Group 10  W360x91  W460x68  W410x85  W530x74  WA460x68  W610x82  WA410x60  W530X74
Group 11 ~ W610x92  W530x82  W460x74  W460x82  W530x66  W460x74  WA410x60  W530X72
Group 12 W360x39 W310x21  W150x18 W150x22.5 W150x29.8 W150x22.5 W250x17.9 W310X21
Iteration 461 475 339 306 271 238 235 203
Weight (kg) 8119 7830 6967 7198 7027 7271 6925 6777
10000 1
9500 + o wesess grouping a
',' = == grouping b
9000 4 = grouping ¢
. 8500 -
k=
ESOOO
.20
[
= 7500
7000
6500 -
6000 T T T T T T 1
5 10 20 40 80 160 320 640
number of ants
Figure 4:
Variation of the weight versus the number of ants
500 140000 A
wmo N\ e groupinga | eeeees grouping a
= = grouping b 120000 - = == grouping b

number of iterations

grouping ¢

number of analysis

100000 -

80000 A

60000 4

40000 A

20000 4

40 80 160
number of ants

20
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0 4

grouping ¢

80
number of ants

160 320 640

Variation of the number of iteration and analysis versus the number of ants

259



Aydin Z.: Determination the Number of Ants Used in ACO Algorithm via Grillage Optimization

From Fig. 5, the lesser iteration is needed in the case of using more ants. On the other hand,
from Fig. 6, number of analysis and the time needed for the optimization process are getting
higher in the case of using more ants.

The example with the second grouping approach is previously handled using different
optimization techniques by Saka and Erdal (2009), Kaveh and Talatahari (2010) and Dede
(2013). The best result obtained for the second approach in this study is compared to the results
of the other three studies in Table 4 to clarify the efficiency of SACO.

Table 4. Comparison of the results with the values in the literature

Design variables

Algorithm Weight (kg)
Groupl Group2 Group3 Group4
SACO (This study, grouping b) W200x15 W1000x222 WA410x46.1 W460x52 7198
TLBO (Dede, 2013) W760x147 W840x176 W150x13.5 W150x13.5 7131
CSS (Kaveh and Talatahari, 2010)  W150x13.5 W1000x222 W410x46.1 WA460x52 7168
HSBO (Saka and Erdal, 2009) W200x15 W1000x222 W410x46.1 W460x52 7198

The fittest solution of second grouping approach in this study are obtained as 7,198 kg.
This solution is the same with those of Saka and Erdal (2009). But, the optimum solutions
reached by Dede (2013) and Kaveh and Talatahari (2010) are better than the solution in this
study for second grouping approach.

5. CONCLUSIONS

In this study, a simplified ant colony algorithm is used for size optimization of grillage
structures to LRFD-AISC Manual of Steel Construction (1999). The purpose of the study is to
clarify how the number of ants in colony effects the optimization process. For this purpose a
grillage structure with different design variable grouping is optimized using various number of
ants. The following conclusions can be drawn out at the end of the study.

The best result is obtained using the third grouping approach as expected; and this results is
14% lighter than the result of the first grouping approach. The better results are generally
reached in the case of using more ants for all three grouping approaches.

The best result obtained in this study is either the same or very close to the results of the
studies in the literature. There is a relationship between the number of ants required and the
number of design variables. More ants must be used to achieve the optimum solution in the case
of using more design variables. But, this relationship cannot be defined with a regular function.
Additionally, although use of more ants reduces the number of iterations, the number of
analyzes and the time required for the optimization process actually increases, depending on the
number of ants. Therefore, it is possible to mention the optimum number of ants depending on
the number of design variables and a preliminary analyze is required to determine this number.
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