ISSN: 2149-1402

Received: 30.05.2015 Published: 30.11.2015 Year: 2015, Number: 8, Pages: 65-77 Original Article^{*}

Λ_a -CLOSED SETS IN IDEAL TOPOLOGICAL **SPACES**

Ochanathevar Ravi^{1,*} Ilangovan Rajasekaran¹ Annamalai Thiripuram² Raghavan Asokan³

<siingam@yahoo.com> <rajasekarani@yahoo.com> <thiripuram82@gmail.com> <rasoka_mku@yahoo.co.in>

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamilnadu, India. ²Department of Mathematics, Jeppiaar Engineering College, Chennai - 119, Tamilnadu, India. ²School of Mathematics, Madurai Kamaraj University, Madurai - 21, Tamilnadu, India.

Abstract – The notion of Λ_q -closed sets is introduced in ideal topological spaces. Characterizations and properties of \mathcal{I}_{Λ_g} -closed sets and \mathcal{I}_{Λ_g} -open sets are given. A characterization of normal spaces is given in terms of \mathcal{I}_{Λ_g} -open sets. Also, it is established that an \mathcal{I}_{Λ_g} -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

Keywords – λ -closed set, Λ_g -closed set, \mathcal{I}_{Λ_g} -closed set, \mathcal{I} -compact space.

Introduction and Preliminaries 1

In 1986, Maki [14] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel (= saturated set) i.e to the intersection of all open supersets of A. Arenas et al [1] introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. Caldas et al [2] introduced and investigated the notion of Λ_q -closed sets in topological spaces and established several properties of such sets.

In this paper, the notion of Λ_q -closed sets is introduced in ideal topological spaces. Characterizations and properties of \mathcal{I}_{Λ_q} -closed sets and \mathcal{I}_{Λ_q} -open sets are given. A characterization of normal spaces is given in terms of \mathcal{I}_{Λ_q} -open sets. Also, it is established that an \mathcal{I}_{Λ_q} -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

^t Edited by Metin Akdağ (Area Editor) and Naim Çağman (Editor-in-Chief).

^{*} Corresponding Author.

- 1. $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and
- 2. $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$.

Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \rightarrow \wp(X)$, called a local function [11] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[8], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(\mathcal{I},\tau)$, called the *-topology, finer than τ is defined by cl^{*}(A)=A\cupA^*(\mathcal{I},\tau) [24]. When there is no chance for confusion, we will simply write A^{*} for A^{*}(\mathcal{I},τ) and τ^* for $\tau^*(\mathcal{I},\tau)$.

If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal topological space (X, τ, \mathcal{I}) is *-closed [8] (resp. *-dense in itself [6]) if $A^* \subseteq A$ (resp. $A \subseteq A^*$). A subset A of an ideal topological space (X, τ, \mathcal{I}) is \mathcal{I}_g -closed [3] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If A $\subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and int^{*}(A) will denote the interior of A in (X, τ^*) .

A subset A of a space (X, τ) is an α -open [19] (resp. semi-open [12], preopen [15], regular open [23]) set if A \subseteq int(cl(int(A))) (resp. A \subseteq cl(int(A)), A \subseteq int(cl(A)), A = int(cl(A))).

The family of all α -open sets in (X, τ), denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$.

Definition 1.1. A subset A of a space (X, τ) is said to be

- 1. g-closed [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- 2. g-open [13] if its complement is g-closed.
- 3. λ -closed [1] if $A = L \cap D$, where L is a Λ -set and D is a closed set.
- 4. λ -open [1] if its complement is λ -closed.
- 5. Λ_q -closed [2] if cl(A) \subseteq U whenever A \subseteq U and U is λ -open.
- 6. \hat{g} -closed [25] or ω -closed [22] or s*g-closed [10, 16, 20] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open.

Definition 1.2. An ideal \mathcal{I} is said to be

- 1. codense [4] or τ -boundary [18] if $\tau \cap \mathcal{I} = \{\phi\},\$
- 2. completely codense [4] if $PO(X) \cap \mathcal{I} = \{\phi\}$, where PO(X) is the family of all preopen sets in (X, τ) .

Lemma 1.3. Every completely codense ideal is codense but not conversely [4].

The following Lemmas, Result and Definition will be useful in the sequel.

Lemma 1.4. [8] Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- 1. $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- 2. $A^{\star} = \operatorname{cl}(A^{\star}) \subseteq \operatorname{cl}(A),$
- 3. $(A^{\star})^{\star} \subseteq A^{\star}$,
- 4. $(A \cup B)^* = A^* \cup B^*$,
- 5. $(A \cap B)^* \subseteq A^* \cap B^*$.

Lemma 1.5. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [[21], Theorem 5].

Lemma 1.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [[21], Theorem 3].

Lemma 1.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [[21], Theorem 6].

Result 1.8. For a subset of a topological space, the following properties hold:

- 1. Every closed set is Λ_q -closed but not conversely [2].
- 2. Every Λ_g -closed set is g-closed but not conversely [2].
- 3. Every closed set is λ -closed but not conversely [1, 2].
- 4. Every closed set is \hat{g} -closed but not conversely [25].
- 5. Every \hat{g} -closed set is g-closed but not conversely [25].

Definition 1.9. An ideal space (X, τ, \mathcal{I}) is said to be a $T_{\mathcal{I}}$ -space [3] if every \mathcal{I}_g -closed subset of X is a \star -closed set.

Lemma 1.10. If (X, τ, \mathcal{I}) is a T₁-space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set [[17], Corollary 2.2].

Lemma 1.11. Every g-closed set is \mathcal{I}_g -closed but not conversely [[3], Theorem 2.1].

Lemma 1.12. [1] Let $A_i (i \in \mathcal{I})$ be subsets of a topological space (X, τ) . The following properties hold:

1. If A_i is λ -closed for each $i \in I$, then $\bigcap_{i \in I} A_i$ is λ -closed.

2. If A_i is λ -open for each $i \in I$, then $\bigcup_{i \in I} A_i$ is λ -open.

Recall that the intersection of a λ -closed set and a closed set is λ -closed.

2 Ideal Topological View of Λ_g -closed Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I}_{Λ_q} -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is λ -open,
- 2. \mathcal{I}_{Λ_q} -open if its complement is \mathcal{I}_{Λ_q} -closed.

Theorem 2.2. If (X, τ, \mathcal{I}) is any ideal topological space, then every \mathcal{I}_{Λ_g} -closed set is \mathcal{I}_q -closed but not conversely.

Proof. It follows from the fact that every open set is λ -open.

Example 2.3. Let X={a, b, c}, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi\}$. It is clear that {a, c} is \mathcal{I}_g -closed but it is not \mathcal{I}_{Λ_g} -closed.

The following Theorem gives characterizations of \mathcal{I}_{Λ_q} -closed sets.

Theorem 2.4. If (X, τ, \mathcal{I}) is any ideal topological space and A $\subseteq X$, then the following are equivalent.

- 1. A is \mathcal{I}_{Λ_q} -closed,
- 2. $cl^{\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is λ -open in X,
- 3. $cl^{*}(A)$ -A contains no nonempty λ -closed set,
- 4. A^{*}-A contains no nonempty λ -closed set.

Proof. (1) \Rightarrow (2) Let $A \subseteq U$ where U is λ -open in X. Since A is \mathcal{I}_{Λ_g} -closed, $A^* \subseteq U$ and so $cl^*(A) = A \cup A^* \subseteq U$.

 $(2) \Rightarrow (3)$ Let F be a λ -closed subset such that $F \subseteq cl^*(A) - A$. Then $F \subseteq cl^*(A)$. Also $F \subseteq cl^*(A) - A \subseteq X - A$ and hence $A \subseteq X - F$ where X - F is λ -open. By (2) $cl^*(A) \subseteq X - F$ and so $F \subseteq X - cl^*(A)$. Thus $F \subseteq cl^*(A) \cap X - cl^*(A) = \phi$.

 $(3) \Rightarrow (4) A^* - A = A \cup A^* - A = cl^*(A) - A$ which has no nonempty λ -closed subset by (3).

(4) \Rightarrow (1) Let $A \subseteq U$ where U is λ -open. Then $X - U \subseteq X - A$ and so $A^* \cap (X - U) \subseteq A^* \cap (X - A) = A^* - A$. Since A^* is always a closed subset and X - U is λ -closed, $A^* \cap (X - U)$ is a λ -closed set contained in $A^* - A$ and hence $A^* \cap (X - U) = \phi$ by (4). Thus $A^* \subseteq U$ and A is \mathcal{I}_{Λ_q} -closed.

Theorem 2.5. Every \star -closed set is \mathcal{I}_{Λ_q} -closed but not conversely.

Proof. Let A be a *-closed. To prove A is \mathcal{I}_{Λ_g} -closed, let U be any λ -open set such that $A \subseteq U$. Since A is *-closed, $A^* \subseteq A \subseteq U$. Thus A is \mathcal{I}_{Λ_g} -closed.

Example 2.6. Let X={a, b, c}, $\tau = \{\phi, X, \{a\}\}$ and $\mathcal{I} = \{\phi\}$. It is clear that {b} is \mathcal{I}_{Λ_a} -closed set but it is not \star -closed.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space. For every $A \in \mathcal{I}$, A is \mathcal{I}_{Λ_q} -closed.

Proof. Let $A \in \mathcal{I}$ and let $A \subseteq U$ where U is λ -open. Since $A \in \mathcal{I}$, $A^* = \phi \subseteq U$. Thus A is \mathcal{I}_{Λ_q} -closed.

Theorem 2.8. If (X, τ, \mathcal{I}) is an ideal topological space, then A^* is always \mathcal{I}_{Λ_g} -closed for every subset A of X.

Proof. Let $A^* \subseteq U$ where U is λ -open. Since $(A^*)^* \subseteq A^*$ [8], we have $(A^*)^* \subseteq U$. Hence A^* is \mathcal{I}_{Λ_q} -closed.

Theorem 2.9. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every \mathcal{I}_{Λ_g} -closed, λ -open set is \star -closed.

Proof. Let A be \mathcal{I}_{Λ_g} -closed and λ -open. We have $A \subseteq A$ where A is λ -open. Since A is \mathcal{I}_{Λ_g} -closed, $A^* \subseteq A$. Thus A is *-closed.

Corollary 2.10. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space and A is an \mathcal{I}_{Λ_g} -closed set, then A is \star -closed set.

Proof. By assumption A is \mathcal{I}_{Λ_g} -closed in (X, τ, \mathcal{I}) and so by Theorem 2.2, A is \mathcal{I}_g -closed. Since (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space, by Definition 1.9, A is \star -closed.

Corollary 2.11. Let (X, τ, \mathcal{I}) be an ideal topological space and A be an \mathcal{I}_{Λ_g} -closed set. Then the following are equivalent.

- 1. A is a \star -closed set,
- 2. $cl^{\star}(A) A$ is a λ -closed set,
- 3. $A^{\star}-A$ is a λ -closed set.

Proof. (1) \Rightarrow (2) By (1) A is \star -closed. Hence $A^{\star} \subseteq A$ and $cl^{\star}(A) - A = (A \cup A^{\star}) - A = \phi$ which is a λ -closed set.

 $(2) \Rightarrow (3) A^* - A = A \cup A^* - A = cl^*(A) - A$ which is a λ -closed set by (2).

(3) \Rightarrow (1) Since A is \mathcal{I}_{Λ_g} -closed, by Theorem 2.4 A^{*} – A contains no non-empty λ -closed set. By assumption (3) A^{*} – A is λ -closed and hence A^{*} – A = ϕ . Thus A^{*} \subseteq A and A is *-closed.

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every Λ_g -closed set is an \mathcal{I}_{Λ_g} -closed set but not conversely.

Proof. Let A be a Λ_g -closed set. Let U be any λ -open set such that $A \subseteq U$. Since A is Λ_g -closed, $cl(A) \subseteq U$. So, by Lemma 1.4, $A^* \subseteq cl(A) \subseteq U$ and thus A is \mathcal{I}_{Λ_g} -closed.

Example 2.13. Let X={a, b, c}, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. It is clear that {a} is \mathcal{I}_{Λ_q} -closed set but it is not Λ_q -closed.

Theorem 2.14. If (X, τ, \mathcal{I}) is an ideal topological space and A is a \star -dense in itself, \mathcal{I}_{Λ_g} -closed subset of X, then A is Λ_g -closed.

Proof. Let $A \subseteq U$ where U is λ -open. Since A is \mathcal{I}_{Λ_g} -closed, $A^* \subseteq U$. As A is \star -dense in itself, by Lemma 1.5, $cl(A) = A^*$. Thus $cl(A) \subseteq U$ and hence A is Λ_q -closed.

Corollary 2.15. If (X, τ, \mathcal{I}) is any ideal topological space where $\mathcal{I} = \{\phi\}$, then A is \mathcal{I}_{Λ_q} -closed if and only if A is Λ_q -closed.

Proof. In (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\phi\}$ then $A^* = cl(A)$ for the subset A. A is \mathcal{I}_{Λ_g} -closed $\Leftrightarrow A^* \subseteq U$ whenever $A \subseteq U$ and U is λ -open $\Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is λ -open $\Leftrightarrow A$ is Λ_g -closed.

Corollary 2.16. In an ideal topological space (X, τ, \mathcal{I}) where \mathcal{I} is codense, if A is a semi-open and \mathcal{I}_{Λ_q} -closed subset of X, then A is Λ_q -closed.

Proof. By Lemma 1.6, A is \star -dense in itself. By Theorem 2.14, A is Λ_q -closed.

Example 2.17. In Example 2.3, it is clear that $\{a, c\}$ is g-closed set but it is not \mathcal{I}_{Λ_q} -closed.

Example 2.18. In Example 2.13, it is clear that $\{a\}$ is \mathcal{I}_{Λ_g} -closed set but it is not g-closed.

Example 2.19. In Example 2.6, it is clear that $\{b\}$ is Λ_q -closed but it is not \hat{g} -closed.

Example 2.20. In Example 2.6, it is clear that $\{a\}$ is \hat{g} -closed but it is not Λ_q -closed.

Remark 2.21. We see that

- 1. From Examples 2.17 and 2.18, g-closed sets and \mathcal{I}_{Λ_g} -closed sets are independent.
- 2. From Examples 2.19 and 2.20, Λ_q -closed sets and \hat{g} -closed sets are independent.

Remark 2.22. We have the following implications for the subsets stated above.

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is \mathcal{I}_{Λ_g} -closed if and only if A=F-N where F is \star -closed and N contains no nonempty λ -closed set.

Proof. If A is \mathcal{I}_{Λ_g} -closed, then by Theorem 2.4 (4), N=A^{*}-A contains no nonempty λ -closed set. If F=cl^{*}(A), then F is *-closed such that F-N=(A\cupA^*)-(A^*-A)=(A\cup A^*)\cap(A^*\cap A^c)^c=(A\cup A^*)\cap((A^*)^c\cup A)=(A\cup A^*)\cap(A\cup (A^*)^c)=A\cup(A^*\cap (A^*)^c)=A.

Conversely, suppose A=F-N where F is *-closed and N contains no nonempty λ closed set. Let U be an λ -open set such that $A\subseteq U$. Then $F-N\subseteq U$ which implies that $F\cap(X-U)\subseteq N$. Now $A\subseteq F$ and $F^*\subseteq F$ then $A^*\subseteq F^*$ and so $A^*\cap(X-U)\subseteq F^*\cap(X-U)\subseteq F\cap$ $(X-U)\subseteq N$. Since $A^*\cap(X-U)$ is λ -closed, by hypothesis $A^*\cap(X-U)=\phi$ and so $A^*\subseteq U$. Hence A is \mathcal{I}_{Λ_q} -closed.

Theorem 2.24. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is *-dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.25. Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is \mathcal{I}_{Λ_q} -closed, then B is \mathcal{I}_{Λ_q} -closed.

Proof. Since A is \mathcal{I}_{Λ_g} -closed, then by Theorem 2.4 (3), $cl^*(A)-A$ contains no nonempty λ -closed set. But $cl^*(B)-B\subseteq cl^*(A)-A$ and so $cl^*(B)-B$ contains no nonempty λ -closed set. Hence B is \mathcal{I}_{Λ_g} -closed.

Corollary 2.26. Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is \mathcal{I}_{Λ_q} -closed, then A and B are Λ_q -closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^*$. Then $A \subseteq B \subseteq A^* \subseteq cl^*(A)$. Since A is \mathcal{I}_{Λ_g} -closed, by Theorem 2.25, B is \mathcal{I}_{Λ_g} -closed. Since $A \subseteq B \subseteq A^*$, we have $A^* = B^*$. Hence $A \subseteq A^*$ and $B \subseteq B^*$. Thus A is *-dense in itself and B is *-dense in itself and B is *-dense in itself and B are Λ_g -closed.

The following Theorem gives a characterization of \mathcal{I}_{Λ_q} -open sets.

Theorem 2.27. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is \mathcal{I}_{Λ_q} -open if and only if $F \subseteq int^*(A)$ whenever F is λ -closed and $F \subseteq A$.

Proof. Suppose A is \mathcal{I}_{Λ_g} -open. If F is λ -closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $cl^*(X-A) \subseteq X - F$ by Theorem 2.4(2). Therefore $F \subseteq X - cl^*(X-A) = int^*(A)$. Hence $F \subseteq int^*(A)$.

Conversely, suppose the condition holds. Let U be a λ -open set such that $X-A\subseteq U$. Then $X-U\subseteq A$ and so $X-U\subseteq int^*(A)$. Therefore $cl^*(X-A)\subseteq U$. By Theorem 2.4(2), X-A is \mathcal{I}_{Λ_q} -closed. Hence A is \mathcal{I}_{Λ_q} -open.

Corollary 2.28. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If A is \mathcal{I}_{Λ_q} -open, then $F \subseteq int^*(A)$ whenever F is closed and $F \subseteq A$.

The following Theorem gives a property of \mathcal{I}_{Λ_q} -closed.

Theorem 2.29. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If A is \mathcal{I}_{Λ_g} -open and $int^*(A) \subseteq B \subseteq A$, then B is \mathcal{I}_{Λ_g} -open.

Proof. Since $\operatorname{int}^*(A) \subseteq B \subseteq A$, we have $X - A \subseteq X - B \subseteq X - \operatorname{int}^*(A) = \operatorname{cl}^*(X - A)$. By assumption A is \mathcal{I}_{Λ_g} -open and so X - A is \mathcal{I}_{Λ_g} -closed. Hence by Theorem 2.25, X - B is \mathcal{I}_{Λ_g} -closed and B is \mathcal{I}_{Λ_g} -open.

The following Theorem gives a characterization of \mathcal{I}_{Λ_g} -closed sets in terms of \mathcal{I}_{Λ_g} -open sets.

Theorem 2.30. Let (X, τ, \mathcal{I}) be an ideal topological space and A $\subseteq X$. Then the following are equivalent.

- 1. A is \mathcal{I}_{Λ_q} -closed,
- 2. $A \cup (X A^{\star})$ is $\mathcal{I}_{\Lambda_{q}}$ -closed,
- 3. A^{*}-A is \mathcal{I}_{Λ_q} -open.

Proof. (1) \Rightarrow (2) Let U be any λ -open set such that $A \cup (X-A^*) \subseteq U$. Then $U^c \subseteq [A \cup (X-A^*)]^c = [A \cup (A^*)^c]^c = A^* \cap A^c = A^* - A$ where U^c is λ -closed. Since A is \mathcal{I}_{Λ_g} -closed, by Theorem 2.4(4), $U^c = \phi$ and X=U. Thus X is the only λ -open set containing $A \cup (X-A^*)$ and hence $A \cup (X-A^*)$ is \mathcal{I}_{Λ_g} -closed.

 $(2) \Rightarrow (3) (A^* - A)^c = (A^* \cap A^c)^c = A \cup A^{*c} = A \cup (X - A^*)$ which is \mathcal{I}_{Λ_g} -closed by (2). Hence $A^* - A$ is \mathcal{I}_{Λ_g} -open.

 $(3) \Rightarrow (1) \text{ Since } A^* - A \text{ is } \mathcal{I}_{\Lambda_g}\text{-open, } (A^* - A)^c = A \cup A^{*c} \text{ is } \mathcal{I}_{\Lambda_g}\text{-closed. Hence}$ by Theorem 2.4(4) $(A \cup (A^*)^c)^* - (A \cup A^{*c})$ contains no nonempty $\lambda\text{-closed subset.}$ But $(A \cup (A^*)^c)^* - (A \cup (A^*)^c) = (A \cup (A^*)^c)^* \cap (A \cup (A^*)^c)^c = (A \cup (A^*)^c)^* \cap (A^* \cup A^c) = (A^* \cup ((A^*)^c)^*) \cap (A^* \cap A^c) = A^* \cap A^c = A^* - A.$ Thus $A^* - A$ has no nonempty $\lambda\text{-closed subset. Hence by Theorem 2.4(4), A is <math>\mathcal{I}_{\Lambda_g}\text{-closed.}$

Theorem 2.31. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is \mathcal{I}_{Λ_a} -closed if and only if every λ -open set is \star -closed.

Proof. Suppose every subset of X is \mathcal{I}_{Λ_g} -closed. Let U be λ -open in X. Then U \subseteq U and U is \mathcal{I}_{Λ_g} -closed by assumption implies U^{*} \subseteq U. Hence U is *-closed.

Conversely, let $A \subseteq X$ and U be λ -open such that $A \subseteq U$. Since U is \star -closed by assumption, we have $A^{\star} \subseteq U^{\star} \subseteq U$. Thus A is \mathcal{I}_{Λ_q} -closed.

The following Theorem gives a characterization of normal spaces in terms of \mathcal{I}_{Λ_q} -open sets.

Theorem 2.32. Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. Then the following are equivalent.

- 1. X is normal,
- 2. For any disjoint closed sets A and B, there exist disjoint \mathcal{I}_{Λ_g} -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- 3. For any closed set A and open set V containing A, there exists an \mathcal{I}_{Λ_g} -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof. (1) \Rightarrow (2) The proof follows from the fact that every open set is \mathcal{I}_{Λ_q} -open.

 $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X–V are disjoint closed sets, there exist disjoint \mathcal{I}_{Λ_g} -open sets U and W such that $A\subseteq U$ and $X-V\subseteq W$. Since X–V is λ -closed and W is \mathcal{I}_{Λ_g} -open, X–V \subseteq int^{*}(W). Then X–int^{*}(W) \subseteq V. Again U \cap W= ϕ which implies that U \cap int^{*}(W)= ϕ and so U \subseteq X– int ^{*}(W). Then cl^{*}(U) \subseteq X–int^{*}(W) \subseteq V and thus U is the required \mathcal{I}_{Λ_g} -open sets with $A \subseteq U \subseteq cl^*(U) \subseteq V$.

 $(3) \Rightarrow (1)$ Let A and B be two disjoint closed subsets of X. Then A is a closed set and X – B an open set containing A. By hypothesis, there exists an \mathcal{I}_{Λ_g} -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq X - B$. Since U is \mathcal{I}_{Λ_g} -open and A is λ -closed we have $A \subseteq int^*(U)$. Since \mathcal{I} is completely codense, by Lemma 1.7, $\tau^* \subseteq \tau^{\alpha}$ and so $int^*(U)$ and $X - cl^*(U) \in \tau^{\alpha}$. Hence $A \subseteq int^*(U) \subseteq int(cl(int(int^*(U)))) = G$ and $B \subseteq X - cl^*(U) \subseteq$ $int(cl(int(X - cl^*(U)))) = H$. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Definition 2.33. A subset A of a topological space (X, τ) is said to be an $\Lambda_{g\alpha}$ -closed set if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is λ -open. The complement of $\Lambda_{g\alpha}$ -closed is said to be an $\Lambda_{g\alpha}$ -open set.

If $\mathcal{I}=\mathcal{N}$, it is not difficult to see that \mathcal{I}_{Λ_g} -closed sets coincide with $\Lambda_{g\alpha}$ -closed sets and so we have the following Corollary.

Corollary 2.34. Let (X, τ, \mathcal{I}) be an ideal topological space where $\mathcal{I}=\mathcal{N}$. Then the following are equivalent.

1. X is normal,

- 2. For any disjoint closed sets A and B, there exist disjoint $\Lambda_{g\alpha}$ -open sets U and V such that A U and B V,
- 3. For any closed set A and open set V containing A, there exists an $\Lambda_{g\alpha}$ -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.

Definition 2.35. A subset A of an ideal topological space is said to be \mathcal{I} -compact [5] or compact modulo \mathcal{I} [18] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of A, there exists a finite subset Δ_0 of Δ such that $A - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.36. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [[17], Theorem 2.17].

Corollary 2.37. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an \mathcal{I}_{Λ_g} -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every \mathcal{I}_{Λ_q} -closed is \mathcal{I}_{g} -closed.

3 λ - \mathcal{I} -locally Closed Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a λ - \mathcal{I} -locally closed set (briefly, λ - \mathcal{I} -LC) if A=U \cap V where U is λ -open and V is \star -closed.

Definition 3.2. [9] A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a weakly \mathcal{I} -locally closed set (briefly, weakly \mathcal{I} -LC) if A=U∩V where U is open and V is \star -closed.

Proposition 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then the following hold.

- 1. If A is λ -open, then A is λ - \mathcal{I} -LC-set.
- 2. If A is \star -closed, then A is λ - \mathcal{I} -LC-set.
- 3. If A is a weakly \mathcal{I} -LC-set, then A is a λ - \mathcal{I} -LC-set.

The converses of the above Proposition 3.3 need not be true as shown in the following examples.

- **Example 3.4.** 1. In Example 2.6, it is clear that $\{a\}$ is a λ - \mathcal{I} -LC-set but it is not \star -closed.
 - 2. In Example 2.3, it is clear that {b} is a λ - \mathcal{I} -LC-set but it is not λ -open.

Example 3.5. In Example 2.3, it is clear that $\{a, c\}$ is a λ - \mathcal{I} -LC-set but it is not a weakly \mathcal{I} -LC-set.

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is a λ - \mathcal{I} -LC-set and B is a \star -closed set, then A \cap B is a λ - \mathcal{I} -LC-set.

Proof. Let B be *-closed, then $A \cap B = (U \cap V) \cap B = U \cap (V \cap B)$, where $V \cap B$ is *-closed. Hence $A \cap B$ is a λ - \mathcal{I} -LC-set.

Theorem 3.7. A subset of an ideal topological space (X, τ, \mathcal{I}) is \star -closed if and only if it is

- 1. weakly \mathcal{I} -LC and \mathcal{I}_q -closed [7]
- 2. λ - \mathcal{I} -LC and \mathcal{I}_{Λ_q} -closed.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be λ - \mathcal{I} -LC-set and \mathcal{I}_{Λ_g} -closed set. Since A is λ - \mathcal{I} -LC, A=U∩V, where U is λ -open and V is *-closed. So, we have A=U∩V⊆U. Since A is \mathcal{I}_{Λ_g} -closed, A* ⊆ U. Also since A = U∩V⊆V and V is *-closed, we have A* ⊆ V. Consequently, A* ⊆U∩V = A and hence A is *-closed.

Remark 3.8. 1. The notions of weakly \mathcal{I} -LC-set and \mathcal{I}_g -closed set are independent [7].

2. The notions of λ - \mathcal{I} -LC-set and \mathcal{I}_{Λ_q} -closed set are independent.

Example 3.9. In Example 2.6, it is clear that $\{a\}$ is λ - \mathcal{I} -LC-set but not \mathcal{I}_{Λ_q} -closed.

Example 3.10. In Example 2.6, it is clear that $\{a, c\}$ is \mathcal{I}_{Λ_g} -closed set but not λ - \mathcal{I} -LC-set.

Definition 3.11. Let A be a subset of a topological space (X, τ) . Then the λ -kernel of the set A, denoted by λ -ker(A), is the intersection of all λ -open supersets of A.

Definition 3.12. A subset A of a topological space (X, τ) is called Λ_{λ} -set if $A = \lambda$ -ker(A).

Definition 3.13. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called $\lambda^*-\mathcal{I}$ closed if A=L \cap F where L is a Λ_{λ} -set and F is \star -closed.

Lemma 3.14. 1. Every *-closed set is λ^* - \mathcal{I} -closed but not conversely.

- 2. Every Λ_{λ} -set is λ^{\star} - \mathcal{I} -closed but not conversely.
- 3. Every λ - \mathcal{I} -LC-set is λ^* - \mathcal{I} -closed but not conversely.

Example 3.15. In Example 2.6, it is clear that $\{a\}$ is $\lambda^* - \mathcal{I}$ -closed set but not \star -closed.

Example 3.16. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $\mathcal{I} = \{\phi\}$. It is clear that $\{a\}$ is λ^* - \mathcal{I} -closed but not a Λ_{λ} -set.

Example 3.17. In Example 3.16, it is clear that {a} is λ^* - \mathcal{I} -closed but not a λ - \mathcal{I} -LC-set.

Remark 3.18. The following Example supports the concepts of Λ_{λ} -set and \star -closed set are independent. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. It is clear that $\{b, c\}$ is a Λ_{λ} -set but not a \star -closed whereas $\{b\}$ is \star -closed but not a Λ_{λ} -set.

Lemma 3.19. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. A is λ^* - \mathcal{I} -closed.
- 2. A=L \cap cl^{*}(A) where L is a Λ_{λ} -set.
- 3. $A = \lambda ker(A) \cap cl^{\star}(A)$.

Lemma 3.20. A subset $A \subseteq (X, \tau, \mathcal{I})$ is \mathcal{I}_{Λ_q} -closed if and only if $cl^*(A) \subseteq \lambda$ -ker(A).

Proof. Suppose that $A \subseteq X$ is an \mathcal{I}_{Λ_g} -closed set. Suppose $x \notin \lambda$ -ker(A). Then there exists an λ -open set U containing A such that $x \notin U$. Since A is an \mathcal{I}_{Λ_g} -closed set, $A \subseteq U$ and U is λ -open implies that $cl^*(A) \subseteq U$ and so $x \notin cl^*(A)$. Therefore $cl^*(A) \subseteq \lambda$ -ker(A).

Conversely, suppose $cl^*(A) \subseteq \lambda$ -ker(A). If $A \subseteq U$ and U is λ -open, then $cl^*(A) \subseteq \lambda$ -ker(A) $\subseteq U$. Therefore, A is \mathcal{I}_{Λ_q} -closed.

Theorem 3.21. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. A is \star -closed.
- 2. A is \mathcal{I}_{Λ_q} -closed and λ - \mathcal{I} -LC.
- 3. A is \mathcal{I}_{Λ_q} -closed and λ^* - \mathcal{I} -closed.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ Obvious.

 $(3) \Rightarrow (1)$ Since A is \mathcal{I}_{Λ_g} -closed, by Lemma 3.20, $cl^*(A) \subseteq \lambda$ -ker(A). Since A is λ^* - \mathcal{I} -closed, by Lemma 3.19, $A = \lambda$ -ker(A) $\cap cl^*(A) = cl^*(A)$. Hence A is *-closed.

The following two Examples show that the concepts of \mathcal{I}_{Λ_g} -closedness and λ^* - \mathcal{I} -closedness are independent.

Example 3.22. In Example 2.6, it is clear that {b} is \mathcal{I}_{Λ_g} -closed set but not λ^* - \mathcal{I} -closed.

Example 3.23. In Example 2.6, it is clear that $\{a\}$ is λ^* - \mathcal{I} -closed but not \mathcal{I}_{Λ_q} -closed.

4 Decompositions of *-continuity

Definition 4.1. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be *-continuous [7] (resp. \mathcal{I}_g -continuous [7], λ - \mathcal{I} -LC-continuous, λ^* - \mathcal{I} -continuous, \mathcal{I}_{Λ_g} -continuous, weakly \mathcal{I} -LC-continuous [9]) if $f^{-1}(A)$ is *-closed (resp. \mathcal{I}_g -closed, λ - \mathcal{I} -LC-set, λ^* - \mathcal{I} -closed, \mathcal{I}_{Λ_g} -closed, weakly \mathcal{I} -LC-set) in (X, τ, \mathcal{I}) for every closed set A of (Y, σ) .

Theorem 4.2. A function $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is *-continuous if and only if it is

- 1. weakly \mathcal{I} -LC-continuous and \mathcal{I}_g -continuous [7].
- 2. λ - \mathcal{I} -LC-continuous and \mathcal{I}_{Λ_q} -continuous.

Proof. It is an immediate consequence of Theorem 3.7.

Theorem 4.3. For a function $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$, the following are equivalent.

- 1. f is \star -continuous.
- 2. f is \mathcal{I}_{Λ_q} -continuous and λ - \mathcal{I} -LC-continuous.
- 3. f is \mathcal{I}_{Λ_q} -continuous and λ^* - \mathcal{I} -continuous.

Proof. It is an immediate consequence of Theorem 3.21.

References

- [1] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and dual of generalized continuity, Questions Answer Gen. Topology, 15(1997), 3-13.
- [2] M. Caldas, S. Jafari and T. Noiri, On Λ-generalized closed sets in topological spaces, Acta Math. Hungar., 118(4)(2008), 337-343.
- [3] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [4] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. U. M. I., (7) 4-B(1990), 849-861.
- [6] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [7] V. Inthumathi, S. Krishnaprakash and M. Rajamani, Strongly-*I*-Locally closed sets and decompositions of *-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- [8] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [9] A. Keskin, S. Yuksel and T. Noiri, Decompositions of *I*-continuity and continuity, Commun. Fac. Sci. Univ. Ank. Series A, 53(2004), 67-75.
- [10] M. Khan, T. Noiri and M. Hussain, On s*g-closed sets and s*-normal spaces, J. Natur. Sci. Math., 48(1-2)(2008), 31-41.
- [11] K. Kuratowski, Topology, Vol. I, Academic Press (New York, 1966).
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- [14] H. Maki, Generalized A-sets and the associated closure operator, The special issue in commemoration of Prof. Kazusada IKEDA' Retirement, 1. Oct. (1986), 139-146.
- [15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [16] M. Murugalingam, A study of semi generalized topology, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India, (2005).
- [17] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.

- [18] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D Dissertation, Univ. of Cal. at Santa Barbara (1967).
- [19] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [20] K. C. Rao and K. Joseph, Semi-star generalized closed sets, Bull. Pure Appl. Sci., 19(E)(2)(2002), 281-290.
- [21] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [22] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (2002).
- [23] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [24] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1946).
- [25] M. K. R. S. Veerakumar, \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.