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Abstract − The concept of non-compactness measure is extremely beneficial for func-
tional analysis in theories, such as fixed point and operator equations. Apart from these, the
Hausdorff measure of non-compactness also has some applications in the theory of sequence
spaces which is an interesting topic of functional analysis. One of these applications is to ob-
tain necessary and sufficient conditions for the matrix operators between Banach coordinate
(BK) spaces to be compact. In line with these explanations, in this study, the necessary and
sufficient conditions for a matrix operator to be compact from the Motzkin sequence space
c0(M) to the sequence space µ ∈ {ℓ∞, c, c0, ℓ1} are presented by using Hausdorff measure
of non-compactness.

Subject Classification (2020): 11B83, 46A45

1. Introduction

The linear space containing all sequences of real or complex numbers is symbolized by ω. Each linear
subspace Γ of ω is referred to as a sequence space. Some prominent instances of sequence spaces
are c (convergent sequences’ space), c0 (null sequences’ space), ℓ∞ (bounded sequences’ space) and
ℓp (p-summable sequences’ space). The aforementioned spaces are Banach spaces due to the norms
∥u∥ℓ∞

= ∥u∥c = ∥u∥c0
= sups∈N |us| and ∥u∥ℓp

= (
∑

s |us|p)1/p for 1 ≤ p < ∞, where the notion
∑

s

purports the summation
∑∞

s=0 and N = {0, 1, 2, 3, ...}. Moreover, the acronym cs denotes the spaces
of all convergent series. A Banach space wherein each coordinate functional fs, defined by fs(u) = us,
exhibits continuity and is named a Banach coordinate (BK) space. Given spaces Γ, Ψ ⊆ ω, the set
M(Γ ∗ Ψ) is defined as follows:

M(Γ ∗ Ψ) =
{

µ = (µr) ∈ ω : µu = (µrur) ∈ Ψ, for all u ∈ Γ
}

In that case, the beta dual of the set Γ is given by Γβ = M(Γ ∗ cs). For an infinite matrix D = (drs)
possessing entries from the real or complex field, Dr denotes the rth row. The D-transform of u =
(us) ∈ ω, denoted by (Du)r, is described as

∑∞
s=0 drsus such that the series converges for all r ∈ N.
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Consider the sequence spaces Γ and Ψ. A matrix D is called a matrix mapping from Γ to Ψ if, for
all u ∈ Γ, the image Du belongs to Ψ. The class of all such matrices that effectuate a mapping from
Γ to Ψ is denoted by (Γ : Ψ). Additionally, the notation ΓD is employed to represent the set of all
sequences for which the D-transform is contained in Γ, as expressed by:

ΓD = {u ∈ ω : Du ∈ Γ} (1.1)

It is acknowledged that the matrix domain ΓD constitutes a sequence space. Furthermore, if Γ is
identified as a BK-space and D is triangular, then ΓD also forms a BK-space, with norm defined by
∥u∥ΓD

= ∥Du∥Γ, as elucidated in the literature. In light of this principle, a plethora of intriguing
BK-spaces have been the subject of scholarly investigation recently.

Obtaining new normed sequence spaces by using the special matrix and addressing some topics in
these spaces, such as completeness, inclusion relations, Schauder basis, duals, matrix transformations,
compact operators, and core theorems, have been seen as an important field of study since past years
and many valuable researches have been carried out in this subject. When the researchers want to
reach basic and advanced concepts on the subjects mentioned above, the sources to be consulted can
be referred to as [1–10], and monographs [11–13].

2. Preliminaries

Constructing new sequence spaces as domains of special infinite matrices, as the application of summa-
bility theory to sequence spaces, has emerged as an important research area in recent years. With
this in mind, Başarır and Kara [14] first obtained an infinite matrix using the Fibonacci number se-
quence and then constructed new sequence spaces with the help of this matrix and comprehensively
examined their various properties. Inspired by the mentioned work, various researchers later obtained
sequence spaces with similar ideas using number sequences Lucas, Padovan, Pell, Leanardo, Catalan,
Bell, Schröder, Motzkin, and Mersenne. The Schröder matrix S̃ = (S̃rs) [15] is defined by

S̃rs =


SsSr−s

Sr+1 − Sr
, 0 ≤ s ≤ r

0, s > r

Recently, the domains c0(S̃), c(S̃), ℓp(S̃), and ℓ∞(S̃) of S̃ in c0, c, ℓp, and ℓ∞, respectively, are studied
by Dağlı [15, 16]. Quite recently, the construction of sequence spaces using Catalan and Motzkin
numbers has been investigated by Karakaş and Dağlı [17]. They studied ℓp(C̃) and ℓ∞(C̃) where
C̃ = (c̃rs) is described by

c̃rs =


(

r

s

)
Ms

Cr+1
, 0 ≤ s ≤ r

0, s > r

For relevant literature, see [18–28].

2.1. Motzkin Numbers and Associated Sequence Spaces

The first basic information about the Motzkin number sequence, one of the most interesting number
sequences, is obtained from Motzkin’s study [29]. The rth Motzkin number represents the number
of different situations in which n distinct points on a circle can be joined by non-intersecting chords
in mathematics. To point out a detail here, the chords do not need to touch all points on the circle
in each case. The first few terms of the Motzkin number sequence (Mr)r∈N, which has an important
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place in combinatorics, number theory, and geometry, are given as follows:

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, · · ·

The recurrence relations of Mr are given the following way:

Mr = Mr−1 +
r−2∑
s=0

MsMr−s−2 = 2r + 1
r + 1 Mr−1 + 3r − 3

r + 2 Mr−2

Another relation provided by the Motzkin numbers is given below:

Mr+2 − Mr+1 =
r∑

s=0
MsMr−s, for r ≥ 0

The generating function m(u) =
∑∞

r=0 Mrur of the Motzkin numbers satisfies

u2 + [m(u)]2 + (u − 1)m(u) + 1 = 0

and is described by

m(u) = 1 − u −
√

1 − 2u − 3u2

2u2

The expression on Motzkin numbers with the help of integral function is as follows:

Mr = 2
π

∫ π

0
sin2 u (2cosu + 1)r du

They have the asymptotic behavior

Mr ∼ 1
2
√

π

(3
r

) 3
2

3r, r → ∞

Furthermore, it is known that
lim

r→∞
Mr

Mr−1
= 3

In addition to the basic information stated above, readers can benefit from the studies Aigner [30],
Barrucci et al. [31], and Donaghey and Shapiro [32] for more comprehensive content about Motzkin
numbers and related subjects.

The remainder of this subsection will provide information about the study conducted by Erdem et
al. [27]. It is given the Motzkin matrix M = (mrs)r,s∈N constructed with the help of Motzkin numbers
as follows:

mrs :=


MsMr−s

Mr+2 − Mr+1
, 0 ≤ s ≤ r

0, s > r
(2.1)

Furthermore, the Motzkin matrix M is conservative, that is M ∈ (c : c) and it is given the inverse
M−1 = (m−1

rs ) of the Motzkin matrix M as

m−1
rs :=

 (−1)r−s Ms+2 − Ms+1
Mr

πr−s, 0 ≤ s ≤ r

0, s > r
(2.2)

where π0 = 0 and

πr =

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1 M0 0 0 · · · 0
M2 M1 M0 0 · · · 0
M3 M2 M1 M0 · · · 0

...
...

... . . . . . . ...
Mr Mr−1 Mr−2 Mr−3 · · · M1

∣∣∣∣∣∣∣∣∣∣∣∣∣
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for all r ∈ N\{0}. From its definition, it is clear that M is a triangle. Furthermore, M-transform of
u = (us) ∈ ω is expressed with

νr := (Mu)r = 1
Mr+2 − Mr+1

r∑
s=0

MsMr−sus, r ∈ N (2.3)

The Motzkin sequence spaces c(M) and c0(M), which are BK-spaces constructed as the domain of
the Motzkin matrix, are given by

c(M) =
{

u = (us) ∈ ω : lim
r→∞

1
Mr+2 − Mr+1

r∑
s=0

MsMr−sus exists
}

and

c0(M) =
{

u = (us) ∈ ω : lim
r→∞

1
Mr+2 − Mr+1

r∑
s=0

MsMr−sus = 0
}

and in [27], the authors studied some algebraic and topological properties of newly described spaces.

Consider the sets ℵ1 and ℵ2 as

ℵ1 =
{

t = (ts) ∈ ω :
∞∑

r=s

(−1)r−s Ms+2 − Ms+1
Mr

πr−str exists for each s ∈ N
}

ℵ2 =
{

t = (ts) ∈ ω : sup
r∈N

r∑
s=0

∣∣∣∣∣
r∑

i=s

(−1)i−s Ms+2 − Ms+1
Mi

πi−sti

∣∣∣∣∣ < ∞
}

Then, the β-dual of c0(M) is determined as {c0(M)}β = ℵ1 ∩ ℵ2.

In this article, the necessary and sufficient conditions are presented for a matrix operator to be compact
from the Motzkin sequence space c0(M) to the sequence space µ ∈ {ℓ∞, c, c0, ℓ1} by using Hausdorff
measure of non-compactness.

3. Compact Operators on the Motzkin Sequence Space c0(M)

The current section intends to determine the compactness conditions of an operator from c0(M) to
Ψ by using the Hausdorff measure of non-compactness, where Ψ ∈ {c0, c, ℓ∞, ℓ1}. We may start by
reminding the basic concepts and results in this section.

Let UΓ represents the unit sphere of normed space Γ. The acronym B(Γ : Ψ) denotes every bounded
(continuous) linear operators’ family from the Banach space Γ to Banach space Ψ. In that case,
B(Γ : Ψ) is Banach with ∥L∥ = supu∈UΓ ∥Lu∥. We express the notation

∥u∥⋄
Γ = sup

x∈UΓ

∣∣∣∣∣∑
s

usxs

∣∣∣∣∣
for u = (us) ∈ ω, with the assumption of the series is convergent for BK-space Γ ⊃ Ω and u ∈ Γβ,
where Ω represents all finite sequences’ space. Furthermore, a linear operator L : Γ → Ψ is called
as compact operator if the domain of L is all of Γ and the sequence (L(u)) possesses a convergent
subsequence in Ψ for the spaces Γ and Ψ and every bounded sequence u = (us) ∈ Γ.

Consider the metric space Γ. Then, the Hausdorff measure of non-compactness of a bounded set
A ⊆ Γ is symbolized by χ(A) and stated in the following way:

χ(A) = inf
{

ϵ > 0 : A ⊆ ∪n
j=0A(uj , mj), uj ∈ Γ, mj < ϵ, n ∈ N

}
where A(uj , mj) represents the open ball centered at uj with radius mj for all j ∈ {0, 1, 2, . . . , n}.
More descriptive information about the Hausdorff measure of non-compactness can be found in [33].
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The Hausdorff measure of non-compactness for L, symbolized as ∥L∥χ, is characterized as ∥L∥χ =
χ(L(UΓ)). There exists a crucial relationship between the concepts of the Hausdorff measure of non-
compactness and compact operators, specifically, “A linear operator L is compact iff ∥L∥χ = 0”.

For further investigation of sequence spaces and the application of the Hausdorff measure of non-
compactness in characterizing compact operators between BK-spaces, readers are encouraged to con-
sult the literature [33–38].

Lemma 3.1. [33] ℓβ
∞ = cβ = cβ

0 = ℓ1 and ∥u∥⋄
Γ = ∥u∥ℓ1 for u ∈ ℓ1 and Γ ∈ {ℓ∞, c, c0}.

Lemma 3.2. [36] Consider the BK-spaces Γ and Ψ. Then, (Γ : Ψ) ⊆ B(Γ : Ψ). More clearly, for any
D ∈ (Γ : Ψ), there corresponds a linear operator LD ∈ B(Γ : Ψ) such that LD(u) = Du, for all u ∈ Γ.

Lemma 3.3. [33] Let Ω ⊆ Γ be any BK-space and D ∈ (Γ : Ψ). Then,

∥LD∥ = ∥D∥(Γ:Ψ) = sup
r∈N

∥Dr∥⋄
Γ < ∞

Theorem 3.4. [33] For u = (um) ∈ c0, consider that A ⊆ c0 is bounded and the operator λm : c0 → c0

is described with λm(u) = (u0, u1, u2, u3, ..., um, 0, 0, ...). Then, for the identity operator I on c0, we
have

χ(A) = lim
m→∞

(
sup
u∈A

∥(I − λm)(u)∥
)

We can give the following results for x = (xs),y = (ys) ∈ ω connected to each other by the relation

ys =
∞∑

j=s

(−1)j−s Ms+2 − Ms+1
Mj

πj−sxj

for all s ∈ N.

Lemma 3.5. Let us consider the sequence x = (xs) ∈ (c0(M))β. In that case, y = (ys) ∈ ℓ1 and∑
s

xsus =
∑

s

ysνs (3.1)

for all u = (us) ∈ c0(M).

Lemma 3.6. For all x = (xs) ∈ (c0(M))β, the following statement is held.

∥x∥⋄
c0(M) =

∑
s

|ys| < ∞

Proof. It is achieved from the Lemma 3.5 that y = (ys) ∈ ℓ1 and (3.1) holds for x = (xs) ∈ (c0(M))β.
Since, ∥u∥c0(M) = ∥ν∥c0 , we reach that ”u ∈ Uc0(M) if and only if ν ∈ Uc0”. Thus, we can write the
equality

∥x∥⋄
c0(M) = sup

u∈Uc0(M)

∣∣∣∣∣∑
s

xsus

∣∣∣∣∣ = sup
ν∈Uc0

∣∣∣∣∣∑
s

ysνs

∣∣∣∣∣ = ∥y∥⋄
c0

By the aid of the Lemma 3.1, we obtain that

∥x∥⋄
c0(M) = ∥y∥⋄

c0 = ∥y∥ℓ1 =
∑

s

|ys| < ∞

Consider the matrices H = (hrs) and D = (drs) as

hrs =
∞∑

j=s

(−1)j−s Ms+2 − Ms+1
Mj

πj−sdrj
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for all r, s ∈ N whenever the series is convergent.

Lemma 3.7. For Ψ ⊆ ω and infinite matrix D = (drs), if D ∈ (c0(M) : Ψ), in that case H ∈ (c0 : Ψ)
and Du = Hν for all u ∈ c0(M).

Proof. It is obvious by Lemma 3.5.

Lemma 3.8. If D ∈ (c0(M) : Ψ), then it is achieved that

∥LD∥ = ∥D∥(c0(M):Ψ) = sup
r∈N

(∑
s

|hrs|
)

< ∞

where Ψ ∈ {c0, c, ℓ∞}.

Lemma 3.9. [34] Consider the BK-space Γ ⊃ Ω. Each of the following results are well known:

i. Let D ∈ (Γ : c0). Then, ∥LD∥χ = lim supr ∥Dr∥⋄
Γ and LD is compact iff limr ∥Dr∥⋄

Γ = 0.

ii. Let Γ possesses AK property or Γ = ℓ∞ and D ∈ (Γ : c). In that case,
1
2 lim sup

r
∥Dr − σ∥⋄

Γ ≤ ∥LD∥χ ≤ lim sup
r

∥Dr − σ∥⋄
Γ

and LD is compact iff limr ∥Dr − σ∥⋄
Γ = 0 for σ = (σs) and σs = limr drs.

iii. Let D ∈ (Γ : ℓ∞). In that case, 0 ≤ ∥LD∥χ ≤ lim supr ∥Dr∥⋄
Γ and LD is compact if limr ∥Dr∥⋄

Γ = 0.

iv. Let D ∈ (Γ : ℓ1). In that case,

lim
j

 sup
E∈Fj

∥∥∥∥∥∑
r∈E

Dr

∥∥∥∥∥
⋄

Γ

 ≤ ∥LD∥χ ≤ 4. lim
j

 sup
E∈Fj

∥∥∥∥∥∑
r∈E

Dr

∥∥∥∥∥
⋄

Γ


and LD is compact iff limj

(
supE∈Fj

∥
∑

r∈E Dr∥⋄
Γ

)
= 0, where F symbolizes all finite subsets’ family

of N and Fj is the subfamily of F occuring of subsets of N with elements that are greater than j.

Theorem 3.10. i. For D ∈ (c0(M) : ℓ∞),

0 ≤ ∥LD∥χ ≤ lim sup
r

∑
s

|hrs|

holds.

ii. For D ∈ (c0(M) : c),
1
2 lim sup

r

∑
s

|hrs − hs| ≤ ∥LD∥χ ≤ lim sup
r

∑
s

|hrs − hs|

holds where hs = limr→∞ hrs for each s ∈ N.

iii. For D ∈ (c0(M) : c0),
∥LD∥χ = lim sup

r

∑
s

|hrs|

holds.

iv. For D ∈ (c0(M) : ℓ1),

lim
j

∥D∥(j)
(c0(M):ℓ1) ≤ ∥LD∥χ ≤ 4. lim

j
∥D∥(j)

(c0(M):ℓ1)

holds where ∥D∥(j)
(c0(M):ℓ1) = supE∈Fj

(
∑

s |
∑

r∈E hrs|) for all j ∈ N.

Proof. i. Let D ∈ (c0(M) : ℓ∞). From the convergence of
∑∞

s=0 drsus for all r ∈ N, it is observed
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that Dr ∈ (c0(M))β. From Lemma 3.6, we reach that

∥Dr∥⋄
c0(M) = ∥Hr∥⋄

c0 = ∥Hr∥ℓ1 =
(∑

s

|hrs|
)

From Lemma 3.9-iii, it is obtain

0 ≤ ∥LD∥χ ≤ lim sup
r

∑
s

|hrs|

ii. If D ∈ (c0(M) : c), in that case H ∈ (c0 : c) from Lemma 3.7. Thus, from Lemma 3.9-ii, we obtain
that

1
2 lim sup

r
∥Hr − h∥⋄

c0 ≤ ∥LD∥χ ≤ lim sup
r

∥Hr − h∥⋄
c0

where h = (hs) and hs = limr→∞ hrs for all s ∈ N. Hence, from Lemma 3.1, ∥Hr −h∥⋄
c0 = ∥Hr −h∥ℓ1 =∑

s |hrs − hs|, for all r ∈ N.

iii. Consider that D ∈ (c0(M) : c0). From the relation ∥Dr∥⋄
c0(M) = ∥Hr∥⋄

c0 = ∥Hr∥ℓ1 = (
∑

s |hrs|)
for each r ∈ N and from Lemma 3.9-i, we see ∥LD∥χ = lim supr

∑
s |hrs|.

iv. Let D ∈ (c0(M) : ℓ1). By Lemma 3.7, we reach that H ∈ (c0 : ℓ1). It follows from Lemma 3.9 that

lim
j

 sup
E∈Fj

∥∥∥∥∥∑
r∈E

Hr

∥∥∥∥∥
⋄

c0

 ≤ ∥LD∥χ ≤ 4. lim
j

 sup
E∈Fj

∥∥∥∥∥∑
r∈E

Hr

∥∥∥∥∥
⋄

c0


Furthermore, Lemma 3.1 implies that∥∥∥∥∥∑

r∈E

Hr

∥∥∥∥∥
⋄

c0

=
∥∥∥∥∥∑

r∈E

Hr

∥∥∥∥∥
ℓ1

=
(∑

s

∣∣∣∣∣∑
r∈E

hrs

∣∣∣∣∣
)

Thus, using the theorem given above, we can give the following result.

Corollary 3.11. i. For D ∈ (c0(M) : ℓ∞), LD is compact if

lim
r

∑
s

|hrs| = 0

ii. For D ∈ (c0(M) : c), LD is compact iff

lim
r

∑
s

|hrs − hs| = 0

iii. For D ∈ (c0(M) : c0), LD is compact iff

lim
r

∑
s

|hrs| = 0

iv. For D ∈ (c0(M) : ℓ1), LD is compact iff

lim
j

∥D∥(j)
(c0(M):ℓ1) = 0

where ∥D∥(j)
(c0(M):ℓ1) = supE∈Fj

(
∑

s |
∑

r∈E hrs|), for all j ∈ N.

4. Conclusion

Obtaining new normed sequence spaces using special matrices and addressing some intriguing topics
such as completeness, inclusion relations, Schauder basis, α-, β- and γ-duals, matrix transformations,
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compact operators, core theorems and geometric properties in these spaces has been considered an
important field of study in recent years and many valuable researches have been done on this subject.
Furthermore, the idea of using special number sequences to obtain sequence spaces has begun to be
used by authors. In this context, as an application of matrix summability methods to Banach spaces
theory, in this study, it is presented the necessary and sufficient conditions for a matrix operator
to be compact from the Motzkin sequence space c0(M) constructed by the aid of Motzkin number
sequence to the sequence space µ ∈ {ℓ∞, c, c0, ℓ1} by using Hausdorff measure of non-compactness. It
is noted here that the characterization of compact operators on sequence spaces by using Hausdorff’s
measure of non-compactness will constitute the focus of our future research endeavors. In future
work, researchers can investigate the compactness of operators on different sequence spaces, taking
into account those that have not been studied before.
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[8] H. B. Ellidokuzoğlu, S. Demiriz, [ℓp]e.r Euler-Riesz difference sequence spaces, Analysis in Theory
and Applications 37 (4) (2021) 557–571.

[9] M. İlkhan, P. Z. Alp, E. E. Kara, On the spaces of linear operators acting between asymmetric
cone normed spaces, Mediterranean Journal of Mathematics 15 (2018) Article Number 136 12
pages.



Erdem / JNRS / 13(2) (2024) 109-118 117

[10] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisbersicht, Mathe-
matische Zeitschrift 154 (1977) 1–16.
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