

Received 30.07.2015
Year: 2016, Number: 10, Pages: 12-18
Published 05.01.2016

COMMON FIXED POINT THEOREMS IN G-FUZZY METRIC SPACES

Madurai Veeran Jeyaraman ${ }^{1, *}$
Rengasamy Muthuraj ${ }^{2}$
Mangaiyarkarasu Sornavalli ${ }^{3}$
Muthukaruppan Jeyabharathi ${ }^{1}$

jeya.math@gmail.com rmr1973@yahoo.co.in sornavalliv7@gmail.com bharathi050814@gmail.com

${ }^{1}$ PG and Research Department of Mathematics, Raja Doraisingam Govt.Arts College, Sivagangai, India.
${ }^{2} P G$ and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai, India.
${ }^{3}$ Department of Mathematics, Velammal College of Engineering \& Technology, Madurai, India.

Abstract

In this paper, we obtain a unique common fixed point theorem for six weakly compatible mappings in G-fuzzy metric spaces.

Keywords - G-metric Spaces, compatible mappings, G-fuzzy metric spaces

1 Introduction

Mustafa and Sims [3] introduced a G-metric space and obtained some fixed point theorems in it. Some interesting references in G-metric spaces are [2-6,8]. We have generalized the result of Rao et al. [7]. Before giving our main results, we obtain a unique common fixed point theorem for six weakly compatible mappings in G-fuzzy metric spaces.

Definition 1.1 Let X be a nonempty set and let $G \mathrm{X} \times \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ be a function satisfying the following properties
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $0<G(x, x, y)$ for all $x, y \in X$ with $\mathrm{x} \neq \mathrm{y}$,
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ with $y \neq z$,
(G4) $G(\mathrm{x}, \mathrm{y}, z)=G(\mathrm{x}, \mathrm{z}, y)=G(y, z, x)=\cdots$, symmetry in all three variables,
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$.

[^0]Then, the function G is called a generalized metric or a G-metric on X and the pair (X, G) is called a G-metric space.

Definition 1.2 The G-metric space (X,G) is called symmetric if $G(x, x, y)=G(x, y, y)$ for all $x, y \in X$.

Definition 1.3 A 3-tuple (X, G, *) is called a G- fuzzy metric space if X is an arbitrary nonempty set, $*$ is a continuous t-norm, and G is a fuzzy set on $X^{3} \times(0, \infty)$ satisfying the following conditions for each $t, s>0$
(i) $\mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{y}, \mathrm{t})>0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$,
(ii) $G(x, x, y, t) \geq G(x, y, z, t)$ for all $x, y, z \in X$ with $y \neq z$,
(iii) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1$ if and only if $\mathrm{x}=\mathrm{y}=\mathrm{z}$,
(iv) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{G}(\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{t})$, where p is a permutation function,
(v) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s}) \geq \mathrm{G}(\mathrm{a}, \mathrm{y}, \mathrm{z}, \mathrm{t}){ }^{*} \mathrm{G}(\mathrm{x}, \mathrm{a}, \mathrm{a}, \mathrm{s})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a} \in \mathrm{X}$,
(vi) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \cdot)(0, \infty) \rightarrow[0,1]$ is continuous.

Definition 1.4 A G- fuzzy metric space (X,G,*) is said to be symmetric if

$$
G(x, x, y, t)=G(x, y, y, t)
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and for each $\mathrm{t}>0$.
Example 1.5 Let X be a nonempty set and let G be a G- fuzzy metric on X. Denote $a^{*} b=a b$ for all $a, b \in[0,1]$. For each $t>0$,

$$
G(x, y, z, t)=\frac{t}{t+G(x, y, z, t)}
$$

is a G- fuzzy metric on X . Let $(\mathrm{X}, \mathrm{G}, *)$ be a G - fuzzy metric space. For $\mathrm{t}>0,0<\mathrm{r}<1$, and $x \in X$, the set

$$
\mathrm{B}_{\mathrm{G}}(\mathrm{x}, \mathrm{r}, \mathrm{t})=\{\mathrm{y} \in \mathrm{X} \quad \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{t})>1-\mathrm{r}\}
$$

is called an open ball with center x and radius r . A subset A of X is called an open set if for each $\mathrm{x} \in \mathrm{X}$, there exist $\mathrm{t}>0$ and $0<\mathrm{r}<1$ such that $\mathrm{B}_{\mathrm{G}}(\mathrm{x}, \mathrm{r}, \mathrm{t}) \subseteq \mathrm{A}$. A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in $\mathrm{G}-$ fuzzy metric space X is said to be G - convergent to $x \in X$ if $G\left(x_{n}, x_{n}, x, t\right) \rightarrow 1$ as $n \rightarrow \infty$ or each $t>0$. It is called a G- Cauchy sequence if $G\left(x_{n}, x_{n}, x_{m}, t\right) \rightarrow 1$ as $n, m \rightarrow \infty$ for each $t>0$. X is called G- complete if every G- Cauchy sequence in X is G- convergent in X.

Lemma 1.6 Let (X, G,*) be a G- fuzzy metric space. Then, $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ is nondecreasing with respect to t for all $x, y, z \in X$.

Lemma 1.7 Let $(X, G, *)$ be a G- fuzzy metric space. If there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\min \{G(x, y, z, k t), G(u, v, w, k t)\} \geq \min \{G(x, y, z, t), G(u, v, w, t)\} \tag{1}
\end{equation*}
$$

for all $x, y, z, u, v, w \in X$ and $t>0$, then $x=y=z$ and $u=v=w$.

2 Main Result

Let Φ denote the set of all continuous non decreasing functions $\phi[0, \infty) \rightarrow[0, \infty)$ such that $\phi^{\mathrm{n}}(\mathrm{t}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ for all $\mathrm{t}>0$. It is clear that $\phi(\mathrm{t})<\mathrm{t}$ for all $\mathrm{t}>0$ and $\phi(0)=0$.

Theorem 2.1 Let (X, G, *) be a G- fuzzy metric space and $\mathrm{S}, \mathrm{T}, \mathrm{R}, \mathrm{f}, \mathrm{g}, \mathrm{h} \mathrm{X} \rightarrow \mathrm{X}$ be satisfying
(i) $\quad S(X) \subseteq g(X), T(X) \subseteq h(X)$ and $R(X) \subseteq f(X)$,
(ii) One of $f(X), g(X)$ and $h(X)$ is a complete subspace of X,
(iii) The pairs (S, f), (T, g) and (R, h) are weakly compatible, and
(iv) $G(S x, T y, R z, t) \geq \phi\left(\min \left\{\begin{array}{c}G(f x, g y, h z, t) \\ \left.\left.\begin{array}{c}\frac{1}{3}[G(f x, S x, T y, t)+G(g y, T y, R z, t)+G(h z, R z, S x, t)], \\ \frac{1}{4}[G(f x, T y, h z, t)+G(S x, g y, h z, t)+G(f x, g y, R z, t)]\end{array}\right\}\right)\end{array}\right.\right.$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, where $\phi \in \Phi$.
Then either one of the pairs (S, f), (T, g), and (R, h) has a coincidence point or the maps S, T, R, f, g and h have a unique common fixed point in X.

Proof: Choose $\mathrm{x}_{0} \in \mathrm{X}$. By (i), there exist $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \in \mathrm{X}$ such that $\mathrm{Sx}_{0}=\mathrm{gx}_{1}=\mathrm{y}_{0}$, $\mathrm{Tx}_{1}=\mathrm{hx}_{2}=\mathrm{y}_{1}$ and $\mathrm{Rx}_{2}=\mathrm{fx}_{3}=\mathrm{y}_{2}$. Inductively, there exist sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in X such that $y_{3 n}=S x_{3 n}=g x_{3 n+1}, y_{3 n+1}=T x_{3 n+1}=h x_{3 n+2}$ and $y_{3 n+2}=R x_{3 n+2}=f x_{3 n+3}$, where $n=0,1, \ldots$

If $y_{3 n}=y_{3 n+1}$ then $x_{3 n+1}$ is a coincidence point of g and T.
If $y_{3 n+1}=y_{3 n+2}$ then $x_{3 n+2}$ is a coincidence point of h and R.
If $y_{3 n+2}=y_{3 n+3}$ then $x_{3 n+3}$ is a coincidence point of f and S.
Now assume that $y_{n} \neq y_{n+1}$ for all n. Denote $d_{n}=G\left(y_{n}, y_{n+1}, y_{n+2}, t\right)$. Putting $x=x_{3 n}, y=x_{3 n+1}$, $\mathrm{z}=\mathrm{x}_{3 \mathrm{n}+2}$ in (iv), we get

$$
\begin{aligned}
& d_{3 n}=G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}, t\right) \\
& =\mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}}, \mathrm{Tx}_{3 \mathrm{n}+1}, \mathrm{Rx}_{3 \mathrm{n}+2}, \mathrm{t}\right) \\
& \geq \phi\left(\min \left\{\begin{array}{c}
G\left(f_{3 n}, g x_{3 n+1}, h x_{3 n+2}, t\right), \frac{1}{3}\left[G\left(f x_{n}, S x_{3 n}, T x_{3 n+1}, t\right)+\right. \\
\left.G\left(\mathrm{gx}_{3 n+1}, \mathrm{Tx}_{3 n+1}, R x_{3 n+2}, t\right)+G\left(h x_{3 n+2}, R x_{3 n+2}, S x_{3 n}, t\right)\right] \\
\frac{1}{4}\left[G\left(\mathrm{fx}_{3 n}, T x_{3 n+1}, h x_{3 n+2}, t\right)+G\left(S x_{3 n}, \mathrm{gx}_{3 n+1}, h x_{3 n+2}, t\right)\right.
\end{array}\right\}\right)
\end{aligned}
$$

$$
\begin{align*}
& \geq \phi\left(\min \left\{\begin{array}{c}
G\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}, t\right), \frac{1}{3}\left[G\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}, t\right)+\right. \\
\left.G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}, t\right)+G\left(f y_{3 n+1}, y_{3 n+2}, y_{3 n}, t\right)\right] \\
\frac{1}{4}\left[G\left(f y_{3 n-1}, y_{3 n+1}, y_{3 n+1}, t\right)+G\left(y_{3 n}, y_{3 n}, y_{3 n+1}, t\right)\right. \\
\left.+G\left(y_{3 n-1}, y_{3 n}, y_{3 n+2}, t\right)\right]
\end{array}\right\}\right) \\
& \geq \phi\left(\min \left\{\begin{array}{c}
d_{3 n-1}, \frac{1}{3}\left[d_{3 n-1}+d_{3 n}+d_{3 n}\right] \\
\frac{1}{4}\left[d_{3 n-1}+d_{3 n}+\left(d_{3 n-1}+d_{3 n}\right)\right]
\end{array}\right\}\right) \tag{2}
\end{align*}
$$

If $d_{3 n} \leq d_{3 n-1}$ then from (1), we have $d_{3 n} \geq \phi\left(d_{3 n}\right)>d_{3 n}$. It is a contradiction. Hence $\mathrm{d}_{3 \mathrm{n}} \geq \mathrm{d}_{3 \mathrm{n}-1}$. Now from (1), $\mathrm{d}_{3 \mathrm{n}} \geq \phi\left(\mathrm{d}_{3 \mathrm{n}-1}\right)$. Similarly, by putting $\mathrm{x}=\mathrm{x}_{3 \mathrm{n}+3}, \mathrm{y}=\mathrm{x}_{3 \mathrm{n}+1}, \mathrm{z}=\mathrm{x}_{3 \mathrm{n}+2}$ and $x=x_{3 n+3}, y=x_{3 n+4}, z=x_{3 n+2}$ in (iv), we get
$\mathrm{d}_{3 \mathrm{n}+1} \geq \phi\left(\mathrm{d}_{3 \mathrm{n}}\right) \quad$ and
$d_{3 n+2} \geq \phi\left(d_{3 n+1}\right)$
Thus from (1), (2) and (3), we have

$$
\begin{align*}
& \mathrm{G}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}, \mathrm{t}\right) \geq \phi\left(\mathrm{G}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right)\right) \\
& \geq \phi^{2}\left(\mathrm{G}\left(\mathrm{y}_{\mathrm{n}-2}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right)\right) \\
& \cdot \cdot \tag{5}\\
& \geq \\
& \geq \dot{\phi}^{\mathrm{n}}\left(\mathrm{G}\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{t}\right)\right)
\end{align*}
$$

we have $G\left(y_{n}, y_{n}, y_{n+1}, t\right) \geq G\left(y_{n}, y_{n+1}, y_{n+2}, t\right) \geq \phi^{n}\left(G\left(y_{0}, y_{1}, y_{2}, t\right)\right)$. Now for $m>n$, we have

$$
\begin{aligned}
G\left(y_{n}, y_{n}, y_{m}, t\right) & \geq G\left(y_{n}, y_{n}, y_{n+1}, t\right)+G\left(y_{n+1}, y_{n+1}, y_{n+2}, t\right)+\ldots+G\left(y_{m-1}, y_{m-1}, y_{m}, t\right) \\
& \geq \phi^{n}\left(G\left(y_{0}, y_{1}, y_{2}, t\right)\right)+\phi^{n+1}\left(G\left(y_{0}, y_{1}, y_{2}, t\right)\right)+\ldots+\phi^{m-1}\left(G\left(y_{0}, y_{1}, y_{2}, t\right)\right) \\
& \rightarrow 1 \text { as } n \rightarrow \infty,
\end{aligned}
$$

Since $\phi^{n}(t) \rightarrow 1$ as $n \rightarrow \infty$ for all $t>0$. Hence $\left\{y_{n}\right\}$ is G- Cauchy. Suppose $f(X)$ is Gcomplete. Then there exist $p, t \in X$ such that $y_{3 n+2} \rightarrow p=f t$. Since $\left\{y_{n}\right\}$ is G- Cauchy, it follows that $\mathrm{y}_{3 \mathrm{n}} \rightarrow \mathrm{p}$ and $\mathrm{y}_{3 \mathrm{n}+1} \rightarrow \mathrm{p}$ as $\mathrm{n} \rightarrow \infty$.
$\mathrm{G}\left(\mathrm{St}, \mathrm{Tx}_{3 \mathrm{n}+1}, \mathrm{Rx}_{3 \mathrm{n}+2}, \mathrm{t}\right)$

Letting $\mathrm{n} \rightarrow \infty$, we get

$$
\mathrm{G}(\mathrm{Sp}, \mathrm{p}, \mathrm{p}, \mathrm{t}) \geq \phi\left(\min \left\{\begin{array}{c}
1, \frac{1}{3}[\mathrm{G}(\mathrm{p}, \mathrm{St}, \mathrm{p}, \mathrm{t})+1+\mathrm{G}(\mathrm{p}, \mathrm{p}, \mathrm{St}, \mathrm{t})] \\
\left.\frac{1}{4}[1+\mathrm{G}(\mathrm{St}, \mathrm{p}, \mathrm{p}, \mathrm{t})+1)\right]
\end{array}\right\}\right)
$$

$G(S t, p, p, t) \geq \phi(G(S t, p, p, t)$, since ϕ is non decreasing. Hence $S t=p$. Thus $p=f t=S t$. Since the pair (S, f) is weakly compatible, we have $f p=S p$. Putting $x=p, y=x_{3 n+1}, z=x_{3 n+2}$ in (iv), we get

$$
G\left(S p, T x_{3 n+1}, R x_{3 n+2}, t\right)
$$

$$
\geq \phi\left(\min \left\{\begin{array}{c}
G\left(f p, g x_{3 n+1}, h x_{3 n+2}, t\right), \frac{1}{3}\left[G\left(f p, S p, T x_{3 n+1}, t\right)+\right. \\
\left.G\left(g x_{3 n+1}, T x_{3 n+1}, R x_{3 n+2}, t\right)+G\left(h x_{3 n+2}, R x_{3 n+2}, S p, t\right)\right], \\
\frac{1}{4}\left[G\left(f p, T x_{3 n+1}, h x_{3 n+2}, t\right)+G\left(S p, g x_{3 n+1}, h x_{3 n+2}, t\right)\right. \\
\left.+G\left(f p, g x_{3 n+1}, R x_{3 n+2}, t\right)\right]
\end{array}\right\}\right)
$$

Letting $\mathrm{n} \rightarrow \infty$, we have

$$
G(S p, p, p, t) \geq \phi\left(\min \left\{\begin{array}{c}
G(S p, p, p, t), \frac{1}{3}[G(S p, S p, p, t)+0+G(p, p, S p, t)], \\
\frac{1}{4}[G(S p, p, p, t)+G(S p, p, p, t)+G(S p, p, p, t)]
\end{array}\right\}\right)
$$

Since $G(S p, S p, p, t) \geq 2 G(S p, p, p, t)$, we have $G(S p, p, p, t) \geq \phi(G(S p, p, p, t))$. Thus $\mathrm{Sp}=\mathrm{p}$. Hence
$\mathrm{f} p=\mathrm{Sp}=\mathrm{p}$.
Since $\mathrm{p}=\operatorname{Sp} \in \mathrm{g}(\mathrm{X})$, there exists $\mathrm{v} \in \mathrm{X}$ such that $\mathrm{p}=\mathrm{gv}$. Putting $\mathrm{x}=\mathrm{p}, \mathrm{y}=\mathrm{v}, \mathrm{z}=\mathrm{x}_{\mathrm{n}+2}$ in (iv), we get

Letting $\mathrm{n} \rightarrow \infty$, we deduce that

$$
\begin{aligned}
G(p, T v, p, t) & \geq \phi\left(\min \left\{\begin{array}{c}
1, \frac{1}{3}[G(p, p, T v, t)+G(p, T v, p, t)+1], \\
\frac{1}{4}[G(p, T v, p, t)+1+1]
\end{array}\right\}\right) \\
& \geq \phi(G(p, T v, p, t)),
\end{aligned}
$$

since ϕ is non decreasing. Thus $T v=p$, so that $p=T v=g v$. Since the pair (T, g) is weakly compatible, we have $\mathrm{Tp}=\mathrm{gp}$.

Letting $\mathrm{n} \rightarrow \infty$, we have

$$
G(p, T p, p, t) \geq \phi\left(\min \left\{\begin{array}{c}
G(p, T p, p, t), \frac{1}{3}[G(p, p, T p, t)+G(T p, T p, p)+1], \\
\frac{1}{4}[G(p, T p, p, t)+G(p, T p, p, t)+G(p, T p, p, t)]
\end{array}\right\}\right)
$$

Since $G(T p, T p, p, t) \geq 2 G(T p, p, p, t)$, we have, $G(p, T p, p, t) \geq \phi(G(p, T p, p, t))$. Thus $\mathrm{Tp}=\mathrm{p}$. Hence
$\mathrm{gp}=\mathrm{Tp}=\mathrm{p}$.
Since $p=T p \epsilon h(X)$, there exists $w \in X$ such that $p=h w . \quad$ Putting $x=p, y=p, z=w$ in (iv), we get
$G(S p, T p, R w, t) \geq \phi\left(\min \left\{\begin{array}{c}G(f p, g p, h w, t), \frac{1}{3}[G(f p, S p, T p, t)+ \\ G(g p, T p, R w, t)+G(h w, R w, S p, t)], \\ \frac{1}{4}[G(f p, T p, h w, t)+G(S p, g p, h w, t) \\ +G(f p, g p, R w, t)]\end{array}\right\}\right)$
$G(p, p, R w, t) \geq \phi\left(\min \left\{\begin{array}{c}1, \frac{1}{3}[1+G(p, p, R w, t)+G(p, R w, p, t)], \\ \frac{1}{4}[1+1+G(p, p, R w, t)]\end{array}\right\}\right) \geq \phi(G(p, p, R w, t))$,
since ϕ is non decreasing. Thus $R w=p$, so that $p=h w=R w$. Since the pair (R, h) is weakly compatible, we have $R p=h p$. Putting $x=p, y=p, z=p$ in (iv), we get,
$G(p, p, R p, t)=G(S p, T p, R p, t) \geq \phi\left(\min \left\{\begin{array}{c}G(f p, g p, R p, t), \frac{1}{3}[1+ \\ G(p, p . R p, t)+G(R p, R p, p, t)], \\ \frac{1}{4}[G(p, p, R p, t)+G(p, p, R p, t) \\ +G(p, p, R p, t)]\end{array}\right\}\right)$
Since $G(R p, R p, p, t) \geq 2 G(p, p, R p, t)$, we have
$G(p, p, R p, t) \geq \phi(G(p, p, R p, t))$.
Thus $\mathrm{Rp}=\mathrm{p}$, so that $\mathrm{Rp}=\mathrm{hp}=\mathrm{p}$. From (6), (7) and (8), it follows that p is a common fixed point of S, T, R, f, g and h. Uniqueness of common fixed point follows easily from (iv). Similarly, we can prove the theorem when $g(X)$ or $h(X)$ is a complete subspace of X.

Corollary 2.2 Let (X, G, *) be a G -fuzzy metric space and S, T, R, f, g, h, X $\rightarrow \mathrm{X}$ be satisfying
(i) $\quad S(X) \subseteq g(X), T(X)$ and $R(X) \subseteq f(X)$,
(ii) One of $f(X), g(X)$ and $h(X)$ is a complete subspace of X,
(iii) The pairs (S, f), (T, g) and (R, h) ate weakly compatible and
(iv) $\mathrm{G}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{Rz}, \mathrm{t}) \geq \phi(\mathrm{G}(\mathrm{fx}, \mathrm{gy}, \mathrm{hz}, \mathrm{t}))$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, where $\phi \in \Phi$.

Then the maps S, T, R, f, g and h have a unique fixed point in X.
Corollary 2.3 Let(X, G, *) be a complete G - fuzzy metrics space and S, T, R X $\rightarrow \mathrm{X}$ be satisfying $G(S x, T y, R z, t) \geq \phi(G(x, y, z, t))$ for all $x, y, z \in X$, where $\phi \in \Phi$. Then the maps S, T and R have a unique common fixed point, $\mathrm{p} \in \mathrm{X}$ and S, T and R are G-continuous at p .

Proof: There exists $\mathrm{p} \in \mathrm{X}$ such that p is the unique common fixed point of S, T and R as in Theorem 2.1. Let $\left\{y_{n}\right\}$ be any sequence in X which G-converges to p. Then
$\mathrm{G}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{Sp}, \mathrm{Sp}, \mathrm{t}\right)=\mathrm{G}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{Tp}, \mathrm{Rp}, \mathrm{t}\right) \leq \phi\left(\mathrm{G}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{p}, \mathrm{p}, \mathrm{t}\right)\right) \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$.
Hence S is G-continuous at p. Similarly, we can show that T and R are also G-continuous at p .

References

[1] M. Abbas, M. Ali Khan, and S. Radenovic, "Common Coupled fixed point theorems in cone metric spaces for W- compatible mappings", Applied Mathematics and Computation, vol. 217, no.1,pp. 195-202,2010.
[2] R. Chugh, T. Kadian, A. Rani, and B. E. Rhoades, "Property P in G-metric spaces," Fixed Point Theory and applications, vol.2010, Article ID 401684, 12 pages, 2010.
[3] Z. Mustafa and B. Sims, " Fixed point theorems for contractive mappings in complete G-metric spaces," Fixed point Theory and Applications, vol. 2009, Article ID 917175, 10 pages, 2009.
[4] Z. Mustafa and H. Obiedat, " A fixed point theorem of Reich in G-metric spaces, " Cubo A Mathematical Journal, vol. 12, no.1, pp. 83-93, 2010.
[5] Z. Mustafa and H. Obiedat, and F. Awawdeh, " Some fixed point theorem for mapping on complete G-metric spaces," Fixed point Theory and Applications, vol. 2008, Article IF 189870, 12 pages, 2008.
[6] Z. Mustafa , W. Shatanawi, and M. Bataineh, " Existence of fixed point results in Gmetric spaces," International Journal of Mathematics and Mathematical Sciences, vol. 2009, Article ID 283028, 10 Pages, 2009.
[7] K.P.R. Rao, I. Altun, and S. Hima Bindu, " Common Coupled Fixed-Point Theorems in Generalized Fuzzy Metric Spaces" Advances in Fuzzy Systems, volume 2011, Article ID 986748, 6 pages.
[8] W. Shatanawi, Fixed point theory and contractive mappings satisfying Φ-maps in Gmetric spaces," Fixed point Theory and Applications, Vol. 2010, Article ID 181650, 9 pages, 2010.
[9] G. Sun and K. Yang, " Generalized fuzzy metric spaces with properties," Research journal of Applied Sciences, Engineering and Technology, vol.2, no.7, pp.673-678.

[^0]: **Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
 *Corresponding Author.

