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Abstaract − Multiple set is a new mathematical model to represent vagueness together with
multiplicity. Multiple sets are generalization of fuzzy sets, multisets, fuzzy multisets and multi
fuzzy sets. In this paper, a modified version for the definition of multiple sets is given and it is
shown that the revised definition also satisfies all fundamental properties satisfied by the earlier
definition. The notion of αi − cut and strong αi − cut are defined and their properties are studied.
Finally, multiple complement function is defined and some results related to it are obtained.
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1 Introduction

Sets are the fundamental ideas of Mathematics. The development of set theory was
mainly due to a German Mathematician Cantor (1845-1918) and it has become the
language of science. A set is a well defined collection of distinct objects. The objects
that make up a set can be anything: numbers, people, letters of the alphabet, other
sets and so on. In this theory, a sharp, crisp and unambiguous distinction exists
between a member and a nonmember for any well defined set of entities and there is
a very precise and clear boundary to indicate whether an entity belongs to the set
or not.

Fuzzy sets have been introduced by Zadeh [21] in 1965 as an extension of the
classical notion of a set. It was specifically designed to represent uncertainty and
vagueness, mathematically and to provide formalized tools for dealing with the im-
precision intrinsic to many problems. In real world, there exists much fuzzy knowl-
edge like vague, imprecise, uncertain, ambiguous, inexact etc. Since its inception,
the theory of fuzzy sets has advanced in a variety of ways and in many disciplines.
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Applications of this theory can be found in artificial intelligence, computer science,
medicine, control engineering, decision theory, expert systems, logic, management
science, operation research, pattern recognition and robotics.

After this, a lot of new mathematical constructions and theories treating impre-
cision, inexactness, ambiguity and uncertainty have been developed. Some of these
constructions and theories are extensions of fuzzy set theory, while others try to
mathematically model imprecision and uncertainty in a different way. The diversity
of such constructions and corresponding theories includes: L-fuzzy sets by Goguen
[8] in 1967, Multisets by Cerf et al. [4] in 1971, Rough sets by Pawlak [15] in 1982,
Intuitionistic fuzzy sets by Atanassov [1] in 1983, Fuzzy multisets by Yager [20] in
1986, Genuine sets by Demirci [6] in 1999, Soft sets by Molodtsov [14] in 1999, Multi
fuzzy sets by Sebastian and Ramakrisnan [18] in 2011 etc.

The notion of multiset (or bag) is a generalization of the notion of set in which
members are allowed to appear more than once. A set takes no account of multiple
occurrence of any one of its members, so when one think of the set of roots of a
polynomial f(x) or the spectrum of a linear operator, we need multisets. Multiset
theory was introduced by Cerf et al.[4] in 1971. Peterson [16] and Yager [20] made
further contributions to it. The naive concept of multiset was formalised by Blizard
[2] in 1989. Multisets have become an important tool in databases, for instance,
multisets are often used to implement relations in database systems. Multisets also
play an important role in computer science. A complete account of the development
of multiset theory can be seen in [9, 5, 3, 7].

Fuzzy multisets were first discussed by Yager [20] as a generalization of multisets.
In fuzzy multisets an element of X may occur more than once with possibly same
or different membership values. Later, Miyamoto established more results on fuzzy
multiset theory and discussed applications of fuzzy multisets in his papers [10, 12].

The concept of multi fuzzy set was introduced by S. Sebastian and Ramakrishnan
[18] in 2011. Theory of multi fuzzy sets is a generalization of theories of fuzzy sets, L-
fuzzy sets and intuitionistic fuzzy sets. Theory of multi fuzzy sets deals with the multi
level fuzziness and multi dimensional fuzziness. Multi fuzzy set theory is useful to
characterize the problems in the fields of image processing, taste recognition, pattern
recognition, decision making and approximation of vague data. Further study was
carried on by the same author in his paper [17].

Fuzzy sets are useful in dealing with uncertainty of only one kind, that is only
one membership function is possible. Multi fuzzy sets were introduced to handle
more membership functions representing various types of uncertainties. Multisets
handles repetition of elements or quantitative nature of objects. Fuzzy multisets
handles quantitative and qualitative aspects together. All these ideas were developed
independently and proved to be quite useful in their respective contexts. Motivated
by all these concepts, one may think about a unified structure which represents
all these aspects simultanously. As an attempt towards this, multiple sets [19] are
introduced to model imperfect knowledge from which all the above discussed cases
can be derived as particular cases. In multiple sets, multiple occurrences of elements
are permitted in which each occurrence has a finite number of same or different
membership values. That is, in multiple set theory, a multiple set of order (n, k)
gives nk membership grades to each element x in the universal set X.

In this paper, a revised definition of multiple sets is given and it is examined that
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new definition satisfies all the properties satisfied by the old definition. αi− cut and
strong αi − cut are defined and their properties are studied. Then special multiple
sets and strong special multiple sets are defined and representations of multiple sets
in terms of special multiple sets and strong special multiple sets are mentioned as
three Decomposition Theorems. Finally, multiple complement function is defined
and Characterization Theorems of multiple complements are discussed.

2 Preliminary

2.1 Fuzzy Sets

The word ”fuzzy” means ”vagueness”. Fuzzy set is very convenient method for
representing some form of uncertainty or vagueness. Fuzzy set theory permits the
gradual assessment of the membership of elements in a set, described with the aid
of a membership function valued in the real unit interval [0, 1].

Definition 2.1. [21] Let X be a given universal set, which is always a crisp set.
A fuzzy set A on X is characterized by a function A : X → [0, 1] called fuzzy
membership function, which assigns to each object a grade of membership ranging
between zero and one. A fuzzy set A is defined as

A = {(x,A(x)); x ∈ X}
where A(x) is the fuzzy membership value of x in X.

Each fuzzy set is completely and uniquely defined by one particular membership
function. Words like young, tall, good or high are fuzzy.

2.2 Multisets

A multiset is an unordered collection of objects in which elements may occur more
than once. In other words, a multiset is a collection in which objects may appear
more than once and each individual occurrence of an object is called its element. All
duplicates of an object in a multiset are indistinguishable. The objects of a multiset
are the distinguishable or distinct elements of the multiset.

Definition 2.2. [9] Let X be a non empty set, called universe. A multiset M drawn
from X is represented by a count function CM : X → N ∪ {0}, where N is the set
of positive integers. For each x ∈ X, CM(x) indicates the number of occurrences of
the element x in M . Then a multiset M can be expressed as {CM(x)/x; x ∈ X}.

The number of distinct elements in a multiset M (which need not be finite) and
their multiplicities jointly determine its cardinality, denoted by C(M). In other
words, the cardinality of a multiset is the sum of multiplicities of all its elements.
A multiset M is called finite if the number of distinct elements in M and their
multiplicities are both finite, it is infinite otherwise. Thus, a multiset M is infinite if
either the number of elements in M is infinite or the multiplicity of one or more of
its elements is infinite. A multiset corresponds to an ordinary set if the multiplicity
of every element is one.
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Operations on Multisets [9]

Let M1 and M2 be two multisets drawn from X.

1. Submultiset: M1 is a sub multiset of M2, denoted by M1 ⊆ M2, if CM1(x) ≤
CM2(x) for every x ∈ X.

2. Equal: M1 and M2 are equal, denoted by M1 = M2, if M1 ⊆ M2 and M2 ⊆ M1.

3. Union: The union of M1 and M2 is a multiset, denoted by M = M1 ∪ M2,
with the count function CM(x) = max{CM1(x), CM2(x)}, for every x ∈ X.

4. Intersection: The intersection of M1 and M2 is a multiset, denoted by M =
M1 ∩ M2, with the count function CM(x) = min{CM1(x), CM2(x)}, for every
x ∈ X.

2.3 Fuzzy Multiset

In fuzzy multisets an element of X may occur more than once with possibly the same
or different membership values.

Definition 2.3. [13] For x ∈ X, the membership sequence of x is defined as a non
increasing sequence of membership values of x and it is denoted by
(µ1

A(x), µ2
A(x), ..., µk

A(x)), such that µ1
A(x) ≥ µ2

A(x) ≥ ... ≥ µk
A(x), where µA is a

membership function and µj
A, j = 1, 2, ..., k are values(same or different) of mem-

bership function µA . A fuzzy multiset is a collection of all x together with its
membership sequence.

2.4 Multi Fuzzy Sets

Multi fuzzy sets are defined in terms of ordered sequences of membership functions.

Definition 2.4. [18] Let X be a non empty set and let {Li; i ∈ N} be a family of
complete lattices where N is the set of positive integers. A multi fuzzy set A in X is
a set of ordered sequences

A = {(x, µ1(x), µ2(x), ...); x ∈ X}
where µi ∈ LX

i for i ∈ N. The function µA = (µ1, µ2, ...) is called a multi membership
function of multi fuzzy set A.

If the sequences of the membership function have only k terms, k is called di-
mension of A. Let Li = [0, 1] for i = 1, 2, ..., k, then the set of all multi fuzzy sets in
X of dimension k is denoted by MkFS(X)

3 Multiple Sets

Multiple sets are defined in [19]. Definition of multiple sets is modified and it is
investigated that new definition satisfies all the properties satisfied by the old defin-
ition.
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Definition 3.1. Let X be a non-empty crisp set called the universal set. A multiple
set A of order (n, k) over X is an object of the form {(x,A (x)) ; x ∈ X}, where for
each x ∈ X its membership value is an n× k matrix

A (x) =




A1
1 (x) A2

1 (x) · · · Ak
1 (x)

A1
2 (x) A2

2 (x) · · · Ak
2 (x)

· · ·
A1

n (x) A2
n (x) · · · Ak

n (x)




where A1, A2, ..., An are fuzzy membership functions and for each i = 1, 2, ..., n, A1
i (x),

A2
i (x), ..., Ak

i (x) are membership values of the membership function Ai for the ele-
ment x ∈ X, written in decreasing order.

The universal multiple set X of order (n, k) is a multiple set of order (n, k) over
X forwhich the membership matrix for each x ∈ X is an n×k matrix with all entries
one. The empty multiple set Φ of order (n, k) is a multiple set of order (n, k) over X
forwhich the membership matrix for each x ∈ X is an n× k matrix with all entries
zero.

The set of all multiple sets of order (n, k) over X is denoted by MS(n,k)(X). It
is noticed that a multiple set A of order (n, k) over X can be viewed as a function
A : X → M, where M = Mn×k([0, 1]) is the set of all matrices of order n × k
with entries from [0, 1], which maps each x ∈ X to its n × k membership matrix
A(x). It is proved that a multiple set can be viewed as a generalization of fuzzy
sets, multi fuzzy sets, fuzzy multisets and multisets. The standard set operations
namely, subset, intersection, union and complement are defined on multiple sets. It
is proved that multiple sets satisfies the following fundemental properties of the set
operations.

1. Involution: A = A

2. Commutativity: A ∪B = B ∪ A and A ∩B = B ∩ A

3. Associativity: (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C)

4. Distributivity: A∩(B ∪ C) = (A ∩B)∪(A ∩ C) and A∪(B ∩ C) = (A ∪B)∩
(A ∪ C)

5. Idempotence: A ∪ A = A and A ∩ A = A

6. Absorption: A ∪ (A ∩B) = A and A ∩ (A ∪B) = A

7. Absorption by X and Φ: A ∪X = X and A ∩ Φ = Φ

8. Identity: A ∪ Φ = A and A ∩X = A

9. De Morgan’s laws: A ∪B = A ∩B and A ∩B = A ∪B

10. A ⊆ A ∪B and B ⊆ A ∪B

11. A ∩B ⊆ A and A ∩B ⊆ B
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Finally, it is noticed that law of contradiction and law of excluded middle are violated
for multiple sets.

Example 3.2. Suppose X = {x1, x2, x3} is the universal set of students under con-
sideration and there is a panel consisting of three experts evaluating the students
under the criteria of intelligence, extra curricular activities, communication skill and
personality. The membership functions A1, A2, A3 and A4 represents criteria intel-
ligence, extra curricular activities, communication skill and personality respectively.
For each i = 1, 2, 3, 4, membership values A1

i (x), A2
i (x), A3

i (x) of the membership
function Ai for the element x ∈ X are the values given by the three experts, written
in decreasing order. Then the performance of the students can be represented by a
multiple set of order (4,3) as follows:

A = {(x1, A (x1)) , (x2, A (x2)) , (x3, A (x3))}
where A (xi) for i = 1, 2, 3 are 4× 3 matrices given as follows;

A (x1) =




0.7 0.6 0.5
0.6 0.5 0.4
0.7 0.5 0.3
0.9 0.9 0.8




A (x2) =




0.8 0.6 0.6
0.6 0.5 0.4
0.7 0.5 0.4
0.9 0.8 0.7




A (x3) =




0.8 0.7 0.5
0.7 0.6 0.4
0.7 0.4 0.4
0.8 0.8 0.7




Here, for the student x1 the membership values corresponding to intelligence are 0.7,
0.6 and 0.5, corresponding to extra curricular activities are 0.6, 0.5 and 0.4 and so
on.

Notation: Suppose I denotes the closed interval [0, 1] and In denotes the carte-
sian product [0, 1]× [0, 1]× ...× [0, 1] (n− times). A new notation can be introduced
for the purpose of notational simplicity: (αi)

n
1 denotes the n-tuple (α1, α2, ..., αn).

3.1 αi − cut and strong αi − cut

In this section, the concept of αi − cut and strong αi − cut of multiple sets are
introduced. They play a principle role in the relationship between multiple sets and
crisp multisets.

Definition 3.3. Let A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In. An αi − cut of A is a crisp

multiset A[αi] = {CA[αi]
(x)/x; x ∈ X}, where CA[αi]

(x) is the count of x in A[αi], given
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by

CA[αi]
(x) =





0 if A1
i (x) < αi for some i = 1, 2, ..., n.

j if Aj
i (x) ≥ αi for every i = 1, 2, ..., n and

Aj+1
i (x) < αi for some i = 1, 2, ..., n.

k if Ak
i (x) ≥ αi for every i = 1, 2, ..., n.

A strong αi − cut of A is a crisp multiset A[αi]+ = {CA[αi]+
(x)/x; x ∈ X}, where

CA[αi]+
(x) is the count of x in A[αi]+, given by

CA[αi]+
(x) =





0 if A1
i (x) ≤ αi for some i = 1, 2, ..., n.

j if Aj
i (x) > αi for every i = 1, 2, ..., n and

Aj+1
i (x) ≤ αi for some i = 1, 2, ..., n.

k if Ak
i (x) > αi for every i = 1, 2, ..., n.

Example 3.4. Let A be a multiple set of order (4, 3) over the universal set X =
{x, y, z}, given by the membership matrices

A (x) =




0.7 0.6 0.5
0.6 0.5 0.4
0.7 0.5 0.4
0.9 0.8 0.7




A (y) =




0.8 0.7 0.5
0.7 0.6 0.4
0.7 0.6 0.4
0.8 0.8 0.7




A (z) =




0.7 0.5 0.3
0.6 0.6 0.4
0.4 0.3 0.3
0.8 0.7 0.1




For (α1, α2, α3, α4) = (0.5, 0.5, 0.3, 0.4) ∈ I4, the αi− cut and the strong αi− cut are

A[αi] = {2/x, 2/y, 2/z}
A[αi]+ = {1/x, 2/y, 1/z}

3.2 Properties of αi − cut and strong αi − cut

The various properties of αi − cut and strong αi − cut of multiple set are expressed
in terms of theorems.

Theorem 3.5. Let A,B ∈ MS(n,k)(X) and (αi)
n
1 , (βi)

n
1 ∈ In. Then

1. A[αi]+ ⊆ A[αi]

2. If αi ≤ βi for every i = 1, 2, ..., n, then A[βi] ⊆ A[αi] and A[βi]+ ⊆ A[αi]+
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3. (A ∩B)[αi]
= A[αi] ∩B[αi]

4. (A ∪B)[αi]
= A[αi] ∪B[αi]

5. (A ∩B)[αi]+
= A[αi]+ ∩B[αi]+

6. (A ∪B)[αi]+
= A[αi]+ ∪B[αi]+

Proof : Let A,B ∈ MS(n,k)(X).

1. Let (αi)
n
1 ∈ In. To prove A[αi]+ ⊆ A[αi], it is enough to prove CA[αi]+

(x) ≤
CA[αi]

(x) for every x ∈ X. Let x ∈ X. There are three cases;

Case 1: CA[αi]+
(x) = 0. Then CA[αi]+

(x) ≤ CA[αi]
(x) trivially.

Case 2: CA[αi]+
(x) = j. Then Aj

i (x) > αi for every i = 1, 2, ..., n. Thus
CA[αi]

(x) ≥ j and hence CA[αi]+
(x) ≤ CA[αi]

(x).

Case 3: CA[αi]+
(x) = k, then Ak

i (x) > αi for every i = 1, 2, ..., n. Thus
CA[αi]

(x) = k and hence CA[αi]+
(x) = CA[αi]

(x)

These three cases prove that CA[αi]+
(x) ≤ CA[αi]

(x) for every x ∈ X. Therefore
A[αi]+ ⊆ A[αi].

2. Let (αi)
n
1 , (βi)

n
1 ∈ In such that αi ≤ βi for every i = 1, 2, ..., n. To prove

A[βi] ⊆ A[αi], it is enough to prove CA[βi]
(x) ≤ CA[αi]

(x) for every x ∈ X. Let
x ∈ X. There are three cases;

Case 1: CA[αi]
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

A1
i (x) < αi. Since αi ≤ βi for every i = 1, 2, ..., n, we get A1

i (x) < βi for some
i. Thus CA[βi]

(x) = 0 and hence CA[βi]
(x) = CA[αi]

(x).

Case 2: CA[αi]
(x) = j. Then there exist some i ∈ {1, 2, ..., n} such that

Aj+1
i (x) < αi. Since αi ≤ βi for every i = 1, 2, ..., n, we get Aj+1

i < βi for some
i. Thus CA[βi]

(x) ≤ j and hence CA[βi]
(x) ≤ CA[αi]

(x).

Case 3: CA[αi]
(x) = k. Then CA[βi]

(x) ≤ CA[αi]
(x) trivially.

These three cases prove that CA[βi]
(x) ≤ CA[αi]

(x) for every x ∈ X. Therefore
A[βi] ⊆ A[αi]. The proof of A[βi]+ ⊆ A[αi]+ is analogous.

3. Let (αi)
n
1 ∈ In. To prove (A ∩B)[αi]

= A[αi] ∩ B[αi], it is enough to prove
C(A∩B)[αi]

(x) = CA[αi]
∩B[αi]

(x) for every x ∈ X. Let x ∈ X. There are three
cases;

Case 1: C(A∩B)[αi]
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such

that (A ∩ B)1
i < αi. This means that min{A1

i (x), B1
i (x)} < αi for some i.

Then either A1
i (x) < αi or B1

i (x) < αi for some i. This implies that either
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CA[αi]
(x) = 0 or CB[αi]

(x) = 0. Thus min{CA[αi]
(x), CB[αi]

(x)} = 0 and hence
CA[αi]

∩B[αi]
(x) = 0. Therefore C(A∩B)[αi]

(x) = CA[αi]
∩B[αi]

(x).

Case 2: C(A∩B)[αi]
(x) = j. Then there exist some i ∈ {1, 2, ..., n} such that

(A ∩ B)j+1
i (x) < αi. This means that min{Aj+1

i (x), Bj+1
i (x)} < αi for some

i. Then either Aj+1
i (x) < αi or Bj+1

i (x) < αi for some i. This implies that
CA[αi]

(x) ≤ j or CB[αi]
(x) ≤ j. Then min{CA[αi]

(x), CB[αi]
(x)} ≤ j and hence

CA[αi]
∩B[αi]

(x) ≤ j. Therefore C(A∩B)[αi]
(x) ≥ CA[αi]

∩B[αi]
(x).

Also, (A ∩B)j
i (x) ≥ αi for every i = 1, 2, ..., n. This means that

min{Aj
i (x), Bj

i (x)} ≥ αi for every i = 1, 2, ..., n. Then Aj
i (x) ≥ αi and

Bj
i (x) ≥ αi for every i = 1, 2, ..., n. This implies that both CA[αi]

(x) ≥ j and
CB[αi]

(x) ≥ j. Then min{CA[αi]
(x), CB[αi]

(x)} ≥ j and hence CA[αi]
∩B[αi]

(x) ≥
j. Therefore C(A∩B)[αi]

(x) ≤ CA[αi]
∩B[αi]

(x). From two inqualities, we have

C(A∩B)[αi]
(x) = CA[αi]

∩B[αi]
(x).

Case 3: C(A∩B)[αi]
(x) = k. Then (A ∩ B)k

i (x) ≥ αi for every i = 1, 2, ..., n.

This means that min{Ak
i (x), Bk

i (x)} ≥ αi for every i = 1, 2, ..., n. This implies
that both Ak

i (x) ≥ αi and Bk
i (x) ≥ αi for every i = 1, 2, ..., n. Thus both

CA[αi]
(x) = k and CB[αi]

(x) = k. Then min{CA[αi]
(x), CB[αi]

(x)} = k and hence
CA[αi]

∩B[αi]
(x) = k. Therefore C(A∩B)[αi]

(x) = CA[αi]
∩B[αi]

(x).

These three cases prove that C(A∩B)[αi]
(x) = CA[αi]

∩B[αi]
(x) for every x ∈ X.

Therefore (A ∩B)[αi]
= A[αi]∩B[αi]. The proof of (4), (5) and (6) are analogous.

Theorem 3.6. Let At ∈ MS(n,k)(X) for all t ∈ T , where T is an index set and let
(αi)

n
1 ∈ In. Then

1.
⋃
t∈T

(At)[αi]
⊆

( ⋃
t∈T

At

)

[αi]

2.
⋂
t∈T

(At)[αi]
⊇

( ⋂
t∈T

At

)

[αi]

3.
⋃
t∈T

(At)[αi]+
⊇

( ⋃
t∈T

At

)

[αi]+

4.
⋂
t∈T

(At)[αi]+
⊆

( ⋂
t∈T

At

)

[αi]+

Proof : Let At ∈ MS(n,k)(X) for all t ∈ T and let (αi)
n
1 ∈ In.

1. To prove
⋃
t∈T

(At)[αi]
⊆

( ⋃
t∈T

At

)

[αi]

, it is enough to prove C S
t∈T

(At)[αi]
(x) ≤

C(
S

t∈T
At)[αi]

(x) for every x ∈ X. Let x ∈ X. There are three cases;



Journal of New Theory 11 (2016) 29-53 38

Case 1: C(
S

t∈T
At)[αi]

(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that
( ⋃

t∈T

At

)1

i

(x)

< αi. This means that sup
t∈T

{(At)
1
i (x)} < αi for some i. This implies that

(At)
1
i (x) < αi for some i and for every t ∈ T . Thus C(At)[αi]

(x) = 0 for every

t ∈ T . This implies that sup
t∈T

{
C(At)[αi]

(x)
}

= 0 and thus C S
t∈T

(At)[αi]
(x) = 0.

Therefore C S
t∈T

(At)[αi]
(x) = C(

S
t∈T

At)[αi]
(x).

Case 2: C(
S

t∈T
At)[αi]

(x) = j. Then there exist some i ∈ {1, 2, ..., n} such

that

( ⋃
t∈T

At

)j+1

i

(x) < αi. This means that sup
t∈T

{
(At)

j+1
i (x)

}
< αi for some

i. This implies that (At)
j+1
i (x) < αi for some i and for every t ∈ T . Thus

C(At)[αi]
(x) ≤ j for every t ∈ T . This implies that sup

t∈T

{
C(At)[αi]

(x)
}
≤ j and

thus C S
t∈T

(At)[αi]
(x) ≤ j. Therefore C S

t∈T
(At)[αi]

(x) ≤ C(
S

t∈T
At)[αi]

(x).

Case 3: C(
S

t∈T
At)[αi]

(x) = k. Then C S
t∈T

(At)[αi]
(x) ≤ C(

S
t∈T

At)[αi]
(x) trivially.

These three cases prove that C S
t∈T

(At)[αi]
(x) ≤ C(

S
t∈T

At)[αi]
(x) for every x ∈ X.

Therefore,
⋃
t∈T

(At)[αi]
⊆

( ⋃
t∈T

At

)

[αi]

.

2. To prove
⋂
t∈T

(At)[αi]
⊇

( ⋂
t∈T

At

)

[αi]

, it is enough to prove C T
t∈T

(At)[αi]
(x) ≥

C(
T

t∈T
At)[αi]

(x), for every x ∈ X. Let x ∈ X. There are three cases;

Case 1: C(
T

t∈T
At)[αi]

(x) = 0. Then C T
t∈T

(At)[αi]
(x) ≥ C(

T
t∈T

At)[αi]
(x) trivially.

Case 2: C(
T

t∈T
At)[αi]

(x) = j. Then

( ⋂
t∈T

At

)j

i

(x) ≥ αi for every i = 1, 2, ..., n.

This means that inf
t∈T

{
(At)

j
i (x)

} ≥ αi for every i = 1, 2, ..., n. This implies

that (At)
j
i (x) ≥ αi for every i = 1, 2, ..., n and for every t ∈ T . Thus

C(At)[αi]
(x) ≥ j for every t ∈ T . This implies that inf

t∈T

{
C(At)[αi]

}
≥ j and

thus C T
t∈T

(At)[αi]
(x) ≥ j. Therefore C T

t∈T
(At)[αi]

(x) ≥ C(
T

t∈T
At)[αi]

(x).

Case 3: C(
T

t∈T
At)[αi]

(x) = k. Then

( ⋂
t∈T

At

)k

i

(x) ≥ αi for every i = 1, 2, ..., n.

This means that inf
t∈T

{
(At)

k
i (x)

} ≥ αi for every i = 1, 2, ..., n. This implies that

(At)
k
i (x) ≥ αi for every i = 1, 2, ..., n and for every t ∈ T . Thus C(At)[αi]

(x) = k

for every t ∈ T . This implies that inf
t∈T

{
C(At)[αi]

}
= k and thus C T

t∈T
(At)[αi]

(x) =
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k. Therefore C T
t∈T

(At)[αi]
(x) = C(

T
t∈T

At)[αi]
(x).

These three cases prove that C T
t∈T

(At)[αi]
(x) ≥ C(

T
t∈T

At)[αi]
(x) for every x ∈ X.

Therefore,
⋂
t∈T

(At)[αi]
⊇

( ⋂
t∈T

At

)

[αi]

.

The proof of (3) and (4) are analogous.

Theorem 3.7. Let A,B ∈ MS(n,k)(X) and let (αi)
n
1 ∈ In. Then

1. A ⊆ B iff A[αi] ⊆ B[αi]

2. A ⊆ B iff A[αi]+ ⊆ B[αi]+

3. A = B iff A[αi] = B[αi]

4. A = B iff A[αi]+ = B[αi]+

Proof : Let A,B ∈ MS(n,k)(X) and let (α)n ∈ In.

1. Suppose A ⊆ B. Then Aj
i (x) ≤ Bj

i (x) for every i = 1, 2, ..., n, j = 1, 2, ..., k
and x ∈ X. To prove A[αi] ⊆ B[αi], it is enough to prove CA[αi]

(x) ≤ CB[αi]
(x)

for every x ∈ X. Let x ∈ X. There are three cases;

Case 1: CB[αi]
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

B1
i (x) < αi. This implies that A1

i (x) ≤ B1
i (x) < αi for some i. Therefore

CA[αi]
(x) = 0. Thus CA[αi]

(x) = CB[αi]
(x).

Case 2: CB[αi]
(x) = j. Then there exist some i ∈ {1, 2, ..., n} such that

Bj+1
i (x) < αi. This implies that Aj+1

i (x) ≤ Bj+1
i (x) < αi for some i. Therefore

CA[αi]
(x) ≤ j. Thus CA[αi]

(x) ≤ CB[αi]
(x).

Case 3: Suppose CB[αi]
(x) = k. Then CA[αi]

(x) ≤ CB[αi]
(x) trivially.

These three cases prove that CA[αi]
(x) ≤ CB[αi]

(x) for every x ∈ X. Therefore
A[αi] ⊆ B[αi].

Conversely, suppose that A[αi] ⊆ B[αi]. This means that CA[αi]
(x) ≤

CB[αi]
(x) for every x ∈ X. Let x ∈ X and j ∈ {1, 2, ..., k}. Take αi = Aj

i (x) for

i = 1, 2, ..., n. Then Aj
i (x) ≥ αi for every i = 1, 2, ..., n. This implies Bj

i (x) ≥ αi

for every i = 1, 2, ..., n, since CA[αi]
(x) ≤ CB[αi]

(x). That is Bj
i (x) ≥ Aj

i (x) for
every i = 1, 2, ..., n. Therefore A ⊆ B.

2. Suppose A ⊆ B. Then Aj
i (x) ≤ Bj

i (x) for every i = 1, 2, ..., n, j = 1, 2, ..., k and
x ∈ X. To prove A[αi]+ ⊆ B[αi]+ , it is enough to prove CA[αi]+

(x) ≤ CB[αi]+
(x)

for every x ∈ X. Let x ∈ X. There are three cases;

Case 1: CB[αi]+
(x) = 0. Then there exist some i ∈ {1, 2, ...n} such that

B1
i (x) ≤ αi. This implies that A1

i (x) ≤ B1
i (x) ≤ αi for some i. Therefore
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CA[αi]+
(x) = 0. Thus CA[αi]+

(x) = CB[αi]+
(x).

Case 2: CB[αi]+
(x) = j. Then there exist some i ∈ {1, 2, ..., n} such that

Bj+1
i (x) ≤ αi. This implies that Aj+1

i (x) ≤ Bj+1
i (x) ≤ αi for some i. There-

fore CA[αi]+
(x) ≤ j. Thus CA[αi]+

(x) ≤ CB[αi]+
(x).

Case 3: CB[αi]+
(x) = k. Then CA[αi]+

(x) ≤ CB[αi]+
(x) trivially.

These three cases prove that CA[αi]+
(x) ≤ CB[αi]+

(x) for every x ∈ X. Hence
A[αi]+ ⊆ B[αi]+.

Conversely, suppose that A[αi]+ ⊆ B[αi]+. This means that CA[αi]+
(x) ≤

CB[αi]+
(x) for every x ∈ X. Let x ∈ X and j ∈ {1, 2, ..., k}. Take αi =

Aj
i (x) − ε for any ε > 0 and for every i = 1, 2, ..., n. Then Aj

i (x) > αi for
every i = 1, 2, ..., n. This implies that Bj

i (x) > αi for every i = 1, 2, ..., n,
since CA[αi]+

(x) ≤ CB[αi]+
(x). That is Bj

i (x) > Aj
i (x)− ε for any ε > 0 and for

every i = 1, 2, ..., n. This implies that Bj
i (x) ≥ Aj

i (x) for every i = 1, 2, ..., n.
Therefore A ⊆ B.

3. Suppose A = B. Then Aj
i (x) = Bj

i (x) for every i = 1, 2, ..., n, j = 1, 2, ..., k
and x ∈ X. To prove A[αi] = B[αi], it is enough to prove CA[αi]

(x) = CB[αi]
(x)

for every x ∈ X. Let x ∈ X. there are three cases;

Case 1: CB[αi]
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

B1
i (x) < αi. This implies that A1

i (x) = B1
i (x) < αi for some i. Therefore

CA[αi]
(x) = 0. Thus CA[αi]

(x) = CB[αi]
(x).

Case 2: CB[αi]
(x) = j. Then Bj

i (x) ≥ αi for every i = 1, 2, ..., n. This implies

that Aj
i (x) ≥ αi for every i = 1, 2, ..., n. Thus CA[αi]

(x) ≥ j. Also, there exist

some i ∈ {1, 2, ..., n} such that Bj+1
i (x) < αi. This implies that Aj+1

i (x) =
Bj+1

i (x) < αi for some i. Therefore CA[αi]
(x) ≤ j. Thus CA[αi]

(x) = CB[αi]
(x).

Case 3: CB[αi]
(x) = k. Then Bk

i (x) ≥ αi for every i=1,2,...,n. This implies

that Ak
i (x) ≥ αi. Thus CA[αi]

(x) = k and therefore CA[αi]
(x) = CB[αi]

(x).

These three cases prove that CA[αi]
(x) = CB[αi]

(x) for every x ∈ X. Hence
A[αi] = B[αi].

Conversely, suppose that A[αi] = B[αi]. This means that CA[αi]
(x) =

CB[αi]
(x) for every x ∈ X. Let x ∈ X and j ∈ {1, 2, ..., k}. Take αi = Aj

i (x)

for every i = 1, 2, ..., n. Then Aj
i (x) ≥ αi for every i = 1, 2, ..., n. This im-

plies that Bj
i (x) ≥ αi for every i = 1, 2, ..., n, since CA[αi]

(x) = CB[αi]
(x).

That is Bj
i (x) ≥ Aj

i (x) for every i = 1, 2, ..., n. Also, take αi = Bj
i (x) for

every i = 1, 2, ..., n. Then Bj
i (x) ≥ αi for every i = 1, 2, ..., n. This im-

plies Aj
i (x) ≥ αi for every i = 1, 2, ..., n, since CA[αi]

(x) = CB[αi]
(x). That is

Aj
i (x) ≥ Bj

i (x) for every i = 1, 2, ..., n. Therefore Aj
i (x) = Bj

i (x) for every
i = 1, 2, ..., n, j = 1, 2, ..., k and x ∈ X. Thus A = B.
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4. Suppose A = B. Then Aj
i (x) = Bj

i (x) for every i = 1, 2, ..., n, j = 1, 2, ..., k and
x ∈ X. To prove A[αi]+ = B[αi]+, it is enough to prove CA[αi]+

(x) = CB[αi]+
(x)

for every x ∈ X. Let x ∈ X. There are three cases;

Case 1: CB[αi]+
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

B1
i (x) ≤ αi. This implies that A1

i (x) = B1
i (x) ≤ αi for some i. Therefore

CA[αi]+
(x) = 0. Thus CA[αi]+

(x) = CB[αi]+
(x).

Case 2: CB[αi]+
(x) = j. Then Bj

i (x) > αi for every i = 1, 2, ..., n. This implies

that Aj
i (x) > αi for every i = 1, 2, ..., n. Thus CA[αi]+

(x) ≥ j. Also, there exist

some i ∈ {1, 2, .., n} such that Bj+1
i (x) ≤ αi. This implies that Aj+1

i (x) =
Bj+1

i (x) ≤ αi for some i. Therefore CA[αi]+
(x) ≤ j. Thus CA[αi]+

(x) =
CB[αi]+

(x).

Case 3: CB[αi]+
(x) = k. Then Bk

i (x) > αi for every i = 1, 2, ..., n. This implies

that Ak
i (x) > αi for every i = 1, 2, ..., n. Thus CA[αi]+

(x) = k and therefore
CA[αi]+

(x) = CB[αi]+
(x).

These three cases prove that CA[αi]+
(x) = CB[αi]+

(x) for every x ∈ X. Hence
A[αi]+ = B[αi]+.

Conversely, suppose that A[αi]+ = B[αi]+. This means that CA[αi]+
(x) =

CB[αi]+
(x) for every x ∈ X. Let x ∈ X and j ∈ {1, 2, ..., k}. Take αi =

Aj
i (x) − ε for any ε > 0 and for every i = 1, 2, ..., n. Then Aj

i (x) > αi for
every i = 1, 2, ..., n. This implies that Bj

i (x) > αi for every i = 1, 2, ..., n, since
CA[αi]+

(x) = CB[αi]+
(x). That is Bj

i (x) > Aj
i (x)−ε for every i = 1, 2, ..., n. Thus

Bj
i (x) ≥ Aj

i (x) for every i = 1, 2, ..., n. Also, take αi = Bj
i (x)− ε for any ε > 0

and for every i = 1, 2, ..., n. Then Bj
i (x) > αi for every i = 1, 2, ..., n. That

implies Aj
i (x) > αi for every i = 1, 2, ..., n, since CA[αi]+

(x) = CB[αi]+
(x). That

is Aj
i (x) > Bj

i (x) − ε for every i = 1, 2, ..., n. Thus Aj
i (x) ≥ Bj

i (x) for every
i = 1, 2, ..., n. Therefore Aj

i (x) = Bj
i (x) for every i = 1, 2, ..., n, j = 1, 2, ..., k

and x ∈ X. Thus A = B.

Theorem 3.8. For any A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In such that αi 6= 0 for every

i = 1, 2, ..., n, the following property holds:

A[αi] =
⋂

(βi)
n
1∈In

βi<αi,i=1,2,...,n

A[βi] =
⋂

(βi)
n
1∈In

βi<αi,i=1,2,...,n

A[βi]+

Proof : Let A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In such that αi 6= 0 for every i =

1, 2, ..., n. To prove A[αi] =
⋂

(βi)
n
1∈In

βi<αi

A[βi], it is enough to prove CA[αi]
(x) =

C T
(βi)

n
1∈In

βi<αi

A[βi]
(x) for every x ∈ X. We have A[αi] ⊆ A[βi] for any (βi)

n
1 ∈ In such that

βi < αi, for every i = 1, 2, ..., n. This means that CA[αi]
(x) ≤ CA[βi]

(x) for every x ∈
X. This implies that CA[αi]

(x) ≤ inf
(βi)

n
1∈In

βi<αi

{
CA[βi]

(x)
}

and therefore CA[αi]
(x) ≤
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C T
(βi)

n
1∈In

βi<αi

A[βi]
(x).

To prove the reverse inequality, it is enough to prove there exist (βi)
n
1 ∈ In

such that βi < αi for every i = 1, 2, ..., n satisfying CA[βi]
(x) ≤ CA[αi]

(x) for every

x ∈ X. Then inf
(βi)

n
1∈In

βi<αi

{
CA[βi]

(x)
}
≤ CA[βi]

(x) ≤ CA[αi]
(x) for every x ∈ X. Hence

C T
(βi)

n
1∈In

βi<αi

A[βi]
(x) ≤ CA[αi]

(x) for every x ∈ X. From two inequalities, we have

CA[αi]
(x) = C T

(βi)
n
1∈In

βi<αi

A[βi]
(x) for every x ∈ X.

It remains to prove the existence of (βi)
n
1 ∈ In such that βi < αi for every

i = 1, 2, ..., n satisfying CA[βi]
(x) ≤ CA[αi]

(x) for every x ∈ X. Let x ∈ X. There are
three cases;

Case 1: CA[αi]
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

A1
i (x) < αi. For those i′s there exist βi ∈ I such that A1

i (x) < βi < αi and for
other i′s take βi = αi/2. Then CA[βi]

(x) = 0. That is, for (βi)
n
1 we have βi < αi for

every i = 1, 2, ..., n and CA[βi]
(x) = CA[αi]

(x).

Case 2: CA[αi]
(x) = j. Then there exist some i ∈ {1, 2, ..., n} such that

Aj+1
i (x) < αi. For those i′s there exist βi ∈ I such that Aj+1

i (x) < βi < αi and
for other i′s take βi = αi/2. Then CA[βi]

(x) ≤ j. That is, for (βi)
n
1 we have βi < αi

for every i = 1, 2, ..., n and CA[βi]
(x) ≤ CA[αi]

(x).

Case 3: CA[αi]
(x) = k. Take βi = αi/2 for every i = 1, 2, ..., n. Then CA[βi]

(x) ≤
k. That is, for (βi)

n
1 we have βi < αi for every i = 1, 2, ..., n and CA[βi]

(x) ≤ CA[αi]
(x).

These three cases prove that, for every x ∈ X, there exist (βi)
n
1 ∈ In such that

βi < αi for every i = 1, 2, ..., n satisfying CA[βi]
(x) ≤ CA[αi]

(x).
Next, to prove A[αi] =

⋂
(βi)

n
1∈In

βi<αi

A[βi]+, it is enough to prove

CA[αi]
(x) = C T

(βi)
n
1∈In

βi<αi

A[βi]+
(x)

for every x ∈ X. We have A[αi] ⊆ A[βi]+ for any (βi)
n
1 ∈ In such that βi < αi for every

i = 1, 2, ..., n. This means that CA[αi]
(x) ≤ CA[βi]+

(x) for every x ∈ X. This implies

that CA[αi]
(x) ≤ inf

(βi)
n
1∈In

βi<αi

{
CA[βi]+

(x)
}

and therefore CA[αi]
(x) ≤ C T

(βi)
n
1∈In

βi<αi

A[βi]+
(x).

To prove the reverse inequality, it is enough to prove there exist (βi)
n
1 ∈ In

such that βi < αi for every i = 1, 2, ..., n satisfying CA[βi]+
(x) ≤ CA[αi]

(x) for every

x ∈ X. Then inf
(βi)

n
1∈In

βi<αi

{
CA[βi]+

(x)
}
≤ CA[βi]+

(x) ≤ CA[αi]
(x) for every x ∈ X. Hence

C T
(βi)

n
1∈In

βi<αi

A[βi]+
(x) ≤ CA[αi]

(x) for every x ∈ X. From two inequalities, we have
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CA[αi]
(x) = C T

(βi)
n
1∈In

βi<αi

A[βi]+
(x) for every x ∈ X.

It remains to prove the existence of (βi)
n
1 ∈ In such that βi < αi for every

i = 1, 2, ..., n satisfying CA[βi]+
(x) ≤ CA[αi]

(x) for every x ∈ X. Let x ∈ X. There
are three cases;

Case 1: CA[αi]
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

A1
i (x) < αi. For those i′s there exist βi ∈ I such that A1

i (x) < βi < αi and for
other i′s take βi = αi/2. Then CA[βi]+

(x) = 0. That is, for (βi)
n
1 we have βi < αi for

every i = 1, 2, ..., n and CA[βi]+
(x) = CA[αi]

(x).

Case 2: CA[αi]
(x) = j. Then there exist some i ∈ {1, 2, ..., n} such that

Aj+1
i (x) < αi. For those i′s there exist βi ∈ I such that Aj+1

i (x) < βi < αi and
for other i′s take βi = αi/2. Then CA[βi]+

(x) ≤ j. That is, for (βi)
n
1 we have βi < αi

for every i = 1, 2, ..., n and CA[βi]+
(x) ≤ CA[αi]

(x).

Case 3: CA[αi]
(x) = k. Take βi = αi/2 for every i = 1, 2, ..., n. Then CA[βi]+

(x) ≤
k. That is, for (βi)

n
1 we have βi < αi for every i = 1, 2, ..., n and CA[βi]+

(x) ≤ CA[αi]
(x).

These three cases prove that, for every x ∈ X, there exist (βi)
n
1 ∈ In such that

βi < αi for every i = 1, 2, ..., n satisfying CA[βi]+
(x) ≤ CA[αi]

(x).

Theorem 3.9. For any A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In such that αi 6= 1 for every

i = 1, 2, ..., n, the following property holds:

A[αi]+ =
⋃

(βi)
n
1∈In

βi>αi,i=1,2,...,n

A[βi] =
⋃

(βi)
n
1∈In

βi>αi,i=1,2,...,n

A[βi]+

Proof : Let A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In such that αi 6= 1 for every i =

1, 2, ..., n. To prove A[αi]+ =
⋃

(βi)
n
1∈In

βi>αi

A[βi], it is enough to prove CA[αi]+
(x) =

C S
(βi)

n
1∈In

βi>αi

A[βi]
(x) for every x ∈ X. We have A[βi] ⊆ A[αi]+ for any (βi)

n
1 ∈ In such that

βi > αi for every i = 1, 2, ..., n. This means that CA[βi]
(x) ≤ CA[αi]+

(x) for every x ∈
X. This implies that sup

(βi)
n
1∈In

βi>αi

{
CA[βi]

(x)
}
≤ CA[αi]+

(x) and therefore

C S
(βi)

n
1∈In

βi>αi

A[βi]
(x) ≤ CA[αi]+

(x)

To prove the reverse inequality, it is enough to prove there exist (βi)
n
1 ∈ In

such that βi > αi for every i = 1, 2, ..., n satisfying CA[αi]+
(x) ≤ CA[βi]

(x) for every

x ∈ X. Then CA[αi]+
(x) ≤ CA[βi]

(x) ≤ sup
(βi)

n
1∈In

βi>αi

{
CA[βi]

(x)
}

for every x ∈ X. Hence

CA[αi]+
(x) ≤ C S

(βi)
n
1∈In

βi>αi

A[βi]
(x) for every x ∈ X. From two inequalities, we have

CA[αi]+
(x) = C S

(βi)
n
1∈In

βi<αi

A[βi]
(x) for every x ∈ X.
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It remains to prove the existence of (βi)
n
1 ∈ In such that βi > αi for every

i = 1, 2, ..., n satisfying CA[αi]+
(x) ≤ CA[βi]

(x) for every x ∈ X. Let x ∈ X. There
are three cases;

Case 1: CA[αi]+
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

A1
i (x) ≤ αi. Since αi 6= 1 take βi ∈ I such that αi < βi < 1. Then CA[βi]

(x) = 0.
That is, for (βi)

n
1 we have βi > αi for every i = 1, 2, ..., n and CA[αi]+

(x) = CA[βi]
(x)

Case 2: CA[αi]+
(x) = j. Then Aj

i (x) > αi for every i = 1, 2, .., n. Then there

exist βi ∈ I such that Aj
i (x) > βi > αi for every i = 1, 2, .., n . Then CA[βi]

(x) ≥ j.
That is, for (βi)

n
1 we have βi > αi for every i = 1, 2, ..., n and CA[αi]+

(x) ≤ CA[βi]
(x)

Case 3: CA[αi]+
(x) = k. Then Ak

i (x) > αi for every i = 1, 2, ..., n. Then there

exist βi ∈ I such that Aj
i (x) > βi > αi for every i = 1, 2, ..., n. Then CA[βi]

(x) = k.
That is, for (βi)

n
1 we have βi > αi for every i = 1, 2, ..., n and CA[αi]+

(x) = CA[βi]
(x)

These three cases prove that, for every x ∈ X, there exist (βi)
n
1 ∈ In such that

βi > αi for every i = 1, 2, ..., n satisfying CA[αi]+
(x) ≤ CA[βi]

(x).
Next, to prove A[αi]+ =

⋃
(βi)

n
1∈In

βi>αi

A[βi]+, it is enough to prove

CA[αi]+
(x) = C S

(βi)
n
1∈In

βi>αi

A[βi]+
(x)

for every x ∈ X. We have A[βi]+ ⊆ A[αi]+ for any (βi)
n
1 ∈ In such that βi > αi for

every i = 1, 2, ..., n. This means that CA[βi]+
(x) ≤ CA[αi]+

(x)

for every x ∈ X. This implies that sup
(βi)

n
1∈In

βi>αi

{
CA[βi]+

(x)
}
≤ CA[αi]+

(x) and therefore

C S
(βi)

n
1∈In

βi>αi

A[βi]+
(x) ≤ CA[αi]+

(x).

To prove the reverse inequality, it is enough to prove there exist (βi)
n
1 ∈ In such

that βi > αi for every i = 1, 2, ..., n satisfying CA[αi]+
(x) ≤ CA[βi]+

(x) for every

x ∈ X. Then CA[αi]+
(x) ≤ CA[βi]+

(x) ≤ sup
(βi)

n
1∈In

βi>αi

{
CA[βi]+

(x)
}

for every x ∈ X. Hence

CA[αi]+
(x) ≤ C T

(βi)
n
1∈In

βi<αi

A[βi]+
(x) for every x ∈ X. From two inequalities, we have

CA[αi]+
(x) = C S

(βi)
n
1∈In

βi>αi

A[βi]+
(x) for every x ∈ X.

It remains to prove the existence of (βi)
n
1 ∈ In such that βi > αi for every

i = 1, 2, ..., n satisfying CA[αi]+
(x) ≤ CA[βi]+

(x) for every x ∈ X. Let x ∈ X. There
are three cases;

Case 1: CA[αi]+
(x) = 0. Then there exist some i ∈ {1, 2, ..., n} such that

A1
i (x) ≤ αi. Choose βi ∈ I such that αi < βi < 1 and then A1

i (x) ≤ αi < βi

for some i ∈ {1, 2, ..., n}. Then CA[βi]+
(x) = 0. That is, for (βi)

n
1 we have βi > αi for
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every i = 1, 2, ..., n and CA[αi]+
(x) = CA[βi]+

(x).

Case 2: CA[αi]+
(x) = j. Then Aj

i (x) > αi for every i = 1, 2, .., n. Then there

exist βi ∈ I such that Aj
i (x) > βi > αi for every i = 1, 2, .., n. Then CA[βi]+

(x) ≥ j.
That is, for (βi)

n
1 we have βi > αi for every i = 1, 2, ..., n and CA[αi]+

(x) ≤ CA[βi]+
(x).

Case 3: CA[αi]+
(x) = k. Then Ak

i (x) > αi for every i = 1, 2, ..., n. Then there

exist βi ∈ I such that Aj
i (x) > βi > αi for every i = 1, 2, ..., n. Then CA[βi]+

(x) = k.
That is, for (βi)

n
1 we have βi > αi for every i = 1, 2, ..., n and CA[αi]+

(x) = CA[βi]+
(x).

These three cases prove that, for every x ∈ X, there exist (βi)
n
1 ∈ In such that

βi > αi for every i = 1, 2, ..., n satisfying CA[αi]+
(x) ≤ CA[βi]+

(x).

Definition 3.10. The level set of a multiple set A is a crisp set, denoted by Λ (A),
is defined as

Λ (A) =
{
(αi)

n
1 ∈ In; αi = Aj

i (x) , 1 ≤ i ≤ n,

for some x ∈ X and for some j ∈ {1, 2, ..., k}}

3.3 Representations of Multiple Sets

The principal role of αi − cuts and strong αi − cuts in multiple set theory is their
capability to represent corresponding multiple sets. In this section, it is shown that
each multiple set can uniquely be represented by either the family of all its αi− cuts
or the family of all its strong αi − cuts.

Definition 3.11. Let A ∈ MS(n,k)(X), (αi)
n
1 ∈ In and A[αi] =

{
CA[αi]

(x)/x; x ∈ X
}

be the αi − cut of A. Then the special multiple set of A with respect to (αi)
n
1 is a

multiple set S[A; (αi)
n
1 ] over X, with the membership matrix S[A; (αi)

n
1 ](x) in which

the first CA[αi]
(x) columns are ((αi)

n
1 )T and remaining are zero columns. The strong

special multiple set of A with respect to (αi)
n
1 is a multiple set S+[A; (αi)

n
1 ] over X,

with the membership matrix S+[A; (αi)
n
1 ](x) for which the first CA[αi]+

(x) columns

are ((αi)
n
1 )T and remaining are zero columns. ((αi)

n
1 )T denotes the column vector

(αi)
n
1 .

The representation of an arbitrary multiple set in terms of special multiple sets
or in terms of strong special multiple sets is formulated as three basic decomposition
theorems of multiple sets:

Theorem 3.12. (First Decomposition Theorem for Multiple sets)
For every A ∈ MS(n,k)(X), we have

A =
⋃

(αi)n
1∈In

S[A; (αi)
n
1 ]

where S[A; (αi)
n
1 ] is the special multiple set of A with respect to (αi)

n
1 and

⋃
denotes

the standard union.
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Proof : Let A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In. To prove A =

⋃
(αi)n

1∈In

S[A; (αi)
n
1 ],

it is enough to prove Aj
i (x) =

(
⋃

(αi)n
1∈In

S[A; (αi)
n
1 ]

)j

i

(x) for every x ∈ X. Let

x ∈ X, i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k}. Take a = Aj
i (x). Then


 ⋃

(αi)n
1∈In

S[A; (αi)
n
1 ]




j

i

(x) = sup
(αi)n

1∈In

{
(S[A; (αi)

n
1 ])j

i (x)
}

= max

{
sup

αi∈[0,a]

{
(S[A; (αi)

n
1 ])j

i (x)
}

,

sup
αi∈(a,1]

{
(S[A; (αi)

n
1 ])j

i (x)
}}

Since, for every αi ∈ (a, 1], (S[A; (αi)
n
1 ])j

i (x) = 0 and for every αi ∈ [0, a],

(S[A; (αi)
n
1 ])j

i (x) = αi Therefore,


 ⋃

(αi)n
1∈In

S[A; (αi)
n
1 ]




j

i

(x) = a = Aj
i (x)

for every x ∈ X. Therefore,

A =
⋃

(αi)n
1∈In

S[A; (αi)
n
1 ]

Theorem 3.13. (Second Decomposition Theorem for Multiple sets)
For every A ∈ MS(n,k)(X), we have

A =
⋃

(αi)n
1∈In

S+[A; (αi)
n
1 ]

where S+[A; (αi)
n
1 ] is the strong special multiple set of A with respect to (αi)

n
1 and⋃

denotes the standard union.

Proof : Let A ∈ MS(n,k)(X) and (αi)
n
1 ∈ In. We have to prove A =

⋃
(αi)n

1∈In

S+[A; (αi)
n
1 ],

it is enough to prove Aj
i (x) =

(
⋃

(αi)n
1∈In

S+[A; (αi)
n
1 ]

)j

i

(x) for every x ∈ X. For, let

x ∈ X, i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k}. Take a = Aj
i (x). Then


 ⋃

(αi)n
1∈In

S+[A; (αi)
n
1 ]




j

i

(x) = sup
(αi)n

1∈In

{(
S+[A; (αi)

n
1 ]

)j

i
(x)

}

= max

{
sup

αi∈[0,a)

{(
S+[A; (αi)

n
1 ]

)j

i
(x)

}
,

sup
αi∈[a,1]

{(
S+[A; (αi)

n
1 ]

)j

i
(x)

}}



Journal of New Theory 11 (2016) 29-53 47

Since, for every αi ∈ [a, 1], (S+[A; (αi)
n
1 ])

j
i (x) = 0 and for every αi ∈ [0, a),

(S+[A; (αi)
n
1 ])

j
i (x) = αi. Therefore,


 ⋃

(αi)n
1∈In

S+[A; (αi)
n
1 ]




j

i

(x) = a = Aj
i (x)

for every x ∈ X. Therefore,

A =
⋃

(αi)n
1∈In

S+[A; (αi)
n
1 ]

Theorem 3.14. (Third Decomposition Theorem for Multiple sets)
For every A ∈ MS(n,k)(X), we have

A =
⋃

(α)n∈Λ(A)

S[A; (αi)
n
1 ]

where Λ (A) is the level set of A, S[A; (αi)
n
1 ] is the special multiple set of A and

⋃
denotes the standard union.

The proof is analogous to the proof of theorem 3.12.

4 Multiple Complements

Definition 4.1. [11] A fuzzy complement function is a function c : [0, 1] → [0, 1]
satisfying the axioms;
(c1) Boundary conditions: c(0) = 1 and c(1) = 0.
(c2) Monotonicity: For all a, b ∈ [0, 1], if a ≤ b then c(a) ≥ c(b).
A fuzzy complement function is said to be continuous if it satisfies the axiom;
(c3) c is a continuous function.
and is said to be involutive, if it satisfies the axiom;
(c4) c(c(a)) = a for every a ∈ [0, 1].

Definition 4.2. [11] The equilibrium point of a fuzzy complement c is defined as
any value a ∈ [0, 1] for which c(a) = a.

Theorem 4.3. [11] Every fuzzy complement has at most one equilibrium.

Theorem 4.4. [11] Assume that a given fuzzy complement c has an equilibrium ec,
which is unique by Theorem 4.3. Then

a ≤ c(a) if and only if a ≤ ec

a ≥ c(a) if and only if a ≥ ec

Theorem 4.5. [11] If c is continuous fuzzy complement, then c has a unique equi-
librium.

Definition 4.6. [11] Let c be any fuzzy complemet function and a ∈ [0, 1] be any
membership grade, then any real number da ∈ [0, 1] such that

c(da)− da = a− c(a)
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is called a dual point of a with respect to c.

Theorem 4.7. [11] If a fuzzy complement c has an equilibrium ec, then

dec = ec

Theorem 4.8. [11] For each a ∈ [0, 1], da = c(a) if and only if c is involutive.

Theorem 4.9. [11](First Characterization Theorem of Fuzzy Complements)
Let c be a function from [0, 1] to [0, 1]. Then, c is a fuzzy complement(involutive) if
and only if there exists a continuous function g from [0, 1] to R such that g(0) = 0, g
is strictly increasing and

c(a) = g−1(g(1)− g(a))

for all a ∈ [0, 1].

Theorem 4.10. [11](Second Characterization Theorem of Fuzzy Comple-
ments) Let c be a function from [0, 1] to [0, 1]. Then, c is a fuzzy complement if and
only if there exists a continuous function f from [0, 1] to R such that f(1) = 0, f is
strictly decreasing and

c(a) = f−1(f(0)− f(a))

for all a ∈ [0, 1].

Definition 4.11. Let M = Mn×k([0, 1]) be the set of all matrices of order n×k with
entries from [0, 1]. A multiple complement function is a function c : M→ M, where
c is characterized by fuzzy complement functions cij in such a way that A = (aij) in
M is mapped to B = (bij) in M such that bij = cij(aij) for every i = 1, 2, ..., n and
j = 1, 2, ..., k. In this case we represent multiple complement function c as a matrix
(cij).

Remark 4.12. Using multiple complement function we can define complement of
a multiple set as follows: Given a multiple set A in MS(n,k)(X), we obtain the
complement of A, denoted by c(A), by applying function c to matrix A(x) for all
x ∈ X.

Definition 4.13. A multiple complement function c = (cij) is said to be continuous
if cij is continuous and is said to be involutive if cij is involutive for every i = 1, 2, ..., n
and j = 1, 2, ..., k.

Example 4.14. 1. Threshold Type Multiple Complement: Let tij ∈ [0, 1) for
every i = 1, 2, ..., n and j = 1, 2, ..., k. The function c = (cij) given by

cij(a) =

{
1 for a ≤ tij
0 for a > tij

for a ∈ [0, 1] is a multiple complement. The matrix T = (tij) is called the
threshold of c. This function is neither continuous and nor involutive.
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2. The function c = (cij), where cij is defined by cij(a) =
1

2
(1 + cos πa) for every

i = 1, 2, ..., n and j = 1, 2, ..., k, is a multiple complement. This is continuous,
but not involutive.

3. Sugeno Class Multiple Complement: The function c = (cij), where cij is de-

fined by cij(a) =
1− a

1 + λija
, where λij ∈ (−1,∞), is an involutive multiple com-

plement. Clearly, Sugeno class multiple complement is characterized by the
matrix Λ = (λij) and is represented by cΛ. For λij = 0 for every i = 1, 2, ..., n
and j = 1, 2, ..., k, this function becomes the standard multiple complement.

4. Yager Class Multiple Complement: The function c = (cij), where cij is defined
by cij(a) = (1− aωij)1/ωij where ωij ∈ (0,∞), is an involutive multiple comple-
ment. Clearly, Yager class multiple complement is characterized by the matrix
Ω = (ωij) and is represented by cΩ. When ωij = 1, for every i = 1, 2, ..., n and
j = 1, 2, ..., k, this function becomes the standard multiple complement.

Definition 4.15. An equilibrium matrix of a multiple complement function c is
defined as any matrix A in M for which c(A) = A.

Note: If c = (cij), there exists an equilibrium matrix Ec for c if and only if there
exist eij ∈ [0, 1] such that cij(eij) = eij (that is eij is the equilibrium point of cij) for
every i = 1, 2, ..., n and j = 1, 2, ..., k. Then Ec = (eij).

Example 4.16. The equilibrium matrix of the Sugeno class multiple complement
cΛ characterized by the matrix Λ = (λij) is given by EΛ = (eij), where

eij =

{
((1 + λij)

1/2 − 1)/λij for λij 6= 0
1/2 for λij = 0

Theorem 4.17. Every multiple complement has atmost one equilibrium matrix.

Proof. By Theorem 4.3, cij has at most one equilibrium point for every i = 1, 2, ..., n
and j = 1, 2, ..., k. Hence a multiple complement has at most one equilibrium matrix.
Notation: In this context, for A,B ∈M, we say A ≤ B, if aij ≤ bij for i = 1, 2, ..., n
and j = 1, 2, ..., k

Theorem 4.18. Let Ec be the equilibrium matrix of multiple complement function
c. Then

A ≤ c(A) if and only if A ≤ Ec

A ≥ c(A) if and only if A ≥ Ec

Proof. By Theorem 4.4, for every cij, we have

a ≤ cij(a) if and only if a ≤ ecij

a ≥ cij(a) if and only if a ≥ ecij

for i = 1, 2, ..., n and j = 1, 2, ..., k. Hence the theorem.

Theorem 4.19. If c is a continuous multiple complement, then c has a unique
equilibrium matrix.
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Proof. Since cij is continuous, by Theorem 4.5, cij has a unique equilibrium point,
say eij for every i = 1, 2, ..., n and j = 1, 2, ..., k.. Then the matrix Ec = (eij) is the
unique equilibrium matrix of c.

Definition 4.20. Let c be any multiple complement function and A ∈M, then any
matrix DA ∈M such that

c(DA)−DA = A− c(A)

is called a dual matrix of A with respect to c.

Note: If c = (cij), there exists a dual matrix DA for A = (aij) with respect to c
if and only if there exist dij ∈ [0, 1] such that cij(dij)− dij = aij − c(aij) (that is dij

is the dual point of aij with respect to cij) for every i = 1, 2, ..., n and j = 1, 2, ..., k.
Then DA = (dij).

Theorem 4.21. If a multiple complement c has an equilibrium matrix Ec, then

DEc = Ec

Proof. We have Ec = (eij), where eij is the equilibrium point of cij for i = 1, 2, ..., n
and j = 1, 2, ..., k. Then by Theorem 4.7, dij = eij, where dij is the dual point of eij

with respect to cij for i = 1, 2, ..., n and j = 1, 2, ..., k. Thus

DEc = (dij) = (eij) = Ec

Theorem 4.22. For each A ∈M, DA = c(A) if and only if c is involutive.

Proof. We have, for each complement function cij, by Theorem 4.8, daij
= cij(aij)

if and only if cij is involutive, for every i = 1, 2, ..., n and j = 1, 2, ...k. Hence the
theorem.

Theorem 4.23. (First Characterization Theorem of Multiple Complements)
Let c be a function from M to M, where c is characterized by functions cij for
i = 1, 2, ..., n and j = 1, 2, ...k in such a way that A = (aij) in M is mapped to
B = (bij) in M such that bij = cij(aij) for every i = 1, 2, ..., n and j = 1, 2, ..., k.
Then c is a multiple complement(involutive) if and only if there exists a func-
tion G : M → Mn×k(R) where G is characterized by continuous functions gij for
i = 1, 2, ..., n and j = 1, 2, ...k in such a way that A = (aij) in M is mapped to
B = (bij) in Mn×k(R) such that bij = gij(aij), gij(0) = 0, gij is strictly increasing
and cij(a) = g−1

ij (gij(1)− gij(a)) for every a ∈ [0, 1], i = 1, 2, ..., n and j = 1, 2, ..., k.
In this case we represent function G as a matrix (gij).

Proof. For every i = 1, 2, ..., n and j = 1, 2, ..., k, by Theorem 4.9, cij is a fuzzy
complement(involutive) if and only if there exists a continuous function gij from
[0, 1] to R such that gij(0) = 0, gij is strictly increasing and

cij(a) = g−1
ij (gij(1)− gij(a))

for all a ∈ [0, 1]. Hence the theorem.
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Remark 4.24. Functions G, defined in the Theorem 4.23, are usually called increas-
ing generators. Each function G that qualifies as an increasing generator determines
a multiple complement.
For standard multiple complement, the increasing generator is G = (gij), where gij

is defined as gij(a) = a for evrey a ∈ [0, 1].
For Sugeno class of multiple complements, the increasing generators are G = (gij),

where gij is defined as gij(a) =
1

λij

ln(1 + λija) for every a ∈ [0, 1] and for λij > −1.

For Yager class of multiple complements, the increasing generators are G = (gij),
where gij is defined as gij(a) = aωij for every a ∈ [0, 1] and for ωij > 0.

Theorem 4.25. (Second Characterization Theorem of Multiple Comple-
ments) Let c be a function from M to M, where c is characterized by functions cij

for i = 1, 2, ..., n and j = 1, 2, ...k in such a way that A = (aij) in M is mapped to
B = (bij) inM such that bij = cij(aij) for every i = 1, 2, ..., n and j = 1, 2, ..., k. Then
c is a multiple complement if and only if there exists a function F : M → Mn×k(R)
where F is characterized by continuous functions fij for i = 1, 2, ..., n and j = 1, 2, ...k
in such a way that A = (aij) in M is mapped to B = (bij) in Mn×k(R) such that
bij = fij(aij), fij(1) = 0, fij is strictly decreasing and cij(aij) = f−1

ij (fij(0) − fij(a))
for every a ∈ [0, 1], i=1,2,...,n and j=1,2,...,k. In this case we represent function F
as a matrix (fij).

Proof. For every i = 1, 2, ..., n and j = 1, 2, ..., k, by Theorem 4.9, cij is a fuzzy
complement if and only if there exists a continuous function fij from [0, 1] to R such
that fij(1) = 0, fij is strictly decreasing and

cij(a) = f−1
ij (fij(0)− fij(a))

for all a ∈ [0, 1]. Hence the theorem.

Remark 4.26. Functions F defined in the Theorem 4.24 are usually called de-
creasing generators. Each function F that qualifies as an decreasing generator also
determines a multiple complement.
For standard multiple complement, the decreasing generator is F = (fij), where fij

is defined as fij(a) = −ka + k for every a ∈ [0, 1], where k > 0.
For Yager class of multiple complements, the decreasing generators are F = (fij),
where fij is defined as fij(a) = 1− aωij for every a ∈ [0, 1] and for ωij > 0.

5 Conclusion

In this paper, a modified definition of multiple sets is given and it is shown that
the revised definition also satisfies all fundamental properties satisfied by the earlier
definition. Then, the ideas of αi − cut and strong αi − cut and representation of
multiple set by using αi − cut and strong αi − cut are proposed . Then, the concept
of multiple complement is introduced as an extension of fuzzy complement and its
properties are discussed.

Aggregation operations on fuzzy sets are operations by which several fuzzy sets
are combined in a desirable way to produce a single fuzzy set. So one can think
about aggregation operations on multiple sets, which yields a single multiple set



Journal of New Theory 11 (2016) 29-53 52

by combining two or more multiple sets. Fuzzy numbers are special type of fuzzy
sets, which play an important role in many applications, including fuzzy control,
decision making, approximate reasoning, optimization and statistics with imprecise
probabilities. So in future work, it is possible to think multiple number as a special
type of multiple set.

Acknowledgement

The first author acknowledge the financial assistance given by Ministry of Human Re-
source Development, Government of India and the National Institute of Technology
Calicut throughout the preparation of this paper.

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, VII ITKRs Session, Sofia (Deposed in
Central Science-Technical Library of Bulgarian Academy of Science, 169784)(in
Bulgarian)(1983).

[2] W. D. Blizard, Multiset theory, Notre Dame Journal of formal logic 30 (1988)
36-66.

[3] J. Casasnovas, G. Mayor, Discrete t-norms and operations on extended multi-
sets,Fuzzy sets and Systems 159 (2008) 1165-1177.

[4] V. Cerf, E. Fernandez, K. Gostelow, S. Volausky, Formal control and low proper-
ties of a model of computation, report eng 7178, Computer Science Department,
University of California, Los Angeles, CA 81 (1971).

[5] K. Chakrabarty, R. Biswas, S. Nanda, On yager’s theory of bags and fuzzy bags,
Computers and Artificial Intelligence 18 (1999) 1-17.

[6] M. Demirci, Genuine sets,Fuzzy sets and systems 105 (1999) 377-384.

[7] K. P. Girish, S. J. John, Relations and functions in multiset context, Information
Sciences 179 (2009) 758-768 .

[8] J. A. Goguen, L-fuzzy sets, Journal of mathematical analysis and applications
18 (1967) 145-174.

[9] S. P. Jena, S. K. Ghosh, B. K. Tripathy, On the theory of bags and lists, Infor-
mation Sciences 132 (2001) 241-254.

[10] K. Kim, S. Miyamoto, Application of fuzzy multisets to fuzzy database sys-
tems,in: Fuzzy Systems Symposium, 1996. Soft Computing in Intelligent Sys-
tems and Information Processing., Proceedings of the 1996 Asian, IEEE (1996
) 115-120.

[11] G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic, Prentice Hall New Jersey 4
(1995) .



Journal of New Theory 11 (2016) 29-53 53

[12] S. Miyamoto, Fuzzy multisets with infinite collections of memberships, in: Proc.
of the 7th International Fuzzy Systems Association World Congress (IFSA
97)(1997)25-30.

[13] S. Miyamoto, Fuzzy multisets and their generalizations, in: Multiset Processing,
Springer (2001) 225-235.

[14] D. Molodtsov, Soft set theory first results, Computers and Mathematics with
Applications 37 (1999) 19-31.

[15] Z. Pawlak, Rough sets, International Journal of Computer and Information Sci-
ences 11 (1982) 341-356.

[16] J. L. Peterson, Computation sequence sets, Journal of Computer and System
Sciences 13 (1976) 1-24.

[17] S. Sebastian, T. V. Ramakrishnan, Multi-fuzzy sets, in: International Mathe-
matical Forum 5 (2010) 2471-2476.

[18] S. Sebastian, T. V. Ramakrishnan, Multi-fuzzy sets: an extension of fuzzy sets,
Fuzzy Information and Engineering 3 (2011) 35-43.

[19] V. Shijina, S. J. John, A. S. Thomas, Multiple sets,Journal of New Results in
Science 13 (2015) 18-27.

[20] R. R. Yager, On the theory of bags, International Journal Of General System 13
(1986) 23-37.

[21] L. A. Zadeh, Fuzzy sets, Fuzzy sets, Information and control 8 (1965) 338-353..


