http://www.newtheory.org

ISSN: 2149-1402

Received: 25.06.2015 Published: 06.05.2016 Year: 2016, Number: 13, Pages: 49-58 Original Article^{**}

\mathcal{I}^*_{*q} -CLOSED SETS

Ochanathevar Ravi^{1,*} <siingam@yahoo.com> Vellingiri Rajendran² <mathsraj05@yahoo.co.in> Kasthuri Chattiar Indirani³ <indirani009@ymail.com>

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India. ²Department of Mathematics, KSG College, Coimbatore, Tamilnadu, India. ³Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India.

Abstaract — In this paper, we introduce the notion of \mathcal{I}^*_{*g} -closed sets and prove that this class of sets is stronger than the class of $gs^*_{\mathcal{I}}$ -closed sets as well as the class of \mathcal{I}_g -closed sets. Characterizations and properties of \mathcal{I}^*_{*g} -closed sets and \mathcal{I}^*_{*g} -open sets are given. A characterization of normal spaces is given in terms of \mathcal{I}^*_{*g} -open sets.

Keywords - *g-closed set, \mathcal{I}^*_{*q} -closed set, $gs^*_{\mathcal{I}}$ -closed set, weakly \mathcal{I}_{rg} -closed set

1 Introduction and Preliminaries

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(i) $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$ [12].

Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [12] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I}\}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[11], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ is defined by cl^{*}(A)=A \cup A^{*}(\mathcal{I},τ) [22]. When there is no chance for confusion, we will simply write A^{*} for A^{*}(\mathcal{I},τ) and τ^* for $\tau^*(\mathcal{I},\tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space or an ideal topological space. N is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal space (X, τ, \mathcal{I}) is \star -closed [11] (resp. \star -dense in itself [9]) if A^{*} \subseteq A (resp. A \subseteq A^{*}). A subset A

^{**} Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).

^{*} Corresponding Author.

of an ideal space (X, τ, \mathcal{I}) is \mathcal{I}_g -closed [2, 16] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) .

A subset A of a space (X, τ) is an α -open [19] (resp. regular open [21], semi-open [13], preopen [15]) set if $A \subseteq int(cl(int(A)))$ (resp. $A = int(cl(A)), A \subseteq cl(int(A)), A \subseteq int(cl(A)))$. The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$. A subset A of a space (X, τ) is said to be g-closed [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A subset A of a space (X, τ) is said to be g-closed [23] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. A subset A of a space (X, τ) is said to be \hat{g} -closed [23] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. A subset A of a space (X, τ) is said to be \hat{g} -open [23] if its complement is \hat{g} -closed. A subset A of a topological space (X, τ) is said to be *g-closed [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X. The complement of *g-closed set is said to be *g-open. The intersection of all *g-closed sets of X containing a subset A of X is denoted by *gcl(A). An ideal \mathcal{I} is said to be codense [3] or τ -boundary [18] if $\tau \cap \mathcal{I} = \{\emptyset\}$. \mathcal{I} is said to be completely codense [3] if PO(X) $\cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X, τ) . Every completely codense ideal is codense but not the converse [3].

The following Lemmas will be useful in the sequel.

Lemma 1.1. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [[20], Theorem 5].

Lemma 1.2. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [[20], Theorem 3].

Lemma 1.3. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [[20], Theorem 6].

Result 1.4. If (X, τ) is a topological space, then every closed set is *g-closed but not conversely [10].

Lemma 1.5. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set [[16], Corollary 2.2].

Lemma 1.6. Every g-closed set is \mathcal{I}_q -closed but not conversely [[2], Theorem 2.1].

Definition 1.7. A subset G of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I}_g -closed [2] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is open in (X, τ, \mathcal{I}) .
- 2. \mathcal{I}_{rq} -closed [17] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is regular open in (X, τ, \mathcal{I}) .
- 3. pre_{τ}^* -open [4] if $G \subseteq int^*(cl(G))$.
- 4. $pre_{\mathcal{I}}^*$ -closed [4] if $X \setminus G$ is $pre_{\mathcal{I}}^*$ -open.
- 5. \mathcal{I} -R closed [1] if $G = cl^*(int(G))$.
- 6. *-closed [11] if $G = cl^*(G)$ or $G^* \subseteq G$.

Remark 1.8. [5] In any ideal topological space, every \mathcal{I} -R closed set is *-closed but not conversely.

Definition 1.9. [5] Let (X, τ, \mathcal{I}) be an ideal topological space. A subset G of X is said to be a weakly \mathcal{I}_{rg} -closed set if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a regular open set in X.

Definition 1.10. [5] Let (X, τ, \mathcal{I}) be an ideal topological space. A subset G of X is said to be a weakly \mathcal{I}_{rq} -open set if $X \setminus G$ is a weakly \mathcal{I}_{rq} -closed set.

Remark 1.11. [5] Let (X, τ, \mathcal{I}) be an ideal topological space. The following diagram holds for a subset $G \subseteq X$:

 $\begin{array}{cccc} \mathcal{I}_{g}\text{-}closed & \longrightarrow & \mathcal{I}_{rg}\text{-}closed & \longrightarrow & weakly \, \mathcal{I}_{rg}\text{-}closed \\ & \uparrow & & \uparrow \\ \mathcal{I}\text{-}R\text{-}closed & & pre_{\mathcal{I}}^{*}\text{-}closed \end{array}$

These implications are not reversible.

Definition 1.12. [7, 8] A subset K of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. semi*- \mathcal{I} -open if $K \subseteq cl(int^*(K))$,
- 2. semi*-*I*-closed if its complement is semi*-*I*-open.

Definition 1.13. [7] The semi^{*}- \mathcal{I} -closure of a subset K of an ideal topological space (X, τ, \mathcal{I}) , denoted by $s^*_{\mathcal{I}} cl(K)$, is defined by the intersection of all semi^{*}- \mathcal{I} -closed sets of X containing K.

Theorem 1.14. [7] For a subset K of an ideal topological space (X, τ, \mathcal{I}) , $s_{\mathcal{I}}^* cl(K) = K \cup int(cl^*(K))$.

Definition 1.15. [6] Let (X, τ, \mathcal{I}) be an ideal topological space and $K \subseteq X$. K is called

- 1. generalized semi^{*}- \mathcal{I} -closed ($gs_{\mathcal{I}}^*$ -closed) in (X, τ, \mathcal{I}) if $s_{\mathcal{I}}^*cl(K) \subseteq O$ whenever $K \subseteq O$ and O is an open set in (X, τ, \mathcal{I}) .
- 2. generalized semi^{*}- \mathcal{I} -open ($gs_{\mathcal{I}}^*$ -open) in (X, τ, \mathcal{I}) if $X \setminus K$ is a $gs_{\mathcal{I}}^*$ -closed set in (X, τ, \mathcal{I}).

2 \mathcal{I}^*_{*a} -closed Sets

Definition 2.1. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}^*_{*g} -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is *g-open.

Definition 2.2. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}^*_{*g} -open if X-A is \mathcal{I}^*_{*g} -closed.

Theorem 2.3. If (X, τ, \mathcal{I}) is any ideal space, then every \mathcal{I}^*_{*g} -closed set is \mathcal{I}_g -closed but not conversely.

Proof. It follows from the fact that every open set is *g-open.

Example 2.4. If $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$, then $\{b\}$ is \mathcal{I}_g -closed set but not \mathcal{I}^*_{*g} -closed set.

The following Theorem gives characterizations of \mathcal{I}^*_{*q} -closed sets.

Theorem 2.5. If (X, τ, \mathcal{I}) is any ideal space and $A \subseteq X$, then the following are equivalent.

- (a) A is \mathcal{I}^*_{*q} -closed.
- (b) $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X.
- (c) For all $x \in cl^*(A)$, $*gcl(\{x\}) \cap A \neq \emptyset$.
- (d) $cl^*(A) A$ contains no nonempty *g-closed set.
- (e) A^*-A contains no nonempty *g-closed set.

Proof. (a) \Rightarrow (b) If A is \mathcal{I}_{*g}^* -closed, then $A^* \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X and so $cl^*(A) = A \cup A^* \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X. This proves (b).

(b) \Rightarrow (c) Suppose $x \in cl^*(A)$. If $*gcl(\{x\}) \cap A = \emptyset$, then $A \subseteq X - *gcl(\{x\})$. By (b), $cl^*(A) \subseteq X - *gcl(\{x\})$, a contradiction, since $x \in cl^*(A)$.

(c) \Rightarrow (d) Suppose $F \subseteq cl^*(A) - A$, F is *g-closed and $x \in F$. Since $F \subseteq X - A$, then $A \subseteq X - F$, * $gcl(\{x\}) \cap A = \emptyset$. Since $x \in cl^*(A)$ by (c), * $gcl(\{x\}) \cap A \neq \emptyset$. Therefore $cl^*(A) - A$ contains no nonempty *g-closed set.

(d) ⇒ (e) Since $cl^*(A) - A = (A \cup A^*) - A = (A \cup A^*) \cap A^c = (A \cap A^c) \cup (A^* \cap A^c) = A^* \cap A^c = A^* - A$, therefore $A^* - A$ contains no nonempty *g-closed set.

(e) \Rightarrow (a) Let $A \subseteq U$ where U is *g-open set. Therefore $X-U \subseteq X-A$ and so $A^* \cap (X-U) \subseteq A^* \cap (X-A) = A^*-A$. Therefore $A^* \cap (X-U) \subseteq A^*-A$. Since A^* is always closed set, so $A^* \cap (X-U)$ is a *g-closed set contained in A^*-A . Therefore $A^* \cap (X-U) = \emptyset$ and hence $A^* \subseteq U$. Therefore A is \mathcal{I}^*_{*g} -closed.

Theorem 2.6. Every \star -closed set is \mathcal{I}^*_{*q} -closed but not conversely.

Proof. Let A be a \star -closed, then A^{*} \subseteq A. Let A \subseteq U where U is *g-open. Hence A^{*} \subseteq U whenever A \subseteq U and U is *g-open. Therefore A is \mathcal{I}_{*g}^* -closed. \Box

Example 2.7. If $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$, then $\{a, b\}$ is \mathcal{I}^*_{*q} -closed set but not \star -closed set.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal space. For every $A \in \mathcal{I}$, A is \mathcal{I}^*_{*q} -closed.

Proof. Let $A \subseteq U$ where U is *g-open set. Since $A^* = \emptyset$ for every $A \in \mathcal{I}$, then $cl^*(A) = A \cup A^* = A \subseteq U$. Therefore, by Theorem 2.5, A is \mathcal{I}^*_{*g} -closed.

Theorem 2.9. If (X, τ, \mathcal{I}) is an ideal space, then A^* is always \mathcal{I}^*_{*g} -closed for every subset A of X.

Proof. Let $A^* \subseteq U$ where U is *g-open. Since $(A^*)^* \subseteq A^*$ [11], we have $(A^*)^* \subseteq U$ whenever $A^* \subseteq U$ and U is *g-open. Hence A^* is \mathcal{I}^*_{*q} -closed.

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal space. Then every \mathcal{I}^*_{*g} -closed, *g-open set is \star -closed set.

Proof. Since A is \mathcal{I}^*_{*g} -closed and *g-open, then $A^* \subseteq A$ whenever $A \subseteq A$ and A is *g-open. Hence A is \star -closed.

Corollary 2.11. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and A is an \mathcal{I}^*_{*g} -closed set, then A is \star -closed set.

Corollary 2.12. Let (X, τ, \mathcal{I}) be an ideal space and A be an \mathcal{I}^*_{*g} -closed set. Then the following are equivalent.

a) A is a \star -closed set.

b) $cl^*(A) - A$ is a *g-closed set.

c) A^*-A is a *g-closed set.

Proof. (a) \Rightarrow (b) If A is \star -closed, then $A^* \subseteq A$ and so $cl^*(A) - A = (A \cup A^*) - A = \emptyset$. Hence $cl^*(A) - A$ is *g-closed set.

(b) \Rightarrow (c) Since cl^{*}(A)-A=A^{*}-A and so A^{*}-A is *g-closed set.

(c) \Rightarrow (a) If A^{*}-A is a *g-closed set, since A is \mathcal{I}_{*g}^* -closed set, by Theorem 2.5, $A^*-A = \emptyset$ and so A is *-closed.

Definition 2.13. A subset A of a topological space (X, τ) is said to be $*g^*$ -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X.

Theorem 2.14. Every closed set is $*g^*$ -closed but not conversely.

Example 2.15. In Example 2.7, $\{a, b\}$ is $*g^*$ -closed set but not closed set.

Theorem 2.16. Every $*g^*$ -closed set is g-closed but not conversely.

Proof. It follows from the fact that every open set is *g-open.

Example 2.17. In Example 2.4, $\{a\}$ is g-closed set but not $*g^*$ -closed.

Theorem 2.18. Let (X, τ, \mathcal{I}) be an ideal space. Then every $*g^*$ -closed set is an \mathcal{I}^*_{*g} -closed set but not conversely.

Proof. Let A be a $*g^*$ -closed set. Then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open. We have $cl^*(A) \subseteq cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open. Hence A is \mathcal{I}^*_{*g} -closed.

Example 2.19. In Example 2.4, $\{a\}$ is \mathcal{I}^*_{*q} -closed set but not $*g^*$ -closed.

Theorem 2.20. If (X, τ, \mathcal{I}) is an ideal space and A is a \star -dense in itself, \mathcal{I}^*_{*g} -closed subset of X, then A is $*g^*$ -closed.

Proof. Suppose A is a ***-dense in itself, \mathcal{I}_{*g}^* -closed subset of X. Let A ⊆ U where U is *g-open. Then by Theorem 2.5 (b), cl*(A) ⊆ U whenever A ⊆ U and U is *g-open. Since A is ***-dense in itself, by Lemma 1.1, cl(A)=cl*(A). Therefore cl(A) ⊆ U whenever A ⊆ U and U is *g-open. Hence A is *g*-closed. □

Corollary 2.21. If (X, τ, \mathcal{I}) is any ideal space where $\mathcal{I} = \{\emptyset\}$, then A is \mathcal{I}^*_{*g} -closed if and only if A is $*g^*$ -closed.

Proof. From the fact that for $\mathcal{I} = \{\emptyset\}$, $A^* = cl(A) \supseteq A$. Therefore A is \star -dense in itself. Since A is \mathcal{I}^*_{*g} -closed, by Theorem 2.20, A is $*g^*$ -closed. Conversely, by Theorem 2.18, every $*g^*$ -closed set is \mathcal{I}^*_{*g} -closed set.

Corollary 2.22. If (X, τ, \mathcal{I}) is any ideal space where \mathcal{I} is codense and A is a semi-open, \mathcal{I}^*_{*q} -closed subset of X, then A is $*g^*$ -closed.

Proof. By Lemma 1.2, A is \star -dense in itself. By Theorem 2.20, A is $*g^*$ -closed.

Example 2.23. If $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$, then $\{a\}$ is \mathcal{I}^*_{*a} -closed set but not g-closed.

Example 2.24. In Example 2.4, $\{b\}$ is g-closed set but not \mathcal{I}^*_{*g} -closed.

Remark 2.25. By Example 2.23 and Example 2.24, g-closed sets and \mathcal{I}^*_{*g} -closed sets are independent.

Example 2.26. In Example 2.4, $\{a\}$ is \star -closed set but not $*g^*$ -closed.

Example 2.27. In Example 2.7, $\{a, b\}$ is $*g^*$ -closed set but not \star -closed.

Remark 2.28. By Example 2.26 and Example 2.27, $*g^*$ -closed sets and \star -closed sets are independent.

Remark 2.29. We have the following implications for the subsets stated above.

Theorem 2.30. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then A is \mathcal{I}^*_{*g} -closed if and only if A=F-N where F is \star -closed and N contains no nonempty *g-closed set.

Proof. If A is \mathcal{I}_{*g}^* -closed, then by Theorem 2.5 (e), N=A*-A contains no nonempty *g-closed set. If F=cl*(A), then F is \star -closed such that F-N=(A $\cup A^*$)-(A*-A)=(A $\cup A^*$) $\cap (A^* \cap A^c)^c = (A \cup A^*) \cap ((A^*)^c \cup A) = (A \cup A^*) \cap (A \cup (A^*)^c) = A \cup (A^* \cap (A^*)^c) = A$.

Conversely, suppose A=F-N where F is \star -closed and N contains no nonempty *gclosed set. Let U be a *g-open set such that $A \subseteq U$. Then $F-N \subseteq U$ and $F \cap (X-U)$ $\subseteq N$. Now $A \subseteq F$ and $F^* \subseteq F$ then $A^* \subseteq F^*$ and so $A^* \cap (X-U) \subseteq F^* \cap (X-U)$ $\subseteq F \cap (X-U) \subseteq N$. By hypothesis, since $A^* \cap (X-U)$ is *g-closed, $A^* \cap (X-U)=\emptyset$ and so $A^* \subseteq U$. Hence A is \mathcal{I}^*_{*q} -closed. \Box

Theorem 2.31. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is \star -dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^*=B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.32. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is \mathcal{I}^*_{*q} -closed, then B is \mathcal{I}^*_{*q} -closed.

Proof. Since A is \mathcal{I}_{*g}^* -closed, then by Theorem 2.5 (d), $cl^*(A)-A$ contains no nonempty *g-closed set. Since $cl^*(B)-B \subseteq cl^*(A)-A$ and so $cl^*(B)-B$ contains no nonempty *g-closed set. Hence B is \mathcal{I}_{*g}^* -closed.

Corollary 2.33. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is \mathcal{I}^*_{*q} -closed, then A and B are $*g^*$ -closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^* \Rightarrow A \subseteq B \subseteq A^* \subseteq cl^*(A)$ and A is \mathcal{I}^*_{*g} -closed. By the above Theorem, B is \mathcal{I}^*_{*g} -closed. Since $A \subseteq B \subseteq A^*$, then $A^*=B^*$ and so A and B are *-dense in itself. By Theorem 2.20, A and B are *g*-closed.

The following Theorem gives a characterization of \mathcal{I}_{*q}^* -open sets.

Theorem 2.34. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then A is \mathcal{I}^*_{*g} -open if and only if $F \subseteq int^*(A)$ whenever F is *g-closed and $F \subseteq A$.

Proof. Suppose A is \mathcal{I}_{*g}^* -open. If F is *g-closed and $F \subseteq A$, then $X-A \subseteq X-F$ and so $cl^*(X-A) \subseteq X-F$ by Theorem 2.5 (b). Therefore $F \subseteq X-cl^*(X-A)=int^*(A)$. Hence $F \subseteq int^*(A)$.

Conversely, suppose the condition holds. Let U be a *g-open set such that $X-A \subseteq U$. Then $X-U \subseteq A$ and so $X-U \subseteq int^*(A)$. Therefore $cl^*(X-A) \subseteq U$. By Theorem 2.5 (b), X-A is \mathcal{I}^*_{*q} -closed. Hence A is \mathcal{I}^*_{*q} -open.

Corollary 2.35. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If A is \mathcal{I}^*_{*g} -open, then $F \subseteq int^*(A)$ whenever F is closed and $F \subseteq A$.

Theorem 2.36. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If A is \mathcal{I}^*_{*g} -open and $int^*(A) \subseteq B \subseteq A$, then B is \mathcal{I}^*_{*g} -open.

Proof. Since A is \mathcal{I}^*_{*g} -open, then X-A is \mathcal{I}^*_{*g} -closed. By Theorem 2.5 (d), $cl^*(X-A)-(X-A)$ contains no nonempty *g-closed set. Since $int^*(A) \subseteq int^*(B)$ which implies that $cl^*(X-B) \subseteq cl^*(X-A)$ and so $cl^*(X-B)-(X-B) \subseteq cl^*(X-A)-(X-A)$. Hence B is \mathcal{I}^*_{*g} -open.

The following Theorem gives a characterization of \mathcal{I}^*_{*g} -closed sets in terms of \mathcal{I}^*_{*g} -open sets.

Theorem 2.37. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then the following are equivalent.

- (a) A is \mathcal{I}^*_{*g} -closed.
- (b) $A \cup (X A^*)$ is \mathcal{I}^*_{*g} -closed.
- (c) $A^* A$ is \mathcal{I}^*_{*g} -open.

Proof. (a) ⇒ (b) Suppose A is \mathcal{I}_{*g}^* -closed. If U is any *g-open set such that A \cup (X-A*) ⊆ U, then X-U ⊆ X-(A \cup (X-A*))=X \cap (A \cup (A*)^c)^c=A* \cap A^c=A*-A. Since A is \mathcal{I}_{*g}^* -closed, by Theorem 2.5 (e), it follows that X-U=Ø and so X=U. Now A \cup (X-A*) ⊆ X and so (A \cup (X-A*))* ⊆ X* ⊆ X=U. Hence A \cup (X-A*) is \mathcal{I}_{*g}^* -closed.

(b) \Rightarrow (a) Suppose A \cup (X-A^{*}) is \mathcal{I}_{*g}^* -closed. If F is any *g-closed set such that F \subseteq A^{*}-A, then F \subseteq A^{*} and F $\not\subseteq$ A. Hence X-A^{*} \subseteq X-F and A \subseteq X-F. Therefore

 $A \cup (X-A^*) \subseteq A \cup (X-F) = X-F$ and X-F is *g-open. Since $(A \cup (X-A^*))^* \subseteq X-F \Rightarrow A^* \cup (X-A^*)^* \subseteq X-F$ and so $A^* \subseteq X-F \Rightarrow F \subseteq X-A^*$. Since $F \subseteq A^*$, it follows that $F=\emptyset$. Hence A is \mathcal{I}^*_{*q} -closed.

(b) \Leftrightarrow (c) Since X-(A*-A)=X \cap (A* \cap A^c)^c=X \cap ((A*)^c \cup A)=(X \cap (A*)^c) \cup (X \cap A)=A \cup (X-A*), it is obvious.

Theorem 2.38. Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is \mathcal{I}^*_{*g} -closed if and only if every *g-open set is \star -closed.

Proof. Suppose every subset of X is \mathcal{I}_{*g}^* -closed. If $U \subseteq X$ is *g-open, then U is \mathcal{I}_{*g}^* -closed and so $U^* \subseteq U$. Hence U is *-closed. Conversely, suppose that every *g-open set is *-closed. If U is *g-open set such that $A \subseteq U \subseteq X$, then $A^* \subseteq U^* \subseteq U$ and so A is \mathcal{I}_{*g}^* -closed.

The following Theorem gives a characterization of normal spaces in terms of \mathcal{I}_{*q}^* -open sets.

Theorem 2.39. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

(a) X is normal.

(b) For any disjoint closed sets A and B, there exist disjoint \mathcal{I}^*_{*g} -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(c) For any closed set A and open set V containing A, there exists an \mathcal{I}^*_{*g} -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof. (a) \Rightarrow (b) The proof follows from the fact that every open set is \mathcal{I}_{*q}^* -open.

(b) \Rightarrow (c) Suppose A is closed and V is an open set containing A. Since A and X–V are disjoint closed sets, there exist disjoint \mathcal{I}_{*g}^* -open sets U and W such that $A \subseteq U$ and X–V \subseteq W. Since X–V is *g-closed and W is \mathcal{I}_{*g}^* -open, X–V \subseteq int*(W) and so X–int*(W) \subseteq V. Again U \cap W= $\emptyset \Rightarrow$ U \cap int*(W)= \emptyset and so U \subseteq X–int*(W) \Rightarrow cl*(U) \subseteq X–int*(W) \subseteq V. U is the required \mathcal{I}_{*g}^* -open sets with $A \subseteq U \subseteq$ cl*(U) \subseteq V.

(c) \Rightarrow (a) Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an \mathcal{I}^*_{*g} -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq X-B$. Since U is \mathcal{I}^*_{*g} -open, $A \subseteq int^*(U)$. Since \mathcal{I} is completely codense, by Lemma 1.3, $\tau^* \subseteq \tau^{\alpha}$ and so $int^*(U)$ and $X-cl^*(U)$ are in τ^{α} . Hence $A \subseteq int^*(U) \subseteq int(cl(int(int^*(U))))=G$ and $B \subseteq X-cl^*(U) \subseteq int(cl(int(X-cl^*(U))))=H$. G and H are the required disjoint open sets containing A and B respectively, which proves (a).

Remark 2.40. Let (X, τ, \mathcal{I}) be an ideal topological space. By Remark 1.11, Definition 1.15, Definition 2.1 and Theorem 2.3, the following diagram holds for a subset $G \subseteq X$:

$$\begin{array}{ccc} \mathrm{gs}_{\mathcal{I}}^{*}\text{-closed} & & & \\ & \uparrow & \\ \mathcal{I}_{*g}^{*}\text{-closed} & \longrightarrow & \mathcal{I}_{g}\text{-closed} & \longrightarrow & \mathrm{Weakly} \ \mathcal{I}_{rg}\text{-closed} & \end{array}$$

These implications are not reversible.

Example 2.41. If $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{d\}\},$ then $\{a\}$ is $gs_{\mathcal{I}}^*$ -closed set but not \mathcal{I}_{*q}^* -closed.

References

- [1] A. Acikgoz and S. Yuksel, Some new sets and decompositions of $A_{\mathcal{I}-R^-}$ continuity, α - \mathcal{I} -continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79-89.
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- [4] E. Ekici, On $\mathcal{AC}_{\mathcal{I}}$ -sets, $\mathcal{BC}_{\mathcal{I}}$ -sets, $\beta_{\mathcal{I}}^*$ -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [5] E. Ekici and S. Ozen, A generalized class of τ^* in ideal spaces, Filomat, 27(4)(2013), 529-535.
- [6] E. Ekici, On R- \mathcal{I} -open sets and $\mathcal{A}_{\mathcal{I}}^*$ -sets in ideal topological spaces, Annals of the University of Craiova, Mathematics and Computer Science Series, 38(2)(2011), 26-31.
- [7] E. Ekici and T. Noiri, *-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al I. Cuza Din Iasi - Serie Noua-Matematica, Tomul LVIII, 1(2012), 121-129.
- [8] E. Ekici and T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122(1-2)(2009), 81-90.
- [9] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [10] S. Jafari, T. Noiri, N. Rajesh and M. L. Thivagar, Another generalization of closed sets, Kochi J. Math., 3(2008), 25-38.
- [11] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [12] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [14] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo., (2)19(1970),89-96.
- [15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [16] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(2008), 365-371.
- [17] M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces, Acta Math Hungar., 125(2008), 327-340.

- [18] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, University of California, Santa Barbara, California, 1967.
- [19] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [20] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar., 108(3)(2005), 197-205.
- [21] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [22] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [23] M. K. R. S. Veera Kumar, On ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.