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Abstaract − In this paper, we introduce the notion of I∗∗g-closed sets and prove that this class of
sets is stronger than the class of gs∗I-closed sets as well as the class of Ig-closed sets. Characteri-
zations and properties of I∗∗g-closed sets and I∗∗g-open sets are given. A characterization of normal
spaces is given in terms of I∗∗g-open sets.
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1 Introduction and Preliminaries

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X
which satisfies

(i) A ∈ I and B ⊆ A ⇒ B ∈ I and
(ii) A ∈ I and B ∈ I ⇒ A ∪ B ∈ I [12].

Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all
subsets of X, a set operator (.)∗ : ℘(X) → ℘(X), called a local function [12] of A
with respect to τ and I is defined as follows: for A ⊆ X, A∗(I,τ)={x ∈ X | U ∩ A /∈
I for every U ∈ τ(x)} where τ(x)={U ∈ τ | x ∈ U}. We will make use of the basic
facts about the local functions [[11], Theorem 2.3] without mentioning it explicitly.
A Kuratowski closure operator cl∗(.) for a topology τ ∗(I,τ), called the ?-topology,
finer than τ is defined by cl∗(A)=A ∪ A∗(I,τ) [22]. When there is no chance for
confusion, we will simply write A∗ for A∗(I,τ) and τ ∗ for τ ∗(I,τ). If I is an ideal
on X, then (X, τ , I) is called an ideal space or an ideal topological space. N is the
ideal of all nowhere dense subsets in (X, τ). A subset A of an ideal space (X, τ , I)
is ?-closed [11] (resp. ?-dense in itself [9]) if A∗ ⊆ A (resp. A ⊆ A∗). A subset A
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of an ideal space (X, τ , I) is Ig-closed [2, 16] if A∗ ⊆ U whenever A ⊆ U and U is
open.

By a space, we always mean a topological space (X, τ) with no separation prop-
erties assumed. If A ⊆ X, cl(A) and int(A) will, respectively, denote the closure and
interior of A in (X, τ) and int∗(A) will denote the interior of A in (X, τ ∗).

A subset A of a space (X, τ) is an α-open [19] (resp. regular open [21], semi-open
[13], preopen [15]) set if A ⊆ int(cl(int(A))) (resp. A = int(cl(A)), A ⊆ cl(int(A)), A
⊆ int(cl(A))). The family of all α-open sets in (X, τ), denoted by τα, is a topology
on X finer than τ . The closure of A in (X, τα) is denoted by clα(A). A subset A
of a space (X, τ) is said to be g-closed [14] if cl(A) ⊆ U whenever A ⊆ U and U is
open. A subset A of a space (X, τ) is said to be ĝ-closed [23] if cl(A) ⊆ U whenever
A ⊆ U and U is semi-open. A subset A of a space (X, τ) is said to be ĝ-open [23]
if its complement is ĝ-closed. A subset A of a topological space (X, τ) is said to be
*g-closed [10] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in X. The complement
of *g-closed set is said to be *g-open. The intersection of all *g-closed sets of X
containing a subset A of X is denoted by ∗gcl(A). An ideal I is said to be codense
[3] or τ -boundary [18] if τ ∩ I={∅}. I is said to be completely codense [3] if PO(X)
∩ I={∅}, where PO(X) is the family of all preopen sets in (X, τ). Every completely
codense ideal is codense but not the converse [3].

The following Lemmas will be useful in the sequel.

Lemma 1.1. Let (X, τ , I) be an ideal space and A ⊆ X. If A ⊆ A∗, then
A∗ =cl(A∗) =cl(A)=cl∗(A) [[20], Theorem 5].

Lemma 1.2. Let (X, τ , I) be an ideal space. Then I is codense if and only if
G ⊆ G∗ for every semi-open set G in X [[20], Theorem 3].

Lemma 1.3. Let (X, τ , I) be an ideal space. If I is completely codense, then
τ ∗ ⊆ τα [[20], Theorem 6].

Result 1.4. If (X, τ) is a topological space, then every closed set is *g-closed but
not conversely [10].

Lemma 1.5. If (X, τ , I) is a TI ideal space and A is an Ig-closed set, then A is a
?-closed set [[16], Corollary 2.2].

Lemma 1.6. Every g-closed set is Ig-closed but not conversely [[2], Theorem 2.1].

Definition 1.7. A subset G of an ideal topological space (X, τ , I) is said to be

1. Ig-closed [2] if G* ⊆ H whenever G ⊆ H and H is open in (X, τ , I).

2. Irg-closed [17] if G* ⊆ H whenever G ⊆ H and H is regular open in (X, τ , I).

3. pre∗I-open [4] if G ⊆ int*(cl(G)).

4. pre∗I-closed [4] if X\G is pre∗I-open.

5. I-R closed [1] if G = cl*(int(G)).

6. ∗-closed [11] if G = cl*(G) or G* ⊆ G.

Remark 1.8. [5] In any ideal topological space, every I-R closed set is ∗-closed but
not conversely.



Journal of New Theory 13 (2016) 49-58 51

Definition 1.9. [5] Let (X, τ , I) be an ideal topological space. A subset G of X
is said to be a weakly Irg-closed set if (int(G))* ⊆ H whenever G ⊆ H and H is a
regular open set in X.

Definition 1.10. [5] Let (X, τ , I) be an ideal topological space. A subset G of X is
said to be a weakly Irg-open set if X\G is a weakly Irg-closed set.

Remark 1.11. [5] Let (X, τ , I) be an ideal topological space. The following diagram
holds for a subset G ⊆ X:

Ig-closed −→ Irg-closed −→ weakly Irg-closed
↑ ↑

∗-closed pre∗I-closed
↑

I-R-closed

These implications are not reversible.

Definition 1.12. [7, 8] A subset K of an ideal topological space (X, τ , I) is said to
be

1. semi∗-I-open if K ⊆ cl(int∗(K)),

2. semi∗-I-closed if its complement is semi∗-I-open.

Definition 1.13. [7] The semi∗-I-closure of a subset K of an ideal topological space
(X, τ , I), denoted by s∗Icl(K), is defined by the intersection of all semi∗-I-closed sets
of X containing K.

Theorem 1.14. [7] For a subset K of an ideal topological space (X, τ , I), s∗Icl(K)
= K ∪ int(cl∗(K)).

Definition 1.15. [6] Let (X, τ , I) be an ideal topological space and K ⊆ X. K is
called

1. generalized semi∗-I-closed (gs∗I-closed) in (X, τ , I) if s∗Icl(K) ⊆ O whenever
K ⊆ O and O is an open set in (X, τ , I).

2. generalized semi∗-I-open (gs∗I-open) in (X, τ , I) if X\K is a gs∗I-closed set in
(X, τ , I).

2 I∗∗g-closed Sets

Definition 2.1. A subset A of an ideal space (X, τ , I) is said to be I∗∗g-closed if A∗

⊆ U whenever A ⊆ U and U is *g-open.

Definition 2.2. A subset A of an ideal space (X, τ , I) is said to be I∗∗g-open if X−A
is I∗∗g-closed.
Theorem 2.3. If (X, τ , I) is any ideal space, then every I∗∗g-closed set is Ig-closed
but not conversely.
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Proof. It follows from the fact that every open set is *g-open.

Example 2.4. If X = {a, b, c}, τ = {∅, X, {c}} and I = {∅, {a}}, then {b} is
Ig-closed set but not I∗∗g-closed set.

The following Theorem gives characterizations of I∗∗g-closed sets.

Theorem 2.5. If (X, τ , I) is any ideal space and A ⊆ X, then the following are
equivalent.

(a) A is I∗∗g-closed.
(b) cl∗ (A) ⊆ U whenever A ⊆ U and U is *g-open in X.
(c) For all x ∈ cl∗(A), ∗gcl({x}) ∩ A 6=∅.
(d) cl∗(A)−A contains no nonempty *g-closed set.
(e) A∗−A contains no nonempty *g-closed set.

Proof. (a) ⇒ (b) If A is I∗∗g-closed, then A∗ ⊆ U whenever A ⊆ U and U is *g-open
in X and so cl∗(A)=A ∪ A∗ ⊆ U whenever A ⊆ U and U is *g-open in X. This proves
(b).

(b) ⇒ (c) Suppose x ∈ cl∗(A). If ∗gcl({x}) ∩ A= ∅, then A ⊆ X−∗gcl({x}). By (b),
cl∗(A) ⊆ X−∗gcl({x}), a contradiction, since x ∈ cl∗(A).

(c) ⇒ (d) Suppose F ⊆ cl∗(A)−A, F is *g-closed and x ∈ F. Since F ⊆ X−A, then
A ⊆ X−F, ∗gcl({x}) ∩ A = ∅. Since x ∈ cl∗(A) by (c), ∗gcl({x}) ∩ A 6=∅. Therefore
cl∗(A)−A contains no nonempty *g-closed set.

(d)⇒ (e) Since cl∗(A)−A=(A ∪ A∗)−A= (A ∪ A∗) ∩ Ac=(A ∩ Ac) ∪ (A∗ ∩ Ac)=A∗

∩ Ac= A∗−A, therefore A∗−A contains no nonempty *g-closed set.

(e) ⇒ (a) Let A ⊆ U where U is *g-open set. Therefore X−U ⊆ X−A and so A∗ ∩
(X−U) ⊆ A∗ ∩ (X−A)=A∗−A. Therefore A∗ ∩ (X−U) ⊆ A∗−A. Since A∗ is always
closed set, so A∗ ∩ (X−U) is a *g-closed set contained in A∗−A. Therefore A∗ ∩
(X−U)=∅ and hence A∗ ⊆ U. Therefore A is I∗∗g-closed.

Theorem 2.6. Every ?-closed set is I∗∗g-closed but not conversely.

Proof. Let A be a ?-closed, then A∗ ⊆ A. Let A ⊆ U where U is *g-open. Hence A∗

⊆ U whenever A ⊆ U and U is *g-open. Therefore A is I∗∗g-closed.

Example 2.7. If X = {a, b, c}, τ = {∅, X, {a}, {b, c}} and I= {∅, {c}}, then {a,
b} is I∗∗g-closed set but not ?-closed set.

Theorem 2.8. Let (X, τ , I) be an ideal space. For every A ∈ I, A is I∗∗g-closed.
Proof. Let A ⊆ U where U is *g-open set. Since A∗= ∅ for every A ∈ I, then
cl∗(A)=A ∪ A∗=A ⊆ U. Therefore, by Theorem 2.5, A is I∗∗g-closed.

Theorem 2.9. If (X, τ , I) is an ideal space, then A∗ is always I∗∗g-closed for every
subset A of X.

Proof. Let A∗ ⊆ U where U is *g-open. Since (A∗)∗ ⊆ A∗ [11], we have (A∗)∗ ⊆ U
whenever A∗ ⊆ U and U is *g-open. Hence A∗ is I∗∗g-closed.
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Theorem 2.10. Let (X, τ , I) be an ideal space. Then every I∗∗g-closed, *g-open set
is ?-closed set.

Proof. Since A is I∗∗g-closed and *g-open, then A∗ ⊆ A whenever A ⊆ A and A is
*g-open. Hence A is ?-closed.

Corollary 2.11. If (X, τ , I) is a TI ideal space and A is an I∗∗g-closed set, then A
is ?-closed set.

Corollary 2.12. Let (X, τ , I) be an ideal space and A be an I∗∗g-closed set. Then
the following are equivalent.

a) A is a ?-closed set.
b) cl∗(A)−A is a *g-closed set.
c) A∗−A is a *g-closed set.

Proof. (a) ⇒ (b) If A is ?-closed, then A∗ ⊆ A and so cl∗(A)−A=(A ∪ A∗)−A= ∅.
Hence cl∗(A)−A is *g-closed set.

(b) ⇒ (c) Since cl∗(A)−A=A∗−A and so A∗−A is *g-closed set.

(c) ⇒ (a) If A∗−A is a *g-closed set, since A is I∗∗g-closed set, by Theorem 2.5,
A∗−A= ∅ and so A is ?-closed.

Definition 2.13. A subset A of a topological space (X, τ) is said to be ∗g∗-closed if
cl(A) ⊆ U whenever A ⊆ U and U is ∗g-open in X.

Theorem 2.14. Every closed set is ∗g∗-closed but not conversely.

Example 2.15. In Example 2.7, {a, b} is ∗g∗-closed set but not closed set.

Theorem 2.16. Every ∗g∗-closed set is g-closed but not conversely.

Proof. It follows from the fact that every open set is *g-open.

Example 2.17. In Example 2.4, {a} is g-closed set but not ∗g∗-closed.

Theorem 2.18. Let (X, τ , I) be an ideal space. Then every ∗g∗-closed set is an
I∗∗g-closed set but not conversely.

Proof. Let A be a ∗g∗-closed set. Then cl(A) ⊆ U whenever A ⊆ U and U is *g-
open. We have cl∗(A) ⊆ cl(A) ⊆ U whenever A ⊆ U and U is *g-open. Hence A is
I∗∗g-closed.

Example 2.19. In Example 2.4, {a} is I∗∗g-closed set but not ∗g∗-closed.

Theorem 2.20. If (X, τ , I) is an ideal space and A is a ?-dense in itself, I∗∗g-closed
subset of X, then A is ∗g∗-closed.

Proof. Suppose A is a ?-dense in itself, I∗∗g-closed subset of X. Let A ⊆ U where
U is *g-open. Then by Theorem 2.5 (b), cl∗(A) ⊆ U whenever A ⊆ U and U is
*g-open. Since A is ?-dense in itself, by Lemma 1.1, cl(A)=cl∗(A). Therefore cl(A)
⊆ U whenever A ⊆ U and U is *g-open. Hence A is ∗g∗-closed.

Corollary 2.21. If (X, τ , I) is any ideal space where I={∅}, then A is I∗∗g-closed
if and only if A is ∗g∗-closed.
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Proof. From the fact that for I={∅}, A∗=cl(A) ⊇ A. Therefore A is ?-dense in itself.
Since A is I∗∗g-closed, by Theorem 2.20, A is ∗g∗-closed. Conversely, by Theorem 2.18,
every ∗g∗-closed set is I∗∗g-closed set.

Corollary 2.22. If (X, τ , I) is any ideal space where I is codense and A is a
semi-open, I∗∗g-closed subset of X, then A is ∗g∗-closed.

Proof. By Lemma 1.2, A is ?-dense in itself. By Theorem 2.20, A is ∗g∗-closed.

Example 2.23. If X = {a, b, c, d}, τ = {∅, X, {a}, {a, b, c}} and I = {∅, {a}},
then {a} is I∗∗g-closed set but not g-closed.

Example 2.24. In Example 2.4, {b} is g-closed set but not I∗∗g-closed.
Remark 2.25. By Example 2.23 and Example 2.24, g-closed sets and I∗∗g-closed sets
are independent.

Example 2.26. In Example 2.4, {a} is ?-closed set but not ∗g∗-closed.

Example 2.27. In Example 2.7, {a, b} is ∗g∗-closed set but not ?-closed.

Remark 2.28. By Example 2.26 and Example 2.27, ∗g∗-closed sets and ?-closed sets
are independent.

Remark 2.29. We have the following implications for the subsets stated above.

closed → ∗g∗-closed → g-closed
↓ ↓ ↓

?-closed → I∗∗g-closed → Ig-closed

Theorem 2.30. Let (X, τ , I) be an ideal space and A ⊆ X. Then A is I∗∗g-closed if
and only if A=F−N where F is ?-closed and N contains no nonempty *g-closed set.

Proof. If A is I∗∗g-closed, then by Theorem 2.5 (e), N=A∗−A contains no nonempty
*g-closed set. If F=cl∗(A), then F is ?-closed such that F−N=(A ∪A∗)−(A∗−A)=(A
∪ A∗) ∩ (A∗ ∩ Ac)c=(A ∪ A∗) ∩ ((A∗)c ∪ A)=(A ∪ A∗) ∩ (A ∪ (A∗)c)=A ∪ (A∗ ∩
(A∗)c)=A.

Conversely, suppose A=F−N where F is ?-closed and N contains no nonempty *g-
closed set. Let U be a *g-open set such that A ⊆ U. Then F−N ⊆ U and F ∩ (X−U)
⊆ N. Now A ⊆ F and F∗ ⊆ F then A∗ ⊆ F∗ and so A∗ ∩ (X−U) ⊆ F∗ ∩ (X−U)
⊆ F ∩ (X−U) ⊆ N. By hypothesis, since A∗ ∩ (X−U) is *g-closed, A∗ ∩ (X−U)=∅
and so A∗ ⊆ U. Hence A is I∗∗g-closed.

Theorem 2.31. Let (X, τ , I) be an ideal space and A ⊆ X. If A ⊆ B ⊆ A∗, then
A∗=B∗ and B is ?-dense in itself.

Proof. Since A ⊆ B, then A∗ ⊆ B∗ and since B ⊆ A∗, then B∗ ⊆ (A∗)∗ ⊆ A∗.
Therefore A∗=B∗ and B ⊆ A∗ ⊆ B∗. Hence proved.

Theorem 2.32. Let (X, τ , I) be an ideal space. If A and B are subsets of X such
that A ⊆ B ⊆ cl∗(A) and A is I∗∗g-closed, then B is I∗∗g-closed.
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Proof. Since A is I∗∗g-closed, then by Theorem 2.5 (d), cl∗(A)−A contains no non-
empty *g-closed set. Since cl∗(B)−B ⊆ cl∗(A)−A and so cl∗(B)−B contains no
nonempty *g-closed set. Hence B is I∗∗g-closed.

Corollary 2.33. Let (X, τ , I) be an ideal space. If A and B are subsets of X such
that A ⊆ B ⊆ A∗ and A is I∗∗g-closed, then A and B are ∗g∗-closed sets.

Proof. Let A and B be subsets of X such that A ⊆ B ⊆ A∗ ⇒ A ⊆ B ⊆ A∗ ⊆ cl∗(A)
and A is I∗∗g-closed. By the above Theorem, B is I∗∗g-closed. Since A ⊆ B ⊆ A∗,
then A∗=B∗ and so A and B are ?-dense in itself. By Theorem 2.20, A and B are
∗g∗-closed.

The following Theorem gives a characterization of I∗∗g-open sets.

Theorem 2.34. Let (X, τ , I) be an ideal space and A ⊆ X. Then A is I∗∗g-open if
and only if F ⊆ int∗(A) whenever F is *g-closed and F ⊆ A.

Proof. Suppose A is I∗∗g-open. If F is *g-closed and F ⊆ A, then X−A ⊆ X−F and
so cl∗(X−A) ⊆ X−F by Theorem 2.5 (b). Therefore F ⊆ X−cl∗(X−A)=int∗(A).
Hence F ⊆ int∗(A).

Conversely, suppose the condition holds. Let U be a *g-open set such that X−A ⊆
U. Then X−U ⊆ A and so X−U ⊆ int∗(A). Therefore cl∗(X−A) ⊆ U. By Theorem
2.5 (b), X−A is I∗∗g-closed. Hence A is I∗∗g-open.

Corollary 2.35. Let (X, τ , I) be an ideal space and A ⊆ X. If A is I∗∗g-open, then
F ⊆ int∗(A) whenever F is closed and F ⊆ A.

Theorem 2.36. Let (X, τ , I) be an ideal space and A ⊆ X. If A is I∗∗g-open and
int∗(A) ⊆ B ⊆ A, then B is I∗∗g-open.

Proof. Since A is I∗∗g-open, then X−A is I∗∗g-closed. By Theorem 2.5 (d), cl∗(X−A)−(X−A)
contains no nonempty *g-closed set. Since int∗(A) ⊆ int∗(B) which implies that
cl∗(X−B) ⊆ cl∗(X−A) and so cl∗(X−B)−(X−B) ⊆ cl∗(X−A)−(X−A). Hence B is
I∗∗g-open.

The following Theorem gives a characterization of I∗∗g-closed sets in terms of
I∗∗g-open sets.

Theorem 2.37. Let (X, τ , I) be an ideal space and A ⊆ X. Then the following are
equivalent.

(a) A is I∗∗g-closed.
(b) A ∪ (X−A∗) is I∗∗g-closed.
(c) A∗−A is I∗∗g-open.

Proof. (a) ⇒ (b) Suppose A is I∗∗g-closed. If U is any *g-open set such that A ∪
(X−A∗) ⊆ U, then X−U ⊆ X−(A ∪ (X−A∗))=X ∩ (A ∪ (A∗)c)c=A∗ ∩ Ac=A∗−A.
Since A is I∗∗g-closed, by Theorem 2.5 (e), it follows that X−U=∅ and so X=U. Now
A ∪ (X−A∗) ⊆ X and so (A ∪ (X−A∗))∗ ⊆ X∗ ⊆ X=U. Hence A ∪ (X−A∗) is
I∗∗g-closed.

(b) ⇒ (a) Suppose A ∪ (X−A∗) is I∗∗g-closed. If F is any *g-closed set such that F
⊆ A∗−A, then F ⊆ A∗ and F * A. Hence X−A∗ ⊆ X−F and A ⊆ X−F. Therefore
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A ∪ (X−A∗) ⊆ A ∪ (X−F)= X−F and X−F is *g-open. Since (A ∪ (X−A∗))∗ ⊆
X−F ⇒ A∗ ∪ (X−A∗)∗ ⊆ X−F and so A∗ ⊆ X−F ⇒ F ⊆ X−A∗. Since F ⊆ A∗, it
follows that F=∅. Hence A is I∗∗g-closed.

(b) ⇔ (c) Since X−(A∗−A)=X ∩ (A∗ ∩ Ac)c=X ∩ ((A∗)c ∪ A)=(X ∩ (A∗)c) ∪ (X
∩ A)=A ∪ (X−A∗), it is obvious.

Theorem 2.38. Let (X, τ , I) be an ideal space. Then every subset of X is I∗∗g-closed
if and only if every *g-open set is ?-closed.

Proof. Suppose every subset of X is I∗∗g-closed. If U ⊆ X is *g-open, then U is I∗∗g-
closed and so U∗ ⊆ U. Hence U is ?-closed. Conversely, suppose that every *g-open
set is ?-closed. If U is *g-open set such that A ⊆ U ⊆ X, then A∗ ⊆ U∗ ⊆ U and so
A is I∗∗g-closed.

The following Theorem gives a characterization of normal spaces in terms of
I∗∗g-open sets.

Theorem 2.39. Let (X, τ , I) be an ideal space where I is completely codense. Then
the following are equivalent.

(a) X is normal.
(b) For any disjoint closed sets A and B, there exist disjoint I∗∗g-open sets U and

V such that A ⊆ U and B ⊆ V.
(c) For any closed set A and open set V containing A, there exists an I∗∗g-open

set U such that A ⊆ U ⊆ cl∗(U) ⊆ V.

Proof. (a) ⇒ (b) The proof follows from the fact that every open set is I∗∗g-open.

(b) ⇒ (c) Suppose A is closed and V is an open set containing A. Since A and X−V
are disjoint closed sets, there exist disjoint I∗∗g-open sets U and W such that A ⊆ U
and X−V ⊆ W. Since X−V is *g-closed and W is I∗∗g-open, X−V ⊆ int∗(W) and
so X−int∗(W) ⊆ V. Again U ∩ W=∅ ⇒ U ∩ int∗(W)=∅ and so U ⊆ X−int∗(W) ⇒
cl∗(U) ⊆ X−int∗(W) ⊆ V. U is the required I∗∗g-open sets with A ⊆ U ⊆ cl∗(U) ⊆
V.

(c) ⇒ (a) Let A and B be two disjoint closed subsets of X. By hypothesis, there
exists an I∗∗g-open set U such that A ⊆ U ⊆ cl∗(U) ⊆ X−B. Since U is I∗∗g-open,
A ⊆ int∗(U). Since I is completely codense, by Lemma 1.3, τ ∗ ⊆ τα and so int∗(U)
and X−cl∗(U) are in τα. Hence A ⊆ int∗(U) ⊆ int(cl(int(int∗(U))))=G and B ⊆
X−cl∗(U) ⊆ int(cl(int(X−cl∗(U))))=H. G and H are the required disjoint open sets
containing A and B respectively, which proves (a).

Remark 2.40. Let (X, τ , I) be an ideal topological space. By Remark 1.11, Defin-
ition 1.15, Definition 2.1 and Theorem 2.3, the following diagram holds for a subset
G ⊆ X:

gs∗I-closed
↑

I∗∗g-closed −→ Ig-closed −→ Irg-closed −→ weakly Irg-closed

These implications are not reversible.

Example 2.41. If X = {a, b, c, d}, τ = {∅, X, {a}, {b, c}, {a, b, c}} and I = {∅,
{d}}, then {a} is gs∗I-closed set but not I∗∗g-closed.
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