ON SOME IDEALS OF INTUITIONISTIC FUZZY POINTS SEMIGROUPS

Essam Hamed Hamouda <ehamouda70@gmail.com>

Department of Basic Sciences, Faculty of Industrial Education, Beni-Suef University, Beni-Suef, Egypt

Abstract – In this paper, the minimal ideal \(A \) of a semigroup \(S \) is characterized by the intuitionistic characteristic function \(\chi_A \). The existence of an intuitionistic fuzzy kernel in a semigroup is explored. Finally, we consider the semigroup \(\tilde{S} \) of the intuitionistic fuzzy points of a semigroup \(S \) and discuss some relations between some ideals \(A \) of \(S \) and the subset \(\subseteq_{\tilde{S}} \) of the semigroup \(\tilde{S} \).

Keywords – Semigroups; Intuitionistic fuzzy points; Intuitionistic fuzzy ideals.

1 Introduction

Semigroups are important in many areas of mathematics, for example, coding and language theory, automata theory, combinatorics and mathematical analysis. Zadeh [16] introduced the concept of a fuzzy set for the first time and this concept was applied by Rosenfeld [14] to define fuzzy subgroups and fuzzy ideals. Based on this crucial work, Kuroki [9,10,11,12] defined a fuzzy semigroup and various kinds of fuzzy ideals in semigroups and characterized them. In [13], Kim considered the semigroup \(\tilde{S} \) of the fuzzy points of a semigroup \(S \), and discussed the relation between the fuzzy interior ideals and the subsets of \(\tilde{S} \), also see [6, 7]. Atanassov [4, 5] introduced the notion of intuitionistic fuzzy sets as a generalization of fuzzy sets. Many concepts in fuzzy set theory were also extended to intuitionistic fuzzy set theory, such as intuitionistic fuzzy relations, intuitionistic \(L^\Gamma \)-fuzzy sets, intuitionistic fuzzy implications, intuitionistic fuzzy logics, intuitionistic fuzzy semigroups etc. Jun and Song [8] introduced the notion of intuitionistic fuzzy points. In [15] Sardar et al., defined some relations between the intuitionistic fuzzy ideals of a semigroup \(S \) and the set of all intuitionistic fuzzy points of \(S \). In [3] Akram characterized intuitionistic fuzzy ideals in ternary semigroups by intuitionistic fuzzy points. Also in [2] he analyzed some relations between the intuitionistic fuzzy \(\Gamma \)-ideals and the sets of intuitionistic fuzzy points of these \(\Gamma \)-ideals of a \(\Gamma \)-semigroup. In this paper, we consider the
semigroup \(\mathfrak{g} \) of the intuitionistic fuzzy points of a semigroup \(\mathfrak{s} \), and discuss some relations between some ideals \(A \) of \(\mathfrak{s} \) and the subset \(\mathfrak{c} \) of the semigroup \(\mathfrak{s} \).

2 Basic Definitions and Results

Let \(\mathfrak{s} \) be a semigroup. A nonempty subset \(A \) of \(\mathfrak{s} \) is called a left (resp., right) ideal of \(\mathfrak{s} \) if \(\mathfrak{s}A \subseteq A \) (resp., \(A \mathfrak{s} \subseteq A \)), and a two-sided ideal (or simply ideal) of \(\mathfrak{s} \) if \(\mathfrak{s}A \subseteq A \) is both a left and a right ideal of \(\mathfrak{s} \). A nonempty subset \(A \) of \(\mathfrak{s} \) is called an interior ideal of \(\mathfrak{s} \) if \(\mathfrak{s}A \subseteq A \). An ideal \(A \) of \(\mathfrak{s} \) is called minimal ideal of \(\mathfrak{s} \) if \(A \) does not properly contains any other ideal of \(\mathfrak{s} \). If the intersection \(\mathfrak{k} \) of all the ideals of a semigroup \(\mathfrak{s} \) is nonempty then we shall call \(\mathfrak{k} \) the kernel of \(\mathfrak{s} \). A sub-semigroup \(\mathfrak{a} \) of \(\mathfrak{s} \) is called a bi-ideal of \(\mathfrak{s} \) if \(\mathfrak{a} \mathfrak{a} \subseteq \mathfrak{a} \mathfrak{a} \). A function \(f \) from \(\mathfrak{s} \) to the closed interval \([0, 1]\) is called a fuzzy set in \(\mathfrak{s} \). The semigroup \(\mathfrak{s} \) itself is a fuzzy set in \(\mathfrak{s} \) such that \(s(x) = 1 \) for all \(x \in \mathfrak{s} \), denoted also by \(\mathfrak{s} \). Let \(A \) and \(B \) be two fuzzy sets in \(\mathfrak{s} \). Then the inclusion relation \(A \subseteq B \) is defined by \(A(x) \leq B(x) \) for all \(x \in \mathfrak{s} \). A sub-semigroup \(A \subseteq \mathfrak{s} \) and \(B \subseteq \mathfrak{s} \) are fuzzy sets in \(\mathfrak{s} \) defined by

\[
\begin{align*}
(A \cap B)(x) &= A(x) \land B(x) = \min\{A(x), B(x)\}, \\
(A \cup B)(x) &= A(x) \lor B(x) = \max\{A(x), B(x)\},
\end{align*}
\]

for all \(x \in \mathfrak{s} \).

For any \(\alpha \in (0, 1] \) and \(x \in \mathfrak{s} \), a fuzzy set \(x_\alpha \) in \(\mathfrak{s} \) is called a fuzzy point in \(\mathfrak{s} \) if

\[
x_\alpha(x) = \begin{cases} \alpha & \text{if } x = y, \\
0 & \text{otherwise,}
\end{cases}
\]

for all \(x \in \mathfrak{s} \). The fuzzy point \(x_\alpha \) is said to be contained in a fuzzy set \(A \), denoted by \(x_\alpha \in A \), iff \(\alpha \leq A(x) \).

Definition 1. [4, 5] The intuitionistic fuzzy sets (IFS, for short) defined on a non-empty set \(X \) as objects having the form

\[
A = \{ x : \mu_A(x), \nu_A(x) : x \in X \},
\]

where the functions \(\mu_A : X \to [0, 1] \) and \(\nu_A : X \to [0, 1] \) denote the degree of membership and the degree of non-membership of each element \(x \in X \) to the set \(A \) respectively, and \(0 \leq \mu_A(x) + \nu_A(x) \leq 1 \) for all \(x \in X \).

For the sake of simplicity, we shall use \(A = (\mu_A, \nu_A) \) for intuitionistic fuzzy set \(A = \{ x : \mu_A(x), \nu_A(x) : x \in X \} \).

Definition 2. [15] Let \(\alpha, \beta \in [0, 1] \) with \(\alpha + \beta \leq 1 \). An intuitionistic fuzzy point, written as \(x_{(\alpha, \beta)} \) is defined to be an intuitionistic fuzzy subset of \(\mathfrak{s} \), given by

\[
x_{(\alpha, \beta)}(x) = \begin{cases} (\alpha, \beta) & \text{if } x = y, \\
(0, 1) & \text{otherwise}
\end{cases}
\]
Definition 3. [15] A non-empty IFS \(A = (\mu_A, \nu_A) \) of a semigroup \(S \) is called an intuitionistic fuzzy subsemigroup of \(S \) if

\[(i) \quad \mu_A(xy) \geq \mu_A(x) \wedge \mu_A(y), \quad \forall x, y \in S, \]
\[(ii) \quad \nu_A(xy) \leq \nu_A(x) \vee \nu_A(y), \quad \forall x, y \in S. \]

Definition 4. [15] An intuitionistic fuzzy subsemigroup \(A = (\mu_A, \nu_A) \) of a semigroup \(S \) is called an intuitionistic fuzzy interior ideal of \(S \) if

\[(i) \quad \mu_A(xy) \geq \mu_A(x) \wedge \mu_A(y), \quad \forall x, w, y \in S, \]
\[(ii) \quad \nu_A(xy) \leq \nu_A(x) \vee \nu_A(y), \quad \forall x, w, y \in S. \]

Definition 5. [15] An intuitionistic fuzzy subsemigroup \(A = (\mu_A, \nu_A) \) of a semigroup \(S \) is called an intuitionistic fuzzy bi-ideal of \(S \) if

\[(i) \quad \mu_A(xw) \geq \mu_A(x) \wedge \mu_A(w), \quad \forall x, w, y \in S, \]
\[(ii) \quad \nu_A(xw) \leq \nu_A(x) \vee \nu_A(w), \quad \forall x, w, y \in S. \]

Definition 6. [15] A non-empty IFS \(A = (\mu_A, \nu_A) \) of a semigroup \(S \) is called an intuitionistic fuzzy left (right) ideal of \(S \) if

\[(i) \quad \mu_A(xy) \geq \mu_A(x) \wedge \mu_A(y), \quad \forall x, y \in S, \]
\[(ii) \quad \nu_A(xy) \leq \nu_A(x) \vee \nu_A(y), \quad \forall x, y \in S. \]

Definition 7. [15] A non-empty IFS \(A = (\mu_A, \nu_A) \) of a semigroup \(S \) is called an intuitionistic fuzzy two-sided ideal or an intuitionistic fuzzy ideal of \(S \) if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy right ideal of \(S \).

Let \(A \) be a subset of a semigroup \(S \) and \(A^c \) be the complement of \(A = (\mu_A, \nu_A) \) is defined as:

\[
C_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise}, \end{cases} \quad C_{A^c}(x) = \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{otherwise}, \end{cases}
\]

for all \(x \in S \).

Let \(IFS(S) \) be the set of all intuitionistic fuzzy sets in a semigroup \(S \). For each \(A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in IFS(S) \), the product of \(A \) and \(B \) is an intuitionistic fuzzy set \(A \times B \) defined as follows:

\[
A \times B = \{ (x, \mu_{A \times B}(x), \nu_{A \times B}(x)) : \forall x \in S \},
\]

where

\[
\mu_{A \times B}(x) = \bigvee_{xuv} \mu_A(u) \wedge \mu_B(v) \quad \text{if } uv = x,
\]
\[\text{otherwise}.
\]
Lemma 1. [1] For any nonempty subsets A and B of a semigroup S, we have $A \subseteq B$ if and only if $x_A \subseteq x_B$.

Lemma 2. [1] Let A be a nonempty subset of a semigroup S, then A is an ideal of S if and only if x_A is an intuitionistic fuzzy ideal of S.

Theorem 1. A nonempty subset A of a semigroup S is a minimal ideal if and only if x_A is a minimal intuitionistic fuzzy ideal of S.

Proof. Let A be a minimal ideal of S, then by lemma 2, x_A is an intuitionistic fuzzy ideal of S. Suppose that x_A is not minimal intuitionistic fuzzy ideal of S, then there exists some intuitionistic fuzzy ideal B of S such that $x_B \subseteq x_A$, hence, lemma 1 implies that $B \subseteq A$, where B is an ideal of S. This is a contradiction to the fact that A is minimal ideal of S. Thus x_A is minimal intuitionistic fuzzy ideal of S. Conversely, let A be a minimal intuitionistic fuzzy ideal of S, then x_A is an ideal of S. Suppose that A is not minimal ideal of S, then there exists some ideal B of S such that $B \subseteq A$. Now by lemma 1, $x_B \subseteq x_A$, where x_B is an intuitionistic fuzzy ideal of S. This contradicts that x_A is a minimal intuitionistic fuzzy ideal of S. Thus A is minimal ideal of S. □

Lemma 3. If $A = (x_A, x_B)$ is a minimal intuitionistic fuzzy ideal of a semigroup S, then A is the intuitionistic fuzzy kernel of S.

Proof. Let $B = (x_B, x_B)$ be any intuitionistic fuzzy ideal of S, then $B \cdot A \subseteq B \subseteq A \cdot B$. Since $B \subseteq A$ is an intuitionistic fuzzy ideal of S and $B \cap A = A$, it follows that $B \cap A = A$. But then $A = B \cap A = A$, so A is contained in every intuitionistic fuzzy ideal of S and hence is an intuitionistic fuzzy kernel of S. □

Lemma 4. If $A = (x_A, x_A)$ is an intuitionistic fuzzy kernel of a semigroup S, then A is a simple intuitionistic fuzzy subsemigroup of S.

Proof. Since A is an intuitionistic fuzzy ideal of S, so A is an intuitionistic fuzzy subsemigroup of S. To show that A is simple, let B be any intuitionistic fuzzy ideal of A, then $A \cdot B \cdot A$ is an intuitionistic fuzzy ideal of S, since

$$S \cdot (A \cdot B \cdot A) = (S \cdot A) = B \cdot A \subseteq A \cdot B = A$$

and

$$(A \cdot B \cdot A) \cdot S = (A \cdot S) = A \cdot B \subseteq A \cdot A \subseteq A$$

Also, $A \cdot B \subseteq A \subseteq A$, but by lemma 3, A is minimal intuitionistic fuzzy ideal of S. Hence $A \cdot B \cdot A = A$. Also, $A \cdot B = A$ implies that $A \subseteq B$. Thus $A = B$, that is A is simple subsemigroup of S. □

Lemma 5. Let $A = (x_A, x_B)$ be an intuitionistic fuzzy left ideal of a semigroup S and $x_{(A \cdot B)}$ be any intuitionistic fuzzy point of S, then $A \cdot x_{(A \cdot B)}$ is a minimal intuitionistic fuzzy left ideal of S.

\[x_{A \cdot x_{(A \cdot B)}}(c) = \bigwedge_{x_{A \cdot (x_{(A \cdot B)}(c))} = x} x_{A \cdot y_{(A \cdot B)}}(d) = x_{A \cdot y_{(A \cdot B)}}(c) \text{ if and only if } x_{A \cdot y_{(A \cdot B)}}(c) = x \]
Proof. $A \circ x_{(a,b)}$ is an intuitionistic fuzzy left ideal of S. Suppose B is an intuitionistic fuzzy left ideal of S and let $D = \{y \in Y : y \circ x_{(a,b)} \in B\}$. Let $s_{(a_1,b_1)} \in A$ and $s_{(a_2,b_2)} \in A$, then $s_{(a_1,b_1)} \circ x_{(a_2,b_2)} = s_{(a_1,b_1)} \circ s_{(a_2,b_2)} \in D$. Hence $A \circ x_{(a,b)} \subseteq D$, which implies that $A \circ x_{(a,b)} \subseteq A = D$. Thus $A \circ x_{(a,b)}$ is an intuitionistic fuzzy left ideal of S, and because of minimality of A, we get $D = A$. Hence $A \circ x_{(a,b)} = B$ and therefore, $A \circ x_{(a,b)}$ is a minimal intuitionistic fuzzy left ideal of S.

3 Main Results

If S is a semigroup, then $\mathcal{SF}(S)$ is a semigroup with the product "\cdot"[15]. Let S be the set of all intuitionistic fuzzy points in a semigroup S. Then $x_{(a,b)} \circ y_{(c,d)} = (xy)_{(a+c,a+c)} \in S$, for $x_{(a,b)}, y_{(c,d)} \in S$ and $(xy)_{(a+c,a+c)} = (x_{(a,b)} \circ y_{(c,d)}) \circ (xy)_{(a+c,a+c)}$. Thus S is a subsemigroup of $\mathcal{SF}(S)[15]$. For any $A \subseteq \mathcal{SF}(S)$, A denotes the set of all intuitionistic fuzzy points contained in A, that is, $A = \{x_{(a,b)} : x_{(a,b)} \in A, (x_{(a,b)}) \leq 1\}$. For any $A \subseteq \mathcal{SF}(S)$, we define the product of A and B as $A \cdot B = \{x_{(a,b)} \circ y_{(c,d)} : x_{(a,b)}, y_{(c,d)} \in A, B\}$.

Lemma 6. [15] Let $A = (a_1, a_2)$ and $B = (b_1, b_2)$ be two intuitionistic fuzzy subsets of a semigroup S, then

1. $A \cup B = A \cup B$
2. $A \cap B = A \cap B$
3. $A \cdot B = A \cdot B$

Lemma 7. Let A be nonempty subset of a semigroup S, we have $x_{(a,b)} \in X_A$ if and only if $x \in A$.

Proof. Suppose that $x_{(a,b)} \in X_A$ for any $x \in A$, then $C_A(x) \geq a$. Hence $C_A(x) = 1$ for any $a > 0$, which implies that $x \in A$. Conversely, Let $x \in A$, then $C_A(x) = 1 \geq a$ and $C_A(x) = 0 < b$ for any $a, b > 0$. This means that $x_{(a,b)} \in X_A$.

Lemma 8. For any nonempty subsets A and B of a semigroup S, we have

1. $A \subseteq B$ if and only if $X_A \subseteq X_B$
2. $A \subseteq B$ if and only if $X_A \subseteq X_B$

Proof. (1) Assume that $A \subseteq B$, and let $x_{(a,b)} \in X_A$. By lemma 7, $x \in A \subseteq B$ and $x_{(a,b)} \in X_B$, this implies that $X_A \subseteq X_B$. Conversely, suppose that $X_A \subseteq X_B$. Let $x \in A$, then by lemma 7, for any $a, b > 0$, $x_{(a,b)} \in X_A$ and $x_{(a,b)} \in X_B$, which implies that $x \in B$. (2) it is obvious that if $A \subseteq B$, then $X_A \subseteq X_B$. Now assume that $X_A \subseteq X_B$ and let $x_{(a,b)} \in X_A$, then $X_B \subseteq X_B$. Then $A \subseteq B$ and consequently, we have $X_A \subseteq X_B$. This completes the proof.

Lemma 9. Let A be a nonempty subset of a semigroup S. Then A is an ideal of S if and only if X_A is an ideal of S.
Proof. By lemma 2, A is an ideal of S if and only if \mathcal{A} is a fuzzy ideal of S. And from theorem 3.5[13], \mathcal{A} is a fuzzy ideal of S if and only if \mathcal{A} is an ideal of S. \blacksquare

Theorem 2. A nonempty subset A of a semigroup S is minimal ideal if and only if \mathcal{A} is a minimal intuitionistic fuzzy ideal of S.

Proof. Let A be a minimal ideal of S, then by lemma 2, \mathcal{A} is an intuitionistic fuzzy ideal of S. Suppose that \mathcal{A} is not minimal intuitionistic fuzzy ideal of S, then there exists some intuitionistic fuzzy ideal \mathcal{B} of S such that $\mathcal{B} \subseteq \mathcal{A}$. Hence, lemma 1 implies that $B \subseteq A$, where B is an ideal of S. This is a contradiction to the fact that A is minimal ideal of S. Thus \mathcal{A} is minimal intuitionistic fuzzy ideal of S. Conversely, let \mathcal{A} be a minimal intuitionistic fuzzy ideal of S, then by lemma, A is an ideal of S. Suppose that A is not minimal ideal of S, then there exists some ideal B of S such that $B \subseteq A$. Now by lemma, $\mathcal{B} = \mathcal{A}$, where \mathcal{B} is an intuitionistic fuzzy ideal of S. This contradicts that \mathcal{A} is a minimal intuitionistic fuzzy ideal of S. Thus A is minimal ideal of S. \blacksquare

Theorem 3. Let A be a nonempty subset of a semigroup S. Then A is a minimal ideal of S if and only if \mathcal{A} is a minimal ideal of S.

Proof. By theorem 1, A is a minimal ideal of S if and only if \mathcal{A} is a fuzzy ideal of S. We only need to prove that, \mathcal{A} is a minimal intuitionistic fuzzy ideal of S if and only if \mathcal{A} is a minimal ideal of S. Let \mathcal{A} be a minimal intuitionistic fuzzy ideal of S, then \mathcal{A} is an ideal of S. Suppose that \mathcal{A} is not minimal, then there exists some ideals \mathcal{B} of S such that $\mathcal{A} \subseteq \mathcal{B}$, which implies that $\mathcal{B} \subseteq \mathcal{A}$, where \mathcal{B} is an intuitionistic fuzzy ideal of S. This is a contradiction to \mathcal{A} is a minimal intuitionistic fuzzy ideal of S. Thus \mathcal{A} is a minimal ideal of S. Conversely, assume that \mathcal{A} is a minimal ideal of S and that \mathcal{A} is not a minimal intuitionistic fuzzy ideal of S. Then there exists an intuitionistic fuzzy ideal \mathcal{B} of S such that $\mathcal{A} \subseteq \mathcal{B}$, hence $\mathcal{A} \subseteq \mathcal{B}$, where \mathcal{B} is an ideal of S. This contradicts that \mathcal{A} is a minimal ideal of S. This completes the proof of the theorem. \blacksquare

Theorem 4. Let A be a nonempty subset of a semigroup S. Then A is the kernel of S if and only if \mathcal{A} is the kernel of S.

Proof. Suppose that A is the kernel of S, then $A = \bigcap_{i}I_{i}$ where I_{i} is an ideal of S. Let \mathcal{A} be an ideal of S, then B is an ideal of S. Now we need to show that $\mathcal{A} = \mathcal{B}$, let $x \in A$ and also $x \in B$, since A is the kernel of S. This implies that $\mathcal{A} = \mathcal{B}$ and hence, \mathcal{A} is the kernel of S. Conversely, let \mathcal{A} be the kernel of S, then $\mathcal{A} \subseteq \mathcal{B}$ for every ideal \mathcal{B} of S. Thus $A \subseteq B$ and therefore, A is the kernel of S. \blacksquare

The following lemma weakens the condition of theorem 4.

Lemma 10. Let A be a minimal ideal of a semigroup S, then \mathcal{A} is the kernel of S.

Proof. Since A is a minimal ideal of S, then \mathcal{A} is a minimal intuitionistic fuzzy ideal of S. Also lemma 3 implies that \mathcal{A} is the fuzzy kernel of S. Now, let \mathcal{B} be an intuitionistic fuzzy
ideal of \mathcal{S}, then we have $\mathcal{I}_A \subseteq \mathcal{I}_B$ and hence $\mathcal{I}_A \subseteq \mathcal{I}_B$. So \mathcal{I}_A is a minimal ideal contained in every ideal of \mathcal{S}. Thus \mathcal{I}_A is the kernel of \mathcal{S}. ■

Theorem 5. Let \mathcal{A} be a nonempty subset of a semigroup \mathcal{S}. Then \mathcal{A} is an interior ideal of \mathcal{S} if and only if \mathcal{I}_A is an interior ideal of \mathcal{S}.

Proof. Let \mathcal{A} be an interior ideal of \mathcal{S}, and let $\gamma_{(\gamma \alpha \beta)} = (\gamma \alpha \beta) \in \mathcal{S}$ and $\gamma_{(\gamma \alpha \beta)} \in \mathcal{I}_A$. Since $\gamma \in \mathcal{A}$, then $\gamma_{(\gamma \alpha \beta)} \in \mathcal{I}_A$. This implies that $\mathcal{I}_A = \mathcal{I}_A \subseteq \mathcal{I}_B$. Conversely, suppose that \mathcal{I}_A is an interior ideal of \mathcal{S}. Let $\gamma \in \mathcal{S}$ and $\gamma \in \mathcal{A}$, then $\gamma_{(\gamma \alpha \beta)} \in \mathcal{I}_A$. Assume that $\gamma_{(\gamma \alpha \beta)} = (\gamma \alpha \beta) \in \mathcal{I}_A$. Then $\gamma_{(\gamma \alpha \beta)} \in \mathcal{I}_A$. This implies that $\mathcal{I}_A \subseteq \mathcal{I}_B$, and hence \mathcal{A} is an interior ideal of \mathcal{S}. ■

Theorem 6. Let \mathcal{A} be a nonempty subset of a semigroup \mathcal{S}. Then \mathcal{A} is a bi-ideal of \mathcal{S} if and only if \mathcal{I}_A is a bi-ideal of \mathcal{S}.

Proof. Let \mathcal{A} be a bi-ideal of \mathcal{S}, and let $\gamma_{(\gamma \alpha \beta)} = (\gamma \alpha \beta) \in \mathcal{S}$ and $\gamma_{(\gamma \alpha \beta)} \in \mathcal{S}$. Since $\gamma \in \mathcal{A}$ and $\gamma \in \mathcal{A}$, then $\gamma_{(\gamma \alpha \beta)} \in \mathcal{I}_A$. This implies that $\mathcal{I}_A \subseteq \mathcal{I}_B$, and hence \mathcal{A} is a bi-ideal of \mathcal{S}. ■

Acknowledgements

The author is grateful for Editor-in-Chief and the referee for their valuable efforts.

References

