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Abstaract — In this paper, we introduce new separation axioms on soft double topological spaces
and study some of their properties. Also, we define the soft double subspaces and study some related
properties. Finally, we study the behaviour of the separation axioms under open (homeomorphism)
mappings.
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1 Introduction

Atanassov [1, 2, 3, 4] introduced the concept of intuitionistic fuzzy sets as a gener-
alization of fuzzy sets. Coker [5] generalized topological structures in intuitionistic
fuzzy case. The concept of intuitionistic sets and the topology on intuitionistic sets
was first given by Coker [7, 6].

In 2005, the suggestion of J. G. Garcia et al. [8] that double set is a more
appropriate name than flou (intuitionistic) set, and double topology for the flou
(intuitionistic) topology. Kandil et al. [11, 12] introduced the concept of double sets,
double topological spaces, continuous functions between these spaces and separation
axioms on double topological spaces.

After presentation of the operations of soft sets [16], the properties and applica-
tions of soft set theory have been studied increasingly [1, 14, 16, 18].

* Corresponding Author.
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Recently, in 2011, Shabir and Naz [19] initiated the study of soft topological
spaces. They defined soft topology on the collection 7 of soft sets over X. Conse-
quently, they defined basic notions of soft topological spaces such as open(closed)
soft sets, soft subspace, soft separation axioms and established their several proper-
ties. Hussain and Ahmad [9] investigated the properties of soft nbds and soft closure
operator.

In [21] Tantawy, et al. introduced the concept of soft double sets (SD-sets, for
short), soft double points (SD-points, for short), soft double topological space (SDT'S,
for short) and continuous functions between these spaces.

The purpose of this paper is to introduce some separation axioms on SDTS (SD-
separation axioms, for short) and some of its basic properties, soft double subspace
(SD-subspace, for short) and some properties related to it, continuous function and
separation axioms on SDTS. Moreover, some basic properties of these notions have
obtained.

2 Preliminary

In this section, we collect some definitions and theorems which will be needed in the
sequel. For more details see [9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22].

Definition 2.1. [12] Let X be a nonempty set.
1. A double set A is an ordered pair (A, A2) € P(X) x P(X) such that A; C As.

2. D(X) ={(A1,A) € P(X) x P(X),A; C Ay} is the family of all double sets
on X.

3. Let m1,m2, € P(X). The product of 7, and 7, denoted by 7; X712, and defined
by: mXng = {(A17A2) € M XN Al g AQ}

4. The double set X = (X, X) is called the universal double set.

5. The double set ) = (0, D) is called the empty double set.

6. Let # € X. Then, the double sets z, = ({z},{z}) and z, = (0,{x}) are said
to be double points in X. The family of all double points in X, denoted by
DP(X)ie, DP(X) ={z;:z € X,t € {$,1}}.

7. 2,€AsreAand € A& x e As.

L1
2

Definition 2.2. [12] Let A = (A;, A2) € D(X). A is called a finite double set if A,
is a finite subset of X.

Definition 2.3. [12] Let A = (A, Ay), B = (B1, By) € D(X).
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Definition 2.4. [11] Two double sets A and B are said to be a quasi-coincident,
denoted by AgB, if AN By # 0 or A, N By # (). A is called a not quasi-coincident
with B, denoted by A Q/B, if Al N BQ = (D and AQ N Bl = @

Definition 2.5. [12] Let X be a non-empty set. The family 7 of double sets in X
is called a double topology on X if it satisfies the following axioms:

1' Q)X€n7
2.1t A, Ben, then AN B €,
3. If {4, : s € S} Cn, then QSESAS €.

The pair (X, n) is called a double topological space. Each element of 7 is called an
open double set in X. The complement of an open double set is called a closed double
set.

Definition 2.6. [17] Let X be an initial universe and F be a set of parameters. Let
P(X) denotes the power set of X and A be a non-empty subset of E. A soft set Fy
over the universal X is a mapping from the parameter set £ to P(X) with support
Aie., Fy: E — P(X). In other words a soft set over X is a parameterized family
of subsets of X, where Fy(e) #0ife€ AC FE and Fa(e) =0 if e € A.

Note that, a soft set can be written in the following form, Fx = {(e, Fa(e)) : e €
ACE Fs: E— P(X)}.

The family of all soft sets over X denoted by S(X, E).
Definition 2.7. Let Fp,Gg € S(X, E).
1. Fg is said to be a null soft set, denoted by @, if F(e) =0, Ve € E. [16]

2. Fg is called absolute soft set, denoted by Xg, if Fg(e) = X, Ve € E. [16]

Definition 2.8. [19] Let 7 be a collection of soft sets over a universal X with a
fixed set of parameters E. 7 is called a soft topology on X if it satisfies the following
conditions:

1. &, Xg e,
2. The union of any number of soft sets in 7 belongs to T,

3. The intersection of any two soft sets in 7 belongs to 7.

The triple (X, 7, E) is called a soft topological space over X. Every element of 7 is
called an open soft set in X and its complement is called a closed soft set in X.

Definition 2.9. [21] Let X be an initial universe and E be a set of parameters. Let
D(X) denotes the family of all double sets over the universal X. A SD-set F)4 over
the universal X is a mapping from the parameter set £ to D(X) with support A i.e.,
Fo:E— D(X). In other words a SD-set over the universal X is a parameterized
family of double subsets of X, where Fy(e) £ 0ife € AC E and Fu(e) = if e & A.
Note that, a SD-set can be written in the following form, Fy = {(e, Fa(e)) :e € A C
E,Fy: E— D(X)}.
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The family of all SD-sets over X denoted by SD(X)g.
In this paper we use the notation Fy for any SD-subset where, F E( ) # 0, Ve €
Aand Fg(e) = 0, Ve € A.

Definition 2.10. Let Fig, G € SD(X)p. Then,
1. Fj is called a null SD-set, denoted by @, where Fg(e) = 0, Ve € E. [21]
2. Fpis called an absolute SD-set, denoted by X, where Fg(e) = X, Ve € E. [21]
3. Fp is a SD-subset of éE, denoted by ﬁEéCNJE, if fE(e) C CNJE(e), Ve € E. [21]
4. Fpis equal to G, denoted by F = G, if Fp(e) = Ggle), Ve € E. [21]

5. The union of Fp and G is a SD-set HE defined by: Hpg(e) = (ﬁEOéE)(e) =
Fg(e )UGE( ), Ve € E. We write FEUGE = Hp. [21]

6. The intersection of Fp and G is a SD-set Hp, defined by: Hp(e) = (ﬁEﬁéE)(e) =
Fg(e )ﬂGE( ), Ve € E. We write FEﬂGE = Hp. [21]

7. The difference of Fj and GE is a SD-set Hy defined by: fIE(e) = ﬁE(e) \
GE( ) Ve € E. We write HE = FE\GE [21]

8. The complement of Fp, denoted by Fg, defined by: FC( ) = X\ Fg(e), Ve € E.
and (Fg)° = Fg. [21]

Definition 2.11. [21] Let fE € SD(X)g. ﬁE is called a SD-point for short over X
if there exist e € E,z € X and ¢ € {3,1} such that

~ oz, fa=g¢
FE(O‘)_{Q, ifaeE—{e}.
and we will denote Fjz by x5

The family of all SD-points over X will be denoted by SDP(X)g.

Definition 2.12. [21] Two SD-sets Fiz and G are said to be quasi- coincident,
denoted by F q Gg if Fg(e) q Gg(e), for some e € E. If Fg is not quasi- coincident
with G, we write F  Gg or Fr(e) d Gg(e), Ve € E.

Proposition 2.13. [21] Let Fig, Gy, Hp € SD(X)g and ¥ € SDP(X)g. Then,
1. Fg f Gp & FCGS,.
2. Fp f Gp, HeCGp = Fi f Hp.
3. 7 f (Fe(\Gr) < 3¢ f Fp or 7 f Gp.

Definition 2.14. [21] Let SD(X)g and SD(Y )k be the families of all SD-sets over
X and Y, respectively.
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1. The mapping fgy : SD(X)g — SD(Y )k is called a soft double mapping, where
f:X —Y and ¢ : E — K are two mappings.

2. Let ﬁ’EQSD(X)E. Then, the image of Fi under the soft double mapping fayis
the SD-set over Y, denoted by fz,(Fr) and defined by:

U,y 2 Fo€), i 071 () 0

0, otherwise.

Fou(Fi) (k) = {

3. Let Gx € SD(Y)g. The pre-image of G under the soft double mapping fou
is the SD-set over X, denoted by fg_wl(G k) and defined by:

fﬁ_ij(ék)(@ = (G k(¥(e))).
Proposition 2.15. [21] Let fz, : SD(X)g — SD(Y)x, Fp, Gg € SD(X)p and
HK,LK € SD(Y)K Then,
1. If ﬁEiéEa then fﬁd)(ﬁE)ifﬁw(éE)
3. ﬁEifﬁ’J(fw(ﬁE)), the equality holds if fs, is an injective.
4. fgw(fﬂj(ﬁ;())éf];(, the equality holds if fg, is a surjective.
5. fas (Hi) = (£ (Hr)"

Definition 2.16. [21] Let 7 be a collection of SD-sets over X, i. e, 7 C SD(X)g. T
is said to be a SD-topology over X if it satisfies the following conditions:

1. d, X €7,
2. The union of any number of SD-sets in 7 belongs to T,
3. The intersection of any two SD-sets in 7 belongs to 7.

The triple (X, 7, E) is called a SDTS. Every member of 7 is called an open SD-set
and its complement is called a closed SD-set.
The family of all closed SD-sets we denoted by 7°.

Definition 2.17. [21] Let (X,7, E) be a SDTS and let Fiz € SD(X)g. Fg is called
a quasi-neighborhood of a SD-point z¥, if there exists Gp € 7 such that xthECFE
The family of all quasi-neighborhoods of =7 denoted by N, (qee)

Definition 2.18. [21] Let (X, 7, E) be a SDTS and let Fp € SD(X)p. The soft
double closure of I &, denoted by cle(FE) and defined by:
Cle(FE) ﬂ{GE eTe FECGE}
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Proposition 2.19. [21] Let (X,7, E) be a SDTS and let Fp € SD(X)g. Then,
cle(Fg) is the smallest closed SD-set containing Fpg.

Proposition 2.20. [21] Let Fy € SD(X)g and % € SDP(X ). Then,
7 q cle(Fp) & YGp € 7,1€Gg, Gg q Fp.

Definition 2.21. [21] Let fg, : SD(X)g — SD(Y )k, where § : X — Y and
Y E — K. Let (X,7,F) and (Y,0, K) be two SDT-spaces. fg, is called a soft
double continuous mapping, denoted by SD-continuous, if fgwl(H k) € T, whenever

Hy € 5.
Proposition 2.22. [21] Let (X, 7, E) and (Y, 7, K) be two SDT-spaces and let fgy :

SD(X)g — SD(Y )k be a mapping, Fg € SD(X)g and Hyx € SD(Y)x. Then, the
following conditions are equivalent:

1. fgy is an SD-continuous,

2. fou(Hg) € 7, VHy € 5°,

w0

fou(cle(Fi))Cele(fsu(FE)), YFr € SD(X)E,

. cle(f5) (Hi))C 5, (cle(H)), VHi € SD(Y ),

Definition 2.23. [10] A double topological space (X, n) is called DT%—space iff for
each z, € DP(X), either z, is an open double set or z, is a closed double set.

S

3 SD-separation axioms

Theorem 3.1. Let Fig, G, Hp € SD(X)g. Then,
1. Fp\ Gp = FsNGS.
2. Fg\ (GeUHgp) = (Fp \ Gp)\(Fe \ Hg).
3. F\ (GeNHg) = (Fp \ Gp)U(Fe \ H).
4. (FeN\Gp)\ Hp = (Fp \ Hp)\(GE \ Hp).

Proof. 1. (Fg\ Gp)(e) = Fu(e) \ Gr(e) = Fu(e) G5 (e) = (FeNG5)(e) Ve € E.
Hence Fiz \ Gp = ﬁEﬂGCE
2. F\(GpUHx) = Fe(GrUHr) = Fe(G5NHE) = (FeNGH)N(Fe i) =
(Fg\ Ge)\(Fg \ Hg).

3. It is similar to (2).

4. (fE)ﬁéE)\ﬁE = (FeNGr)NHs = (FpNHE)N(GeNHE) = (Fp\Hp) G\
Hg).
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Proposition 3.2. Let 7%, 5¢ € SDP(X)g. Then,
1.z #y=7 fy° for every r,t € {3,1},e,¢' € E.

2. % qgf(:)x%yorx:y,t:r:%and
Ty s r=yandt+r>1.

Proof. 1t is obvious.

Proposition 3.3. Let (X,7, E) be a SDTS and let iy € 7,Gp € SD(X)p. Then,
FrpqGg e Fgqcle(Gp).

Proof. Fp ff Gg < GeCF¢ < clo(Gg)CEE[ by Proposition 2.19] < Fi f cle(Gg).

Definition 3.4. Let 17 be a collection of SD-sets over X, i. e, 7 C SD(X)g. Then,
7 is said to be a stratified soft double topology over X if it satisfies the following
conditions:

1. &, X and X € 77,)?@(6) =(0,X), Vee€ E,
2. The union of any number of SD-sets in 7 belongs to 17,

3. The intersection of any two SD-sets in 77 belongs to 7.

The triple (X, 7, E) is called a stratified soft double topological space (SSDTS). Each
element of 77 is called an open SD-set in X. The complement of the open SD-set is
called a closed SD-set.

Proposition 3.5. Let fz, : SD(X)g — SD(Y)k, Fg € SD(X)g. Then, if fa, is
one-one, onto, then fs,(F5) = (fay(Fr))"

Proof. Suppose that fg, is one-one, then Fp = f/gwl(f/gw(fE)) Implies,
Fip = (£, (fos(Fp))) = fa} (fou(Fp))".
Since fg, is onto, then
Fou(Fg) = fou(Foi (fou(FE))®) = (fau(FE))".
Hence, fau(Fp) = (fau(Fr))"
Definition 3.6. Let (X, 7, E) and (X, 7, E') be two SDTS over X.
1. If 71 C 7o, then 75 is soft double finer than 7.
2. If ; C 7y, then 75 is soft double strictly finer than 7.
3. If m C 75 or /5, C 7, then 77 is comparable with 75.
Example 3.7. Let X be the universal set, E be the set of parameters.

1. If 7 is the collection of all SD-sets which can be defined over X. Then, T is
called the discrete SD-topology on X and (X, 7, E) is said to be a discrete
SDTS over X.
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2. 7= {®, X} is called the indiscrete SD-topology on X and (X, 7, E) is said to
be a indiscrete SDTS over X.

Definition 3.8. Let Fy € SD(X)g. Fy is a finite SD-set if ﬁE(e) is a finite double
set, Ve € E.

Example 3.9. Let X be an infinite set. The family
oo = (O FRCX : Fy is finite }
is called a co-finite SD-topology on X.

Definition 3.10. Let (X, 7, E) be a SDTS and let Y be a non-empty subset of X. Y
denotes the SD-set over X, such that Y(e) =Y, Ve € E.

Definition 3.11. Let (X, 7, F) be a SDTS and let Y be a non-empty subset of
X, Fg € SD(X)g. The SD-subset over Y, will denote by FY, and defined by:

FY(e) =Y(\Fp(e), Ve € E.

We write FY = Y(\Fg.

Definition 3.12. Let (X, 7, E) be a SDTS and Y be a non-empty subset of X. The
soft double topology over Y, will denoted by 7y, and defined by:

Ty ={FY : Fze7}.
(Y, 7y, E) is called a SD-subspace of a SDTS (X, 7, E).

Example 3.13. Any SD-subspace of a SD-discrete topological space is a SD-discrete.
Also, any SD-subspace of a SD-indiscrete topological space is a SD-indiscrete.

Definition 3.14. A SDTS (X, 7, E) is said to be:
1. SDTy—space if 75 ¢ ¢ = cle(T¢) ¢ §¢ or cle(Je) ¢ ¢, V¢, 7¢ € SDP(X)p.
2. SDT%—space if each z§ € SDP(X)p is either open SD-set or closed SD-set.

3. SDT;—space if T¢  J¢ = cle(T5) 4 U or cle(yS) f T, Va5, 5¢ €
SDP(X)g,xz # vy, Vx,y € X.

4. SDT;*—space if z§ g’ijﬁ/ = cle(T¥) q’;?],?' or cle(’yvfl) q x5, Vi, gg’ €
SDP(X)g,z =y, Vx,y € X.

5. SDT,—space if T¢ 7€ = cle(T¢)  7¢ and cle(§¢) f T, VI, 7 € SDP(X)p.

6. SDT;—space if T¢ ¢ = cle(T$)  §¢ and cle(ye) o T5, VI8, 7° €
SDP(X)g,xz # vy, Vx,y € X.

7. SDTy*—space if 7¢  5¢ = cle(75) d 7€ and cle(y¢) 4 T¢, VT8, 7° €
SDP(X)g,z =vy, Vz,y € X.
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8. SDT,—space or soft double Hausdorff space if z§ ¢ ¥ yr =3 Oee O o such that
Oee Q’O , VZ8, ¢ € SDP(X)g.

9. SDT;—space if 2¢ ¢ ¢ = EIOee O o such that Oee ¢]O A =
SDP(X)g,xz #vy, Vx,y € X.

10. SDT;*—space if T¢ f 7¢ = 3535, 6%/ such that 635 q 9)
SDP(X)g,z =y, Vx,y € X.

95’7 V%?,g:/ G
11. SDRy—space if xf g’ﬁ = 535,613 € 7T such that 53? qép, N\l
SDP(X)g, VF € 7°.

12. SDTs—space or soft double regular space if it is SD Ry and SDT;—spaces.
13. SDT5 —space if it is SDRy and S DT} —spaces.
14. SDT5*—space if it is SDRy and S DT}*—spaces.

Theorem 3.15. Let (X, 7, E) be a SDTS. Then,

(X 7,E) is SDTI—space (SDTy—space) iff VZ§ 4 3 6@«; such that 3¢ 4 6@5 and
3 O o such that zf QO

Proof. It follows from Proposition 2.20.

Theorem 3.16. Let (X, 7, E) be a SDTS. Then,
(X,T, E) is SDTy—space iff ¢ f ¢,y , o # vy, Va,y € X3 Oge such that v o Oge
and 3 O o such that z¢ ¢ O

Proof. 1t is obvious.

Theorem 3.17. Let (X, 7, E) be a SDTS. Then,
(X, 7, E) is SDT,—space iff ¢ = cle(7%), V2§ € SDP(X)g.

Proof. Suppose (X, 7, E) is a SDT)—space and let 7§ ¢ 3¢ . Then, cle(F) 4 yr By
Theorem 3.15, there exists O o such that z7 g O +. This implies that O /C(xt) ,
thus (7)€ is open SD-set, VZ§ e SDP(X)g, i.e, ¢ is closed SD-set, Vz§ € SDP( )E-
Conversely, Suppose that 7§ = cle(7¢), V2t € SDP(X)p and let 75 ¢ ¢ . Then, 7¢
and ¢ are closed SD-sets. So that, cle(Z¢) 4 3¢ and cle(y) 4 ¢, fo,ﬂ;‘:’/ €
SDP(X)g. Hence, (X, 7, E) is a SDTj.

Theorem 3.18. Let (X, 7, F) be a SDTS. Then,
(X, 7, E) is SDTy—space iff 7§ = cle(7}), V2§ € SDP(X)g.

Proof. 1t is obvious.

Theorem 3.19. Let (X, 7, E) be a SDTS. Then,
(X,7,FE) is SDT,—space iff 7§ = ﬂ@ cen? cle(Oﬁe) Vzi € SDP(X)g.

) p
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Proof. Suppose (X, 7, E) is a SDT,—space and let T¢ ¢ 3¢ .
Then, 3 Oy € Nigeys, Oy € Nige e such that O 4 O, . So that O g Oy,

v

implies O, 4 m@egeNée)Ede(Oee) Thus, foﬂ@ FENG cle(Oﬁg). It is clear that,
. t t

xfgﬂ@egeNfeg)ECl@(Oﬁi)' Hence, 7§ = ﬂ@ fENG) cle(Oete)

Conversely, let ¢ = ﬁ@ ereNLe cle(Og ¢), VI{ € SDP(X)p and let T 4 y¢.

Then, z§ ¢ ﬁ@ ent cle(O +). This implies that, Z{ ¢ cle ( .), for some O o €

¢ )E

Nigerya - S0, T3S (cle(O )¢ and O, e = (cle( o)) ij +. Therefore, (X,7, E) is a

TQ.
Theorem 3.20. Let (X, 7, E) be a SDTS. Then,
(X,7,FE) is SDT5—space iff 7§ = ﬂ@ cen? cle(Oee) Vz¢ € SDP(X)g.

®) 5

Proof. Tt is obvious.

Theorem 3.21. Let (X, 7, E) be a SDTS. Then,
(X,7,E) is a SDTy—space — (X, 7, E) is a SDT}.

Proof. 1t is obvious.

Example 3.22. Let X = {hy, ho}, E = {e1, 5} and let 7 = {®, X, FL, F2 F3 Fi},

where
Fi(er) = 0, Fj(ea) = ({ha}, {ha}),
FR(er) =0, Fi(ez) = X,
) = ({ha}, {h1}), F?’(ez) X,
) = ({ha}, {ha}), Fip(e2) = X. -
Then, (X, 7, E)isaSDTS and SDTj—space. But it is not SDTy—space, for 3 h €

SDP(X)g such that ﬁf;l% q%il% , but Fiie = cle(ﬁ?% )q %;1%

Theorem 3.23. Let (X, 7, F) be a SDTS. Then,
(X,7,FE)is a SDT%—space — (X,7,E) is a SDT.

Proof. Suppose (X,7,E) is a SDT%—space and let 7¢ ¢ 7¢. Now, if ¥ is an open
SD-point, then by Proposition 3.3 cle(3¢') ¢ 5. On the other hand, if Z¢ is a closed
SD-point, then cle(Z¢) = 7¢. Implies, cle(7¢) ¢ ¢ . Hence, (X, 7, E) is a SDTy.

Example 3.24. Let X = {hy, hy}, E = {e1, 3} and let 7 = {®, X, FL F2. ...  FSTY
where
Fp(er) =0, Fy(ea) = ({ha}, {ha}),
Fi(er) =0, Files) = X,
Fip(er) = ({7}, {ln}), Fies) = X,
Fp(er) = ({ha}, {ha}), Fi(es) = X,
(e1) =X
(e1) =X
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Fji(er) = ({m}, X), Fi(ez) = X,

Eg(el) = ({hgv}>X)aF§(€2) =X,

Fpler) = X, F(e2) = (0, X),

E]%O(el) = ({h2}, X), ~]£V0<62) = ({h2}, X)),
Fip'(e1) = ({}, X), Fg'(e2) = ({ha}, X)),
Fi?(e1) = 0, Fi?(e) = ({ha}, X)),

F(er) = ({n}, {h}), Fi(e2) = ({h2}, X),
Fi'(e1) = ({ha}, {ha}), Fi'(ea) = ({ha}, X)),
Fi*(e1) = ({ha}, X), FgP(e2) = ({ha}, X)),
E]iﬁ(el) = ({}}Vl}vX)vF]gs(e?) = ({m}, X),
Fi'(e1) = 0, Fi' (e2) = (0, {ha}),

Fi*(e1) = 0, FiP(e2) = ({u}, X)),

F'(er) = ({ha}, {}), Fg'(e2) = ({}, X)),
Fi(e1) = ({ha}, {ha}), FiP(e2) = ({a}, X)),
E];%l(el) = ({hQ}ﬂX)7Fg(€21> = (®=X)7
E]%Q(el) = ({@}’X)vFé(GQQ) - (®7X)’
Fi(er) = 0, Fi*(e2) = (0, X),

Fig'(er) = ({In}, {h}), Fi'(e2) = (0, X),
Fi(er) = ({ha}, {hal), Fi(e2) = (0, X)),
E]%G(el) = (0,X), FJ%6~(€2> =X,

51:2?7(61) = (®7 {hl})v? F]EZC7(62 =X,

5%8(61) = (@7X)>F%8~(62) = ({h2}, X),
Fi(er) = (0,{h}), Fi'(e2) = ({ha}, X)),
Ego(el) = (q)?X)’Fg‘(L(e?) = ({hl}vX)7
E]:j;‘l(el) = (®7 {hl})v? Fgl(62) = ({h}, X),
Eg2(€1> = (@,X),ng(@) = (0, X),

523(61) = ((2)7 {hl})vggg(eQ) = ((DvX)?
Fii'(er) = (0, {ha}), Fg'(e2) = X,

F(er) = (0, {h2}), i (e2) = ({ha}, X)),
Fi'(e) = (0,{ha}), Fi'(e2) = ({a}, X)),
Fii'(ex) = (0, {ha}), Fi' (e2) = (0, X).

3 Ef? € SDP(X)g, such that ﬁf? is neither open nor closed SD-point.

Theorem 3.25. Let (X, 7, E) be a SDTS. Then,
(X,7,FE)is a SDT1—space — (X, 7, E) is a SDT%.

37

Proof. Suppose (X, 7, F) is a SDT;—space, then every SD-point in X is a closed

SD-point by Theorem 3.17. Hence, (X, 7, E) is a SDT%.

Example 3.26. Let X = {hy,hs}, E = {e1,e2} and let

,7\:: {§7X7ﬁéaﬁ%7ﬁg7ﬁg7ﬁg7ﬁgv
FL F3 Fp FiOFL PR PSR PP
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Fi( ) {h}),

Fp(er) = ({ha}, {ln}), Fi(e2) = 0,

Fgler) = (0, {ln}), Fg(e2) = 0,

Fpler) = X, Fp(ea) = ({h}, {M}),

Fpler) = X, Fp(ea) = ({}, X)),

Fi(er) = ({}, {l}), Fies) = X,

Fler) = ({h}, X), Fi(e2) = X,

Fy(er) = ({ha}. {h1}), Fi(e2) = ({1}, {ln}),
Fi¥(er) = (0,{}), Fi(e2) = ({m}, {m}),
Fiter) = ({hu}, {ln}), FiM(e2) = (0, {}),
Ff(er) = (B, {h1}), Ff2(e2) = (0, {h1}),
F(er) = ({m}, X), F(e2) = ({ln}, {}),
Fii(er) = ({hu}, {l}), F}i(e2) = ({m}, X),
F(er) = ({m}, X), Ff(e2) = ({n}, X).

Then, (X, 7, E) is a SDTS and SDT;—space. But it is not SDTy—space for the
SD-point ﬁ?l is not a closed SD-point.
2

Theorem 3.27. Let (X, 7, F) be a SDTS. Then,
(X,7,FE)is a SDTy—space — (X, 7, E) is a SDT;.

Proof. Suppose (X,7,E) is a SDT,—space, then z¢{ = ﬂ@ cen? cl O@e, VIe €

@) p
SDP(X). It follows that, every SD-point in X is a closed SD-point. Hence by
Theorem 3.17, (X, 7, F) is a SDT;.

Example 3.28. Let N be the set of all natural numbers. Then, the family 7y =

{PHJ{FrCN : F§ is finite } is a co-finite SD-topology over X, (N,7, F) is a co-

finite SDTS and SDT; —space. But it is not SDT,—space for, g ceNt cle(Ogs) =
a¢ ) p

N #nt.

Theorem 3.29. Let (X, 7, E) be a SDTS. Then,

(X,7,FE)is a SDT3—space — (X, T, E) is a SDTy—space.

Proof. Suppose (X, 7, E) is a SDTs—space and let ¢ ¢ 3¢ . Then, 77 = cle(2}), Vay €

SDP(X) [by hypothesis]. It follows that 3 O o € N(q y Oet € Nig:),, such that

6%/ g’éete. Hence, (X, 7, F) is a SDTQ—space.

Theorem 3.30. Let (X, 7, E) be a SDTS. Then,

(X,7,E)is a SDTy—space — (X,7, F) is a SDT}.

Proof. 1t is obvious.

Example 3.31. From example 3.22, we have (X, 7, F) is a SDTj—space. But it is
not SDTy —space for, hi! ¢ h3?, but cl(hy’) = X q h'.
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Theorem 3.32. Let (X, 7, F) be a SDTS. Then,
(X,7,FE)is a SDTy—space — (X, 7, E) is a SDTY.

Proof. Tt is obvious.

Example 3.33. Let X = {hy,hy}, E = {e, e2} andlet 7 = {®, X, FL, F2 F}, Fi, Fp F,
FEvFEvFEvFL%Z‘OuFél7FL%2} FégaFlli‘ZL where
Fl(el) ({hn}, {M}), F1(€2) ({1}, {1}),

F3(e1) = ({ha}, {ha}), Fi(e2) = ({ha}, {ha}),
Fj(er) = ({h1}, {h}), Fi(e2) = 0,
Fl(e1) = ({ha}, {ha}), Fi(e2) =0,
F(er) =0, Fj(ea) = ({ha}, {l}),
Fp(er) = 0, Fi(ea) = ({ha}, {ha}),
Eg(el) X F7(€2) @>
F3(er) = ({h1}, {m}), F(e2) = ({ho}, {ho}),
F(e1) = ({ha}. {h2}). Fi(e2) = ({1}, {l1}),

) =

) =
Ei(ea) = ({m}, {n}),
({2}, {ha}

Fi(e)) = X

Fil(er) = X, Fil(ez) = ha}),
Fi(er) =0, Ff2(ex) = X,
F(er) = ({h} {h}), FE(e2) = X,
Fit(er) = ({ha}, {h2})7F14(62) =X

Then, (X,7,FE) is a SDTS and SDT}—space. But it is not SDT;—space for,

Theorem 3.34. Let (X, 7, E) be a SDTS. Then,
(X,7,E) is a SDTy—space — (X,7, FE) is a SDTY.

Proof. Tt follows from Theorem 3.16, 3.18.

Example 3.35. From example 3.28, we have (N,7, E) is a co-finite SDTS and
SDTy—space. But it is not SDTy—space for, ﬂ@ cen? cle(Ogs) = N # ng.

(eD)E

Theorem 3.36. Let (X, 7, F) be a SDTS. Then,
(X,7,F) is a SDTy—space — (X, 7, F) is a SDT;.

Proof. Tt is obvious.

Example 3.37. From example 3.33, we have (X 7, E) is a SDTS and SDTy—space.
But it is not SDT,—space, for ﬂ@gq N Cle<0%el> (F14) £ hel
1

(ﬁel

Theorem 3.38. Let (X, 7, E) be a SDTS. Then,
(X,7,FE)is a SDT3—space — (X, 7, E) is a SDT3.

Proof. 1t is obvious.

Example 3.39. From example 3.33, we have (X, 7, E) is a SDTS and S DTy —space.
But it is not SDT3—space, since (X, 7, E) is not a S DT —space.



Journal of New Theory 16 (2017) 27-48 40

Remark 3.40. 1. From example 3.26 (X, 7, F) is a SDT%—Space, but it is not
SDTY. and from example 3.33 (X, 7, F) is a SDT} —space, but it is not SDT;.

2. From example 3.28 (X, 7, F) is a SDT;—space, but it is not SDT,. and from
example 3.33 (X, 7, E) is a SDTy—space, but it is not SDT;.

3. From example 3.33 (X, 7, ) is a SDT;—space, but it is not SDTs.

Remark 3.41. Theorems 3.16, 3.18, 3.20, 3.21, 3.30, 3.32, 3.34, 3.36, 3.38 are
satisfied if we replace SDT; by SDT;*, (i =0,1,2,3).

Remark 3.42. Let (X, 7, E) be a SDT'S. Then,

1. SDT} is SDT;, (1 =0,1,3)iff Vo € X, ZL‘1 q cle(T9).

M\Hm

2. SDTy is SDT, iff Vo € X, 3 Oge of Op, -
2 2

Corollary 3.43. For a SDT'S (X, 7, FE) we have the following implication:
SDTy; — SDTy — SDTy — SDIj.

T T T AN
! ! ! /

SDT* — SDTy* — SDTy* — SDT™.

4 SD-subspaces

Theorem 4.1. Let (Y, 7y, E) be a SD-subspace of a SD-space (X, 7, E) and Fp €
SD(X)g. Then,

1. If Fp € 7y and Y € 7, then Fjp € 7.
2. ﬁE e 7y iff ﬁE = }N/EﬁéE for some CNJE € 7°.

Proof. 1. Let FE € Ty. Then, EIGE € 7 such that FE = YEﬂGE Now, if YE €T,
then YEﬂGE € 7. Hence, Fp e

2. Let ﬁE € 7y. Then, ﬁE = ffE \ éE,éE € 7y and éE = ?EﬁﬁE for some
HE €T. L o _
Now,Fg = Yz \ (YEﬂHE) Y \ Hg = Yg(\HS,, where Hf, € 7¢. Therefore,
Fy = YEﬂGE for some GE eTe
Conversely, suppose that Frp= YEﬂG & for some Gp € 7° , then
Fp = YEﬂGE o
= YEﬂ(X \ HE) (GE =X\ Hg,Hg €T)
— YEmHC
RV
=Yg\ (YEQHE), Ye(\HE € Ty.
Therefore, Fp € 7y. Hence, the result.
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Theorem 4.2. Let FEGSD( e, 7y € SDP(X)p and Y C X. Then,
7 q Fp and T°€Y & 3¢ ¢ (FpNY).

Proof. 1t t =1

z§ q Fp and xleY

& 7¢(e) q Fip(e) and 7¢(e)eY (e),e € E

&1, q Fple) = (A, Ay) and ,€Y(e) =Y = (Y,Y), e € E
S@xeAorreA)andr ey

sSre(AinNY)orxze (AyNY)

&2, q(Fr(enY)

@EE‘;’ q (FEﬁY)

S(reA)andx ey
& z1q(Fpe)nY)
& 76 q (FeNY).

Hencze7 the result.

Theorem 4.3. Let (Y, 7y, E) be a SD-subspace of a SD-space (X,7,FE) and let
NY € - SD(Y)p,y; € SDP(Y)p. Then, if N} = YANg for some Np € N9(g¢)g,
then NY € NL(7¢)g (nbd.w.rt(Y, 7y, E)).

Proof. Let NY = YﬁNE,]VE € Nq(gjﬁ)E. Then, 3Gp € 7 such that ys q GrCNp.
Thus, 7¢ ¢ GeNY CNENY = N Therefore, ¢ ¢ GLCNY. Hence, N% € N{(3°) k.
Theorem 4.4. A SD-subspace (Y, 7y, E) of a SDTj—space (X, 7, F) is a SDT}.

Proof. Let ft,gr/ € SDP(Y)g, x # ysuchthat 7% ¢ §¢. Then, ¢, 5¢ € SDP(X)g, = #
y and 7§ 4 3¢ . Implies, 7 cle(7¢) or §¢ 4 cle(T¢). Thus, T¢NY 4 cle(y¢)NY or
TEAY f cle(79)AY . Therefore, 7€ of clg(J€) or J¢ f clag (79). Hence, (Y, 7y, E) is a
SDTS.

Theorem 4.5. A SD-subspace (Y, 7y, E) of a SDTy—space (X, 7, E) is a SDTy.

/

Proof. Let 7¢,5¢ € SDP(Y)p such that 7 4 y¢. Then, 7§, 3¢ € SDP(X)p and
xt g’yr Implies, 7§ d cle(y€) or ¢ o cle(T%). Thus NY o cle(J€)NY or

7AYo cle(xt)ﬂY Therefore, 75 ¢ clg (3) or 3¢ f clag (7). Hence, (Y, 7y, E) is a
SDTy.

Theorem 4.6. A SD-subspace (Y, 7y, E) of a SDT%—space (X,7,F)is a SDT%.

Proof. Let y; € SDP(Y)p. Then, y; € SDP(X)g. This implies that, y; is an open
or closed SD-set in X. Therefore, y& = y¢ °AY is an open or closed SD-set in Y. Hence,
(Y, 7v,E) is a SDT%.
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Theorem 4.7. A SD-subspace (Y, 7y, E) of a SDT;—space (X, 7, E) is a SDT;.

Proof. Let y; € SDP(Y)p. Then, y; € SDP(X)p. This implies that, y = cle(yy).
It follows that, 76NY = cle(§)AY. Therefore, J¢ = cle, (y.). Hence, (Y, 7y, E) is a
SDT;.

Theorem 4.8. A SD-subspace (Y, Ty, E) of a SDT}—space (X, 7, F) is a SDT7.

!

Proof. Let 7¢,5¢ € SDP(Y)g such that 7¢ 4 y¢. Then, 7¢,7¢ € SDP(X)p and
7 f ¢ This implies that, T¢ ¢ cle(7¢) and §¢ o cle(7%). Thus, ZAY § cle(7¢)AY
and 7¢NY ¢ cle(7)NY . Therefore, 7% ¢ clg (7¢) and §¢ ¢ clg (7¢). Hence, (Y, 7y, F)
is a SDTY.

Theorem 4.9. A SD-subspace (Y, 7y, E) of a SDTy—space (X, 7, E) is a SDT5.

Proof. Let y¢ € SDP(Y)g. Then, y¢ € SDP(X)g. Implies, y¢ = ﬂ@ st NG cleégg.
o5

It follows that, 7°NY = [ﬂ@ ceNt, cleOge]NY . Therefore, y¢ = m@ggENgf(gﬁ)ECleY Oge.
Hence, (Y, 7y, E) is a SDTs.

Theorem 4.10. A SD-subspace (Y, 7y, E) of a SDTy—space (X, 7, E) is a SDT}.

/

Proof. Let zf,y; € SDP(Y)g such that 2§ 4 U yr Then, xt,yr € SDP(X)p and
T¢ ¢ y¢. This implies that, there exist Oee O /ET such that Oee 4 O .. It follows

that, O*e = OeeﬂY 4 O /ﬂY = O* . and O;E,O;e/ € Ty. Hence, (Y, Ty, E) is a
SDT;. '

Theorem 4.11. A SD-subspace (Y, 7y, E) of a SDRy—space (X, 7, E) is a SDRs.

Proof. Let y¢ € SDP(Y)g and 3¢ FAY,F € 7°. Then, (| F [by Proposition
2.13]. Implies, there exist Oge,Op € 7 such that Oge g Op. It follows that, O;/e =
695517 qéﬁﬁ? = 5Y and O;e, OY € Ty. Hence, (Y, 7y, E) is a SDR;.

Theorem 4.12. A SD-subspace (Y, 7y, E) of a SDTs—space (X, 7, F) is a SDT;.
Proof. Tt follows from theorem 4.7 and theorem 4.11.

Theorem 4.13. A SD-subspace (Y, 7y, E) of a SDT§—space (X, 7, E) is a SDT}.
Proof. 1t follows from theorem 4.8 and theorem 4.11.

Theorem 4.14. A SD-subspace (Y, 7y, E) of a SDT;*—space (X,7, E) is a
SDT, (i = 0,1,2,3).

Proof. 1t is obvious.
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5 Some Properties of the SD-continuous Func-
tions

In this section, we study the behavior of the separation axioms under open (homeo-
morphism) mappings.

Definition 5.1. Let (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
foy : SD(X)g — SD(Y)k be a mapping and Fg € SD(X)g.

1. fay is called SD-open if f4,(Fg) € 7, VEp € 7.

2. fay is called SD-closed if fs,(Fg) € 7¢, VFg € 7°.

Theorem 5.2. Let (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
foy : SD(X)p — SD(Y)k be a mapping and F € SD(X)p. Then, [y is SD-closed
iff clo(fou (Fi))Cfou(cle(Fr)), YFp € SD(X)p.

Proof. Suppose fsy is SD-closed and Fyp € SD(X)g, then FEécle(ﬁE), and so

Cle(fﬁw(FE))CCle(fﬂw(Cle(FE))) fou(cle(Fi)), cle(Fi) € 7
Therefore, cl (fW(FE))Cwa(cle(FE))

Conversely, suppose cle(fw(FE))CfW(cle(FE)) VEg € SD( ). Let Fg be an
SD-closed in X, then cle(fgw(FE))CfW(FE) But f,gw(FE)Cclﬁ(fW(FE)), so that
fﬁw(FE) =cl (fﬂ¢(FE)) Therefore, fg, is SD-closed. Hence, the result.

Lemma 5.3. Let (X,7, FE) and (Y,7, K) be two SDTS and let fs, : SD(X)p —
SD(Y )k be a (one-one) and onto mapping. Then:

1. If ¥ € SDP(Y)g, then 3z € X and e € E such that 8(z) = y,(e) = k,7¢ €
SDP(X)s and (%) — Gt

2. If y¥ € SDP(Y)g, then f~1(y¢) € SDP(X)g.

3. If y,lel,y,Ngf2 € SDP(Y)K,ylt 4 ygﬁ, then 3 :Ul,xg € X, e, e E E such that
B(w:) = yi,(e;) = ki, (i = 1,2) and f(713") _ylt b f(22,%) _y2r , Ty f Tayt

Proof. 1. fau(a7)(k)

= AU,y 1 ()
= 6((e))
= (7

Therefore, fzy(7¢) = yr.

2. fgj(zﬁf)(el)
RUHCIC)
gk ))71/)(6) k

::51( 1), 97 (k) =
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- &)
Thus, fg_@z} (1¢) = 213"
Hence, the result.

3. fau (1) (K)
=By 10 (€)
= B(z1,),e =€
= (7). pler) = h
= 1, (k).
Therefore, fz,(T15) = 711
Similarly, we can see that fw(x% ?) = 3727]?/.
Now, since " f ;" then " C(g2r*)" So that, [ (7' S (72,7)°) =
(fﬂw (72¥2))¢ [by Proposition 2.15]. Thus, 715" C(£5%)°. Therefore, 7,5 o 722

Definition 5.4. Let (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
foy : SD(X)g — SD(Y )k be a mapping. fgy is called SD-homeomorphism if it is
SD-continuous, SD-closed, one-one and onto.

Theorem 5.5. The property of being SDT| is a topological property.

Proof. Suppose that (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
fay SD( e — SD(Y )k be an SD-homeomorphism mapping.

Let yltl,y}f € SDP(Y )k such that g]lfl Qy}?, y1 # y2. Then, by lemma 5.3
Jx,29 € X, 71 # X2, 1,62 € E such that B(x;) = y;, ¥(e;) = ki, (i = 1,2). Also,
T1y' ff oy’ and f(flfl) = 1, F(52%2) = 7272, Since (X, 7, E) is SDT§ —space, then
TS ff cle(T22) or T2 dele(T151), so that £, C(cle(72))¢, implies fay(7751)C
Fow(cle(#252))° = (fau(cle(2;?)))° [by proposition 3.5]. Thus, 71, € (clg( fay(72;?)))°
(as fgy is SD-homeomorphism). It follows that, le,’fl 4 clg(yNsz). similarly, we also
have 72> f clg(7:). Hence, (Y, 7, K) is a SDT};.

Theorem 5.6. The property of being SDTj is a topological property.

Proof. Suppose that (X, 7, E) and (Y, 7, K) be two SDTS and let fzy : SD(X)g —
SD(Y ) be an SD-homeomorphism mappmg

Let yltl,yETZ € SDP(Y)g such that ylt 4 g]'gf Then, by lemma 5.3 3 x1,25 €
X,e1,e9 € E such that ﬁ(xl) = yi,¥(e;) = ki, (1 = 1,2). Also, 717" 4 x2,° and
f(flfl) = 7 f(322) = g™, Since (X,7, E) is SDTy—space, then 715" ¢ cle(73%)
or B f clo(F1s)). So that, 715 Ccle(B))F, implies oo )C fng(ele(72))"
(fou(cle(2;2)))" [by proposition 3.5]. Thus, 417" €(clg(fau(72;?)))¢ (as fay is SD-
homeomorphism). It follows that, y~1f Lo clﬁ(yNQfQ). similarly, we also have ﬁgf 2

clg(git"). Hence, (Y, 7, K) is a SDT,,.
Theorem 5.7. The property of being a SDT% —space is a topological property.

Proof. Suppose that (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
foy : SD(X)g — SD(Y)x be SD-open, SD-closed, one-one, onto.

Let g* € SDP(Y). Then, by lemma 5.3 32 € X and e € E such that §(z) =
y,¥(e) = k and fzu(25) = y*. Since (X, 7, E) is SDT1—space, then Ty is an open



Journal of New Theory 16 (2017) 27-48 45

or a closed SD-point in X. Since fz, is SD-open and SD-closed, then f(Z¢) = g is
open SD-set and closed SD-set in Y. Hence, (Y, 7, K) is SDT%.

Theorem 5.8. The property of being a SDT|—space is a topological property.

Proof. Suppose that (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
foy : SD(X)g — SD(Y )k be SD-homeomorphism mapping.

Let §* € SDP(Y)g. Then, by lemma 5.3 3z € X and e € F such that 3(z) =
y,(e) = k,7¢ € SDP(X)g and f(7¢) = gyF. Since (X, 7, E) is SDT;—space, then
75 = cle(T7). Thus, fau(T5) = fau(cle(¥F)) = clo(foy(T7)) = cle(yy) (as fpy is SD-
homeomorphism). Therefore, J¥ = clg(y%). Hence, (Y,7, K) is SDT}.

Theorem 5.9. The property of being SDT} —space is a topological property.

Proof. Suppose that (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
fay SD( )e — SD(Y)k be SD—homeomorph1sm mapping,.

Let yltl,gjgf € SDP(Y )k such that ylt q ygrg Then, by lemma 5.3 3 zq, 29 €
X,e1,e9 € E such that ﬁ(xl) =y, ¥(e;) = ki, (1 = 1 2) Also, 13" 4 72, and
F(F8) = i, f(£522) = §2*. Since (X, 7, E) is SDT*—space, then 715" f cle(72%?)
and 7,2 4 cle(275"). So that 7,5 C(cle(7222))¢, implies fa(715)C fay (cle(£2))¢ =
(fau(cle(72;?)))° [by proposition 3.5]. Thus, 717" E(clg(fsy(72;?)))¢ (as fay is SD-
homeomorphism). It follows that, y~1f Lo cl@(y}lf). similarly, we also have ﬁgf 2

clg(git"). Hence, (Y,7, K) is a SDT}.
Theorem 5.10. The property of being a SDT,—space is a topological property.

Proof. Suppose (X, 7, FE) and (Y, 7, K) be two SDT-spaces and let fzy, : SD(X)g —
SD(Y)k be SD-homeomorphism mapping,.

Let % € SDP(Y)k. Then, by lemma 5.3 3z € X and e € E such that 3(x) =
v, 7,0( ) = k,zf € SDP(X)p and f(z7) = yr. Since (X, 7, F) is SDT,—space, then

n@ EENq e) Cle(aeg)

e fﬁw(xt) N fﬂw(m@”’?eNqﬂf) de(Oei)) m@fﬁw(ef)EN(fﬁw(ef«’))K
ﬂ@fﬂw(ef)eNQfﬁ )Kcle(fﬁw<ofw e5) )) ﬂ@ kGNEZ o Cle(ng;)'

(P (e5), o)

Therefore, yF = ﬂ@ngNf N Cle(Ogr)' Hence, (Y, 7, K) is SDT5.

er)K

fou(cle(Og;)) =

Theorem 5.11. The property of being SDT;—space is a topological property.

Proof. Suppose that (X, 7, F) and (Y, 7, K) be two SDT-spaces and let
foy : SD(X)g — SD(Y)k be SD-open, one-one and onto.

Let yltl,yéff2 € SDP(Y)g such that lefl q y~27]f2. Then, by lemma 5.3 3 21,25 €
X,e1,eo € E such that [(z;) = vy, ¥(e;) = ki, (i = 1,2). Also, 71;" 4 z2,° and
f(zy') = g, f(222) = gjgff Since (X,7,E) is SDT3—space, then there exist
FE7GE € 7 such that l’lt EFE7.T2T EGE and FE Q/GE Thus fgw(lﬂil)Efﬁw(FE)
fﬁw(l’gt )Efgw(GE) and fW(FE) g’fgw(GE) [by proposition 3.5]. Therefore,

11 € f3u(FE), G2 € f5u(Gp) and fou(Fg) d f50(GE), (f34(Fr), f5u(GE) € ).
Hence, (Y, 7, K) is SDT5.
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Theorem 5.12. The property of being a SD Ry;—space is a topological property.

Proof. Suppose (X, 7, E) and (Y, 7, K) be two SDT-Spaces and let fgy : SD(X)g —
SD(Y)k be SD- homeomorthism. N

Let g* € SDP(Y)X and Fx € 7)° such that g* ¢ Fx. Then, by lemma 5.3 3z € X
zind = E such that ¢(e) =k, B(z) =y, 7y € SDP(X ) , f(@%) = gF and fEJ(FK)
Gg,Gg € 7% (as Jpy 18 D- continuous). Also, T A Gr, s (X7 E) is SDR;—space,
then there exist HE,ME € 7 such that xtGHE,GECME and HE A ME Thus,
Fou(F)E fau (Hp), f3(G)C fap(Mp) and fau(H) d fas(Mp) [by proposition 3.5]

Therefore, ytefﬁw(HE) FKCfﬁzp(ME) and fw(HE) Q/fﬁw(ME) (fap(HE), fou(ME) €
n). Hence, (Y, 7, K) is SDRs.

Theorem 5.13. The property of being a SDT;—space is a topological property.

Proof. Suppose (X, 7, E) and (Y, 7, K) be two SDT-spaces and let fzy, : SD(X)p —
SD(Y)k be SD-homeomorphism mapping and (X, 7, ) is SDT3—space, then (Y, 7, K)
is SDT; and SDRy—spaces [by theorems 5.8,5.12]. Hence, (Y, 7, K) is SDT5.

Theorem 5.14. The property of being a SDT5 —space is a topological property.

Proof. Suppose (X, 7, E) and (Y, 7, K) be two SDT-spaces and let fgzy : SD(X)p —
SD(Y)k be SD-homeomorphism mapping and (X, 7, F) is S DTy —space, then (Y, 7, K)
is SDTY and SDRy—spaces [by theorems 5.9,5.12]. Hence, (Y, 7, K) is SDT}.

Theorem 5.15. The property of being a DT;*—space, (i=0, 1, 2, 3) is a topological
property.

Proof. Straightforward.
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