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Graphical/Tabular Abstract (Grafik Özet) 

In this study, hydroelectric power forecasting is conducted using Long Short-Term Memory 

(LSTM), Support Vector Regression (SVR), and hybrid LSTM-SVR models based on climate data. 

/ Bu çalışmada, iklim verilerine dayalı olarak Uzun Kısa Süreli Hafıza (LSTM), Destek Vektör 

Regresyonu (SVR) ve hibrit LSTM-SVR modelleri kullanılarak hidroelektrik güç tahmini 

gerçekleştirilmiştir. 

 

Figure A: Test graph of the SVR model with 12 parameters / Şekil A: 12 parametreli SVR 

modelinin test grafiği  

Highlights (Önemli noktalar)  

➢ Twelve climate variables obtained from the Yozgat Meteorological Directorate are 

being used. In this way, the impact of climate data on hydroelectric power generation is 

being examined./ Yozgat Meteoroloji Müdürlüğü'nden elde edilen 12 iklim verisi 

kullanılmaktadır. Böylece iklim verilerinin hidroelektrik güç üretimi üzerindeki etkisi 

incelenmektedir. 

➢ The effects of climate data on hydroelectric power generation are analyzed using 

Pearson correlation analysis./ Pearson Korelasyon analizi ile iklim verilerinin 

hidroelektrik güç üretimine etkileri analiz edilmektedir. 

➢ Hyperparameters are selected using the Bayesian Optimization method, and the 

performance of the models is enhanced./ Bayes Optimizasyon yöntemi kullanılarak 

hiperparametreler seçilmekte ve modellerin performansı artırılmaktadır. 

Aim (Amaç): The aim of this study is to investigate the effect of climate data on hydroelectric 

power generation. / Bu çalışmanın amacı, iklim verilerinin hidroelektrik enerji üretimi üzerindeki 

etkisini incelemektir. 

Originality (Özgünlük): Power prediction has been conducted using LSTM, SVR, and the LSTM-

SVR models, utilizing data obtained from the Süreyyabey Hydroelectric Power Plant and the 

Yozgat Meteorological Directorate. / Süreyyabey hidroelektrik güç santrali ve Yozgat Meteoroloji 

Müdürlüğü'nden elde edilen veriler kullanılarak LSTM, SVR ve LSTM-SVR modelleri ile güç 

tahmini gerçekleştirilmiştir. 

Results (Bulgular): As a result of power prediction using the SVR model with 11 and 12 climate 

parameters, the R-value is close to 1, while the MAE and RMSE values are observed to be close 

to 0./ SVR modelinin 11 ve 12 iklim parametresi ile güç tahmini sonucunda R değeri 1'e yakın 

olmakta, MAE ve RMSE değerleri ise 0'a yakın değerler almaktadır. 

Conclusion (Sonuç): In this study, the SVR model has achieved the best performance in power 

prediction, and it has been concluded that climate data has a significant impact on hydroelectric 

power generation./ Bu çalışmada, SVR modeli güç tahmininde en iyi performansı elde etmiş ve 

iklim verilerinin hidroelektrik güç üretiminde önemli bir etkisi olduğu sonucuna varılmıştır. 
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Abstract 

Hydroelectric power is a significant renewable energy source for the development of countries. 

However, climatic data can impact power generation in hydroelectric power plants. 

Hydroelectric power forecasting is conducted in this study using Long Short-Term Memory 

(LSTM), Support Vector Regression (SVR), and hybrid LSTM-SVR models based on climatic 

data. The dataset consists of climate data from the Yozgat Meteorology Directorate in Turkey 

from 2007 to 2021 and power data obtained from the Süreyyabey Hydroelectric Power Plant in 

Yozgat. The correlation coefficient examines the relationship between climate data and monthly 

hydroelectric power generation. The hyper-parameters of the models are adjusted using the 

Bayesian Optimization (BO) method. The performance of monthly hydroelectric power 

prediction models is assessed using metrics such as correlation coefficient (R), root mean 

square error (RMSE), and mean absolute error (MAE). When trained using 11 and 12 climate 

parameters, the SVR model exhibits an R-value close to 1, and MAE and RMSE values close to 

0 are observed. Additionally, regarding training time, the SVR model achieves accurate 

predictions with the shortest duration and the least error compared to other models. 

 

Yozgat İli'nde Hidroelektrik Enerji Üretiminin Tahmini ve İklim 

Faktörlerinin Derin Öğrenme Yöntemleri ile Analizi: Bir Vaka Çalışması 

Makale Bilgisi 

Araştırma makalesi 

Başvuru: 17/07/2024 
Düzeltme: 13/09/2024 

Kabul: 21/09/2024 
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Öz 

Hidroelektrik enerji, ülkelerin kalkınmasında önemli bir yenilenebilir enerji kaynağıdır. Ancak 

iklim verileri, hidroelektrik santrallerindeki enerji üretimini etkileyebilmektedir. Bu çalışmada, 

hidroelektrik enerji üretimi tahmini, iklim verilerine dayalı olarak Uzun Kısa Süreli Hafıza 

(LSTM), Destek Vektör Regresyonu (SVR) ve hibrit LSTM-SVR modelleri kullanılarak 

gerçekleştirilmiştir. Veri seti, Türkiye'deki Yozgat Meteoroloji Müdürlüğü'nden 2007-2021 

yılları arasında alınan iklim verileri ve Yozgat'taki Süreyyabey Hidroelektrik Santrali'nden elde 

edilen enerji verilerinden oluşmaktadır. İklim verileri ile aylık hidroelektrik enerji üretimi 

arasındaki ilişki, korelasyon katsayısı ile incelenmiştir. Modellerin hiper-parametreleri, 

Bayesian Optimizasyonu (BO) yöntemi kullanılarak ayarlanmıştır. Aylık hidroelektrik enerji 

tahmin modellerinin performansı; korelasyon katsayısı (R), ortalama kare hatası (RMSE) ve 

ortalama mutlak hata (MAE) gibi metriklerle değerlendirilmiştir. 11 ve 12 iklim parametresi ile 

eğitilen SVR modelinde R değeri 1'e yakın olup, MAE ve RMSE değerlerinin 0'a yakın olduğu 

gözlemlenmiştir. Ayrıca eğitim süresi açısından SVR modeli, diğer modellere kıyasla en kısa 

sürede en az hata ile doğru tahminler yapmıştır. 

 

1. INTRODUCTION (GİRİŞ) 

Advancements in technology, the proliferation of 

industrial activities, and population growth 

increase electricity demand, escalating the 

electricity generated to meet this demand. The 

International Renewable Energy Agency (IRENA) 

predicts that global electricity demand will 

increase by an average of 3.4% annually until 2026 

[1]. Sustainable energy sources are becoming 

increasingly popular to meet this growing demand 

and reduce greenhouse gas emissions [2]. As a 

result, global hydroelectric power generation in 

2020 has reached 4345.99 TWh [3]. According to 

the IRENA report, 2022 global hydroelectric 

installed capacity has reached 1256 GW, excluding 

pumped hydro. This represents 37% of total 

renewable energy sources [4]. 
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Hydroelectric power plants are affected by climate 

change because they use natural water resources 

for energy production [5-7]. Due to the negative 

effects of climate change, hydroelectric power 

capacity decreased by more than 2% globally, and 

hydroelectric power generation decreased by 4.5% 

in Turkey in 2023 [1]. Floods, droughts, rainfall 

acceleration or increase, changes in rainfall timing, 

and temperature changes are a few of these effects 

[2]. As a result of a decrease in precipitation, the 

turbine efficiency is affected by a reduction of flow 

[8]. In contrast, excessive precipitation may 

damage turbine blades due to increased sediment 

load, even though increasing precipitation 

increases power generation [6]. Increased 

temperatures lead to increased evaporation from 

reservoir surfaces, resulting in a decrease in water 

levels. 

The Representative Concentration Pathway 

(R.C.P.) climate scenarios are used to examine the 

impact of climate change on hydroelectric power 

generation. RCP 2.6, RCP 4.5, and RCP 8.5 

scenarios illustrate future climate conditions. Data 

derived from these scenarios are analyzed using 

machine learning, deep learning, and statistical 

methods to estimate hydroelectric power 

generation. In the RCP 4.5 and RCP 8.5 scenarios, 

carbon emissions are projected to reach 4.5 W/m² 

and 8.5 W/m² by 2100, respectively. In contrast, 

the RCP 2.6 scenario anticipates a reduction in 

carbon emissions. Based on these carbon emission 

projections, the RCP 2.6, RCP 4.5, and RCP 8.5 

scenarios are considered best-case, moderate, and 

worst-case scenarios, respectively [9-11]. 

The studies evaluating the effects of climate 

change on hydroelectric energy production from 

dams in China, conducted by Huang et al. (2021), 

state that the hydroelectric energy production of 

the Liyuan Dam decreased by 163.3 MW and 

188.3 MW under the RCP2.6 and RCP8.5 climate 

scenarios, respectively, relative to the base period. 

It is also projected that the increase in electricity 

demand by 91.42 MW could lead to power outages 

[9]. Meanwhile, the study by Huangpeng et al. 

(2021) predicts that the electricity production of 

the Jinanqiao Hydroelectric Power Plant may 

decrease by 10.74%, 16.38%, and 22.25% by 2050 

under the RCP2.6, RCP4.5, and RCP8.5 climate 

scenarios, respectively [12]. 

According to findings from various studies in 

Africa, Boadi et al. (2019) indicate that the power 

generation of the Aksombo Hydroelectric Power 

Plant in Ghana has been influenced by rainfall 

fluctuations, accounting for 21% between 1970 

and 1990, while 72.4% has been influenced by 

ENSO (El Niño Southern Oscillation) and lake 

levels. These results suggest Ghana must explore 

alternative energy sources for electricity generation 

[13]. Hamududu et al. (2016) project that power 

generation in the Zambezi River Basin will 

decrease by 8%, 18%, and 28% by 2020, 2050, and 

2080, respectively, due to rising temperatures and 

reduced rainfall [14]. Uamusse et al. (2020) 

suggest that hydroelectric power plants in 

Mozambique will experience reduced power 

generation due to drought, negatively impacting 

the economy. The study predicts a 20% decrease in 

power generation for the Cahora Bassa 

hydroelectric power plants by 2100 [15]. 

From the studies in Iran, Behesti et al. (2019) 

stated that the hydroelectric power production of 

the Karun III Dam is affected by the flow. 

Accordingly, hydroelectric power production is 

estimated to increase by 26.7% to 40.5% between 

2020 and 2049 and 17.4% to 29.3% between 2070 

and 2099 [5]. In the study by Wang et al. (2021), it 

is indicated that the decrease in flow of the Aras 

Dam on the border of Iran and the Republic of 

Azerbaijan would result in a reduction in 

hydroelectric power generation. Additionally, 

according to the RCP2.6, RCP4.5, and RCP8.5 

climate scenarios, this dam's annual average 

hydropower generation is projected to decrease by 

3.36 MW, 4.62 MW, and 6.64 MW, respectively 

[11]. 

One of the studies conducted by different 

countries, Khaniya et al. (2020) in its research, 

Samanalawawe Hydroelectric Power Station in Sri 

Lanka is estimated to increase hydroelectric power 

generation by 7.29% and 10.22% from 2020 to 

2050, respectively, according to RCP4.5 and 

RCP8.5 climate scenarios. This study reveals that 

Samanalawawe Dam is not affected by climate 

change [16]. In another study, Shrestha et al. 

(2021) predict that the hydroelectric power 

generation of the Kulekhani Hydroelectric Power 

Plant in Nepal will decrease by between 0.5% and 

13%. The decrease is attributed to the temperature 

increase and rainfall fluctuations [17]. 

One of the studies on hydroelectric power 

prediction in Turkey is the work by Karakuş 

(2023), who employed a new deep hybrid model to 

forecast power generation and Net Head for the 

Hirfanlı Hydroelectric Power Plant in Kırşehir. 

This study utilized climate factors and data 

obtained from hydroelectric plants. The successful 

performance of the hybrid model in predicting 

hydroelectric power generation and Net Head has 
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been confirmed through statistical analyses. 

Additionally, the article emphasizes that this model 

will be used to adjust energy consumption [18]. In 

Ceribaşı's study,  energy predictions for the Adasu 

Regulator and Hydroelectric Power Plant and 

Pamukova Hydroelectric Power Plant in the 

Sakarya Basin, Turkey, are made both in the short 

and long term. The study emphasizes that these 

predictions demonstrated strong performance and 

underscores the importance of short and long-term 

forecasts in energy planning [19].  

This study aims to investigate the effect of climate 

data on hydroelectric power generation. The study 

utilized monthly climate data from the Yozgat 

Meteorology Directorate in Turkey from 1 January 

2007 to 31 December 2021. Following the 

preparation phase of the climate data, the Bayesian 

Optimization technique is employed to enhance 

prediction performance. For hydroelectric power 

forecasting, Long Short-Term Memory (LSTM), 

Support Vector Regression (SVR), and hybrid 

LSTM-SVR models are applied, and the accuracy 

of these models is evaluated using statistical 

measurement parameters. 

2.MATERIALS AND METHODS (MATERYAL 

VE METOD) 

This section provides information about 

Süreyyabey hydroelectric power plants and climate 

datasets. The min-max normalization technique is 

employed for data preprocessing. The relationship 

between climate data is being examined through 

Karl Pearson correlation coefficient. Bayesian 

optimization is used to tune the hyper-parameters 

of the RNN and SVR models to improve the 

prediction accuracy. RNN, SVR, and hybrid RNN-

SVR models are used in hydroelectric power 

prediction. 

2.1.Study Area And Data Set (Çalışma Alanı ve 

Veri Seti)  

Süreyyabey Dam, located on the Çekerek Stream 

in the Yozgat province, has a reservoir area of 

41.34 km² [20], with a riverbed elevation of 103 

meters [21]. The annual energy production of the 

Süreyyabey Dam is projected to be 51 GWh  [21]. 

The data set consists of climate data from the

Table 1. Daily climate and power generation data for the Süreyyabey hydroelectric power plant 
(Süreyyabey hidroelektrik santralleri için günlük iklim ve enerji üretim verileri) 

 

Yozgat Meteorology Directorate and power 

generation data from the Süreyyabey hydroelectric 

power plant for 15 years. The parameters of the 

data set are indicated in Table 1.  

Figure 1 illustrates the total hydroelectric power 

generation data between 2007 and 2021. In the 

graph, hydroelectric power generation reached its 

lowest level at 13.40 GWh in 2009 and its highest 

level at 44.10 GWh in 2012. There is a downward 

trend in hydroelectric power generation from 2012 

to 2015. However, power generation shows an 

increasing trend in 2016, 2017, 2019, and 2021 but 

has yet to reach the highest level seen in 2012. 

2.2.Min-Max Normalization (Min-Mak 

Normalizasyon) 

Data sets in machine learning, deep learning, 

regression, and classification problems often have 

different ranges [22]. These differences prevent the 

model from achieving better results. Therefore, the 

min-max normalization technique transforms the 

Feature Units Range 

Precipitation Amount Mm (0)-(93.139) 

Open Surface Evaporation Amount mm (0)-(12.2) 

Sunshine Duration h (-1.6)-(20.25) 

Average Air Temperature ℃ (-12.1)-(40.762) 

Maximum Air Temperature ℃ (-9.2)-(37.4) 

Minimum Air Temperature ℃ (-17.0)-(22.2) 

Average Wind Direction ° (0.3)-(359.8) 

Average Wind Speed m/s (0.7)-(12.2) 

The Direction of Maximum Wind ° (1.0)-(360) 

Maximum Wind Speed m/s (1.9)-(25.3) 

Time of Maximum Wind h (-1.38)-(23.58) 

Average Humidity % (0)-(100) 

Power Generation kWh (89.0)-(331.02) 
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data set into a standard format [23]. This method 

normalized the data values to the [0,1] range, 

eliminating scale differences [22]. Equation (1) 

provides the mathematical formula for the min-

max normalization technique.  

min( )
'

max( ) min( )

X X
X

X X

−
=

−
 (1) 

The normalization of climate data converts 

different scales of data into standardized data. 

                     

Figure 1. Total power generation values (GWh) for Süreyyabey Hydroelectric Power Plant (Süreyyabey 

Hidroelektrik Santrali için toplam güç üretim değerleri (GWh))

2.3.Correlation Coefficient (Korelayon Katsayısı)  

Correlation is a data analysis technique used to 

describe the strength of the relationship between 

any two variables in a dataset [24]. Additionally, it 

examines whether the relationship between these 

variables is linear. To determine the relationship 

between two variables, two methods are commonly 

used: the Karl Pearson correlation coefficient and 

the Spearman rank correlation coefficient. The 

Pearson correlation coefficient examines whether 

there is a linear relationship between two 

independent variables.  The correlation coefficient 

is a scientific measure that takes values ranging 

from +1 to -1. There are specific criteria for 

interpreting the correlation coefficient. As a result 

of these criteria, "0" indicates that there is no linear 

relationship between the variables, "+1" indicates a 

powerful positive relationship, and "-1" means a 

very strong negative relationship [25]. Equation (2) 

shows the equality of the correlation coefficient 

[26].  

 ˆ 2 1/2 2 1/2

ˆ ˆ( )( )

ˆ[ ( ) ] [ ( ) ]

i i i

y y

i i

y y y y
r

y y y y

− −
=

− −


 

 (2) 

where ˆ
iy  denotes the predicted value of y, and 

represents the mean of the y values. Equation (3) is 

used to calculate the mean value [27]. 

1

1 n

i
i

U U
n =

=   (3) 

2.4.Bayesian Optimization (BO) (Bayes 
Optimizasyonu) 

Hyper-parameter tuning is a crucial aspect of deep 

learning and machine learning algorithms. In deep 

learning, hyper-parameters such as learning rate, 

number of iterations, number of hidden layers, 

batch size, and activation functions are used [28]. 

Hyper-parameters affect the model's performance, 

thereby increasing the accuracy of the predicted 

data. Hyper-parameters are used in the training 

process and the development of the model [29]. 

The learning rate is used to adjust the speed at 

which the weights in the model are updated [30].  

In the literature, manual tuning, grid search, 

random search, and Bayesian Optimization (BO) 

methods are preferred for hyper-parameter tuning 

[31]. Manual hyper-parameter tuning is more 

challenging and requires expertise compared to 

other methods. As the size of the dataset increases, 

manual tuning can significantly impact the 

performance and accuracy of the models during 

training. Therefore, using automated search 

methods for hyper-parameter tuning is more 

efficient [32]. Grid search is an easy-to-implement 

method; however, its efficiency decreases as 

hyper-parameters increase [31]. Random search 

has advantages such as being more efficient by not 

searching for unnecessary hyper-parameters for the 
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model, having lower costs than grid search, and 

being efficient in high-dimensional datasets [32]. 

However, its disadvantage is that it conducts 

unnecessary analyses as the search space increases 

since it only utilizes previously found good 

performances [31]. Unlike other optimization 

methods, Bayesian Optimization (BO) utilizes 

prior knowledge of the objective function to 

minimize loss effectively, leading to improved 

prediction accuracy [28]. BO utilizes a 

probabilistic model for solving complex problems 

[33]. In BO, Gaussian process models and 

acquisition functions tune hyper-parameters. 

In LSTM, SVR, and LSTM-SVR models, hyper-

parameters such as batch size, activation function, 

epoch, optimization algorithm, hidden layer 

structure, learning rate, kernel function, box 

constraint, epsilon, and kernel scale are tuned 

using the Bayesian Optimization (BO) method. 

2.5.Long Short-Term Memory (Uzun Kısa Süreli 

Bellek) 

Long Short-Term Memory (LSTM) addresses the 

vanishing gradient problem encountered in RNN 

models [34]. LSTM consists of four fundamental 

components: the forget gate, input gate, output 

gate, and cell state [35]. With its three gates, input, 

output, and forget, LSTM has a longer data 

retention time than RNN. The cell state is used to 

store and update information in the gates. The 

forgetting gate processes data that will not be 

considered, the input gate determines the data to be 

added, and the output gate identifies the data to be 

outputted [36]. LSTM utilizes sigmoid and 

hyperbolic tangent functions. Sigmoid functions 

determine which data to forget and which to 

remember, whereas hyperbolic tangent functions 

regulate cell data [37]. Figure 2 illustrates the 

structure of the LSTM model. 

 

Figure 2. The structure of the LSTM model [38] 
(LSTM modelin yapısı) 

2.6.Support Vector Regression (SVR) (Destek 

Vektör Regresyon) 

Support Vector Regression (SVR) is modeled as a 

supervised machine learning algorithm capable of 

predicting nonlinear data. Its computation is based 

on the linear regression model [39]. SVR aims to 

minimize the error between predicted and actual 

values. Its advantages are achieving good results 

even with small data sizes and overcoming 

complex problems [40]. Furthermore, parameter 

selection plays an important role in the 

performance of SVR [31]. Several disadvantages 

are associated with this method, including 

increased computation time with growing datasets 

[30] and difficulties in selecting the appropriate 

kernel function for optimal solutions [40]. To 

improve the accuracy of the SVR model, it is 

crucial to adjust the type of kernel function and its 

parameters. Improper adjustment of these values 

can lead to issues such as over-fitting or under-

fitting [41]. 

2.7.Performance Metrics (Performans Metrikler) 

To evaluate the methods used and the predicted 

hydroelectric power using monthly climate data, as 

well as to compare the performance results, the 

measurement parameters of correlation coefficient 

(R), root mean square error (RMSE), and mean 

absolute error (MAE) are utilized. 

The mean absolute error (MAE) is used to 

calculate the difference between the predicted 

power data and the actual power data [33]. The 

MAE ranges from 0 to + , with values closer to 0 

indicating that the predicted values are closer to the 

actual data [42]. Equations (4) and (5), 

respectively, depict the mathematical formulas of 

MAE and RMSE [31]. RMSE also ranges between 

0 and +∞, similar to MAE. As RMSE approaches 

MAE, model error robustness improves [42]. 

1

1
ˆ

n

i

MAE y y
n =

= −  (4) 

2

1

1
ˆ( )

n

i

RMSE y y
n =

= −  (5) 

where y represents the actual data, the predicted 

data, and the total number of data points in the 

dataset.  

3.RESULTS (Sonuçlar) 

This section discusses the comparison results of 

the LSTM, SVR, and hybrid LSTM-SVR models 
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used for power predictions of the Süreyyabey 

Hydroelectric Power Plant. Climate data are 
obtained from the Yozgat Weather Directorate, and

power production data from the Süreyyabey 

Hydroelectric Power Plant are utilized. The study 

initially is conducted as a correlation analysis of 

twelve climate variables. Table 2 presents the 

correlation analysis coefficients of the monthly 

climate data.  

The correlation coefficients of climate data with 

power production from strong to weak in Table 2. 

When examining the correlation coefficients of 

monthly climate data in Table 2, it is observed that 

there is a positive relationship between 

precipitation amount, average wind direction, the 

direction of maximum wind, average wind speed, 

maximum wind speed, sunshine duration, and 

power production. Conversely, climate variables 

such as average humidity, maximum air 

temperature, minimum air temperature, time of 

maximum wind, open surface evaporation amount, 

and average air temperature negatively correlate 

with power production. 

Table 2. The correlation analysis results of the monthly climate data (Aylık iklim verilerinin korelasyon analizi 

sonuçları) 

 

The correlation analysis results are used as inputs 

for LSTM, SVR, and hybrid LSTM-SVR models 

for predicting power generation. In the hybrid  

LSTM-SVR model, the outputs of LSTM are used 

as input data for the SVR model. 

  

Parameter Values Correlation Analysis  

Precipitation Amount 0.3717 

Average Wind Direction 0.2108 

The Direction of Maximum Wind  0.1774 

 Average Wind Speed 0.1570 

Maximum Wind Speed 0.1249 

Sunshine Duration 0.0742 

Average Humidity -0.1956 

Maximum Air Temperature -0.1846 

Minimum Air Temperature -0.0855 

Time of Maximum Wind -0.0743 

Open Surface Evaporation Amount -0.0514 

Average Air Temperature -0.0138 
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Table 3. Hyper-parameters and their values for LSTM, SVR and LSTM-SVR (LSTM, SVR ve LSTM-SVR 

için Hiperparametreler ve Değerleri) 

 
The study randomly partitioned the dataset into 

80% training and 20% test data in MATLAB. 

Table 3 shows the hyper-parameters and their 

values for the LSTM, SVR, and LSTM-SVR 

models. 

Table 4 compares R, RMSE, and MAE values 

obtained after 10 iterations for LSTM, SVR, and 

LSTM-SVR models across 12 parameters in 

monthly data. Table 5 compares 11 parameters, 

excluding average air temperature, for LSTM, 

SVR, and hybrid LSTM-SVR models. The R-value 

of 0.96183 obtained for the SVR model with 12 

parameters and 0.96463 obtained for 11 parameters 

indicates a strong relationship between climatic 

data and hydroelectric power generation. 

Additionally, the lower RMSE value of the SVR 

model compared to other models suggests that the 

model makes predictions with small errors. 

Furthermore, the MAE value of the SVR model is 

close to 0 when compared to actual hydroelectric 

power generation values, indicating that the model 

operates with minimal errors. The SVR model 

completes its training process in the shortest time 

when comparing the training times of the models 

in the study. 

Table 4. The performance metrics of LSTM, SVR, and LSTM-SVR models for 12 parameters (LSTM, SVR 

ve LSTM-SVR modellerinin 12 parametre için performans metrikleri) 

 

Table 5. The performance metrics of LSTM, SVR, and LSTM-SVR models for 11 parameters (LSTM, SVR 

ve LSTM-SVR modellerinin 11 parametre için performans metrikleri) 

 

Model R RMSE MAE Training Time 

LSTM 0.75665 0.14964 0.12243 6.5335 

SVR 0.96463 0.083663 0.051532 0.15625 

LSTM-SVR 0.8400 0.16902 0.14056 LSTM: 10.3138 - SVR:4.0729 

 

Model R RMSE MAE Training Time 

LSTM 0.8625 0.14132 0.10951 6.0711 

SVR 0.96183 0.08811 0.052819 0.15625 

LSTM-SVR 0.83162 0.14576 0.12129 LSTM: 8.4592 - SVR:4.1605 

 

Models Hyper-parameters Values 

LSTM 

Batch size 19 

Activation Function ReLU 

Epoch 149 

Optimization Algorithm Adam 

Hidden Layer Structure 6 

Learning Rate 0.047997 

SVR 

Kernel Function Gaussian 

Box Constraint 5.6355 

Epsilon 0.0028193 

Kernel Scale 1.3571 

LSTM-SVR 

Kernel Function Gaussian 

Box Constraint 960.81 

Epsilon 0.0010132 

Kernel Scale 9.9369 

Batch size 29 

Activation Function ReLU 

Epoch 277 

Optimization Algorithm Adam 

Hidden Layer Structure 2 

 Learning Rate 0.024174 
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Figures 3, 4, and 5 show the real power and power 

graphs predicted using the SVR, LSTM, and 

LSTM-SVR models for 12 parameters. The graphs 

depict 36 test data points, representing 20% of the 

180 monthly power data points. The blue lines 

indicate the actual power values of the test data, 

while the red lines represent the power values 

predicted by the models. Figure 3 demonstrates 

that the SVR model, utilizing 12 climate 

parameters, predicts the actual power with less 

error. Although the LSTM model has an R-value 

of 0.8625 for the 12 climate parameters, its MAE 

value is lower than the LSTM-SVR model, 

indicating that it predicts the actual power with less 

error. This observation is clearly illustrated in 

Figure 4, showcasing the LSTM model's 

performance.

 

Figure 3. Test graph of the SVR model with 12 parameters (12 parametreli SVR modelinin test grafiği) 
 

 

Figure 4. Test graph of the LSTM model with 12 parameters (12 parametreli LSTM modelinin test grafiği) 

 

Figure 5. Test graph of the LSTM-SVR model with 12 parameters (12 parametreli LSTM-SVR modelinin test 

grafiği) 
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Figures 6, 7, and 8 show the real power and power 

graphs predicted using the SVR, LSTM, and 

LSTM-SVR models for 11 parameters. Figure 6 

illustrates the relationship between actual and 

predicted power data when the average air 

temperature parameter, among the total of 12 

climate parameters, is excluded from the SVR 

model. Figures 7 and 8, however, observe a more 

pronounced discrepancy between actual and 

predicted power values.

  

Figure 6. Test graph of the SVR model with 11 parameters (11 parametreli SVR modelinin test grafiği) 

  

Figure 7. Test graph of the LSTM model with 11 parameters (11 parametreli LSTM modelinin test grafiği) 

  

Figure 8. Test graph of the LSTM-SVR model with 11 parameters (11 parametreli LSTM-SVR modelinin test 

grafiği) 
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4.DISCUSSION (TARTIŞMA) 

In the study, the impact of climate data on power 

generation is examined by calculating the Pearson 

correlation coefficient. According to the 

correlation analysis results, the highest correlation 

within monthly climate data is found between 

precipitation amount and hydroelectric power 

generation, with a correlation coefficient of 

0.3717. The correlation coefficient for average air 

temperature is calculated as -0.0138, indicating no 

significant relationship between average air 

temperature and hydroelectric power generation. 

The correlation analysis reveals that the average air 

temperature has a value close to 0. This value 

indicates that the effect of average air temperature 

on hydroelectric power generation is weak. 

The close R values of the 12 and 11 parameters 

presented in Tables 4 and 5 of the SVR model 

indicate that similar parameters are used in both 

models. However, it is determined that the 

exclusion of average air temperature has a minimal 

effect on the overall performance of the model. 

According to the results of the correlation analysis, 

average air temperature is found to have a weak 

effect on hydroelectric power generation. 

Therefore, it is concluded that average air 

temperature has a minimal impact on the 

performance of the SVR model. 

In other studies, various models have been 

developed to predict hydroelectric power 

generation for hydroelectric plants located in 

different countries. These models examine the 

impact of different climatic parameters on 

hydroelectric power generation. In the study by 

Ekanayake et al. (2021), rainfall data, minimum 

and maximum temperature, and evaporation 

parameters collected from six locations in the 

catchment area of the Samanalawewa reservoir in 

Sri Lanka have been used. Pearson and Spearman 

correlation analysis has revealed that rainfall data 

from only one location has a minimal impact on 

energy production. Gaussian Process Regression 

(GPR), Support Vector Regression (SVR), 

Multiple Linear Regression (MLR), and Power 

Regression (PR) models have been used to predict 

hydroelectric power generation. The performance 

of these models has been evaluated using different  

statistical methods, including the correlation 

coefficient (R), root mean square error (RMSE), 

mean absolute percentage error (MAPE), the ratio 

of RMSE to the standard deviation of measured 

data (RSR), BIAS, and the Nash number. In the 

study, the R values for the SVR, GPR, MLR, and 

PR models are 0.87, 0.92, 0.60, and 0.67, 

respectively. It has been emphasized that the GPR 

model provided the most accurate predictions, with 

its R-value being the closest to 1 among the 

models. Compared to our study, the prediction 

accuracy of the SVR model increases with the 

number of parameters [39]. 

Javed et al. (2020) conducted a study on 

hydroelectric power prediction using temperature 

and rainfall data from the Tarbela Dam in Pakistan. 

The study employed MLR, K-Nearest Neighbour 

(K-NN), SVR, Random Forest (RF), and LSTM 

models. The RF model achieved the lowest 

prediction error when using temperature data, with 

an MAE of 2.47 and an RMSE of 3.98. While the 

accuracy of the LSTM model improves with an 

increased dataset size, this study did not perform as 

well, yielding an MAE of 4.39 and an RMSE of 

6.89. According to the paper, the SVR model 

exhibited the highest error rates, with an MAE of 

9.24 and an RMSE of 10.75 [43]. 

5. CONCLUSIONS (SONUÇLAR) 

In this study, the monthly power prediction of the 

Süreyyabey Hydroelectric Power Plant has been 

conducted using LSTM, SVR, and a hybrid 

LSTM-SVR model. The statistical measurement 

parameters R, RMSE, and MAE have been 

employed to determine the best model for power 

prediction. A dataset consisting of 12 climatic 

variables obtained from the Yozgat Meteorological 

Directorate has been utilized, from 2007 to 2021 

monthly. In this dataset, climate and power data 

have been normalized and ranked from strong to 

weak relationships through correlation analysis. 

The selection of hyper-parameters in the models 

has been performed using the BO method. The BO 

method is used to quickly find the optimal results 

for hyper-parameters, thereby preventing models 

from overfitting or under-fitting. 

The SVR model achieves R values of 0.96183 and 

0.96463 on the 12 and 11 climate datasets, 

respectively, which are closest to 1 compared to 

other models. Additionally, the SVR model's 

RMSE values are 0.08811 and 0.083663, while the 

MAE values are 0.052819 and 0.051532. These 

RMSE and MAE values are close to 0 compared to 

other models, indicating that the SVR model 

exhibits more accurate prediction performance. 

According to the performance results in Tables 4 

and 5, the SVR model is observed to predict 

hydroelectric power generation most accurately. 
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This study emphasizes the importance of climate 

data in hydroelectric power prediction. In future 

studies, climate scenarios can be utilized for 

hydroelectric power plants or various energy types. 

Hydroelectric power can be predicted using hybrid 

deep learning and machine learning models. 
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