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Abstract: LEA proteins have an important role in the response of plants to abiotic stresses. Cinnamomum micranthum f.
kanehirae, a medicinal and aromatic plant belonging to the Lauraceae family. The genome sequence of the Kanehirae or Stout
Camphor tree was recently completed. Although there are studies on its genome, there are no studies on LEA genes.

57 LEA genes (CmiLEA) were identified in the Stout Camphor genome. CmiLEA was divided into 8 distinct clusters based
on phylogenetic analysis. When the subcellular localizations of CmiLEA were examined, they were found to be localized mostly
in the cytoplasm. A total of 13 genes targeting only one miRNA were identified. In CmiLEA, a total of 23 genes were found to
have only exon regions and no introns. In total, 35 conserved motifs were identified, while there was only one conserved motif
in CmiLEA-42. Consistent with the 3D structure results, CmiLEA-21, CmiLEA-31, CmiLEA-44, CmiLEA-45, and CmiLEA-
57 from the LEA-2 subfamily showed over 90% accuracy.

The present study was the first in-silico analysis of LEA genes in Cinnamomum micranthum f. Kanehirae. It is thought that
it may form a base for advanced functional analysis in Cinnamomum in future.
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Stout Kafur Agacinda LEA Genlerinin Biyoinformatik Analizi
(Cinnamomum micranthum f. Kanehirae)

Oz: LEA proteinleri bitkilerin abiyotik streslere kars1 tepkilerinde 6nemli bir role sahiptir. Lauraceae ailesine ait tibbi ve
aromatik bir bitki olan Cinnamomum micranthum f. Kanehirae veya Stout Kafur agacinin genom dizisi yakin zamanda
tamamlanmustir. Stout Kafur genomunda c¢alismalar olmasina ragmen LEA genleri ile alakali herhangi bir c¢alisma
bulunmamaktadir. Bu nedenle bu caligmada biyoinformatik araglar kullanilarak Stout Kafur genomunda yer alan LEA genlerinin
genom ¢apinda analizinin yapilmasi amaglanmistir.

Stout Kafur genomunda 57 LEA geni (CmiLEA) tanimlandi. CmiLEA filogenetik analize gore 8 ayr kiimeye ayrilmistir.
CmiLEA'nin subseliiler lokalizasyonlari incelendiginde daha ¢ok sitoplazmada lokalize olduklart ve sadece bir miRNA
hedefleyen toplam 13 gen tanimlanmigtir. CmiLEA’ da toplam 23 genin yalnizca ekzon bdlgelerine sahip oldugu ve intronsuz
oldugu tespit edilmistir. Toplamda 35 korunmusg motif belirlenirken, CmiLEA-42'de yalnizca bir korunmug motif bulunmustur.
3B yap1 sonuglarina uygun olarak LEA 2 alt ailesinden CmiLEA-21, CmiLEA-31, CmiLEA-44, CmiLEA-45 ve CmiLEA-57
%90"n tizerinde dogruluk gdstermistir.

Bu ¢alisma, Cinnamomum micranthum f. kanehirae bitkisinde LEA genleri ile ilgili yapilmis ilk biyoinformatik caligma
olup, Cinnamomum cinsinde gelecekte ileri fonksiyonel analizler i¢in bir temel olusturabilecegi diistiniilmektedir.

Anahtar Kelimeler: Biyoinformatik, LEA genleri, LEA proteinleri, miRNA, Stout Kafur Agaci

Introduction also a valuable tree for forestry due to its rot-resistant

Lauraceae is a family of tropical plants consisting of
approximately 2500 species of trees and shrubs in 55
genera. Since members of the Cinnamomum are rich in
essential oils, they are used in perfume making, spices
production and compound for alternative medicine
around the world. Studies have shown that they are rich
in terpenoids and phenylpropanoids (Dong Wang,
2022). Cinnamomum micranthum f. Kanehirae or Stout
Camphor tree is a medicinal and aromatic plant and is
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trunk. It is a plant of ecological, agricultural and
economic importance that grows in the Far East and is
endemic in Taiwan. Stout camphor tree is also the only
host of Taiwanofungus camphoratus which is used in
traditional medicine. Studies in high-fat-fed mice
reported the anti-inflammatory, anti-obesinogenic and
antidiabetic effects of this rare fungus (Chung and
Hsieh, 2023; Chang et al., 2018).
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Although studies have been carried out to determine
the composition of essential oils and to determine
genetic relationships in the Cinnamomum by sequencing
genes such as chloroplast genes, studies at the whole
genome level are rare (Dong Wang, 2022). Li et al.
(2023) constructed a high-quality reference genome in
camphora by  whole genome
resequencing and made a genomic comparison with C.
They  identified  phenylpropanoid
metabolism genes related to cold stress and terpene

Cinnamomum
Kanehirae.

synthases (TPSs) genes related to defense response. In
genomic studies conducted in Cinnamomum camphora,
it was determined that there are 36,411-24,883 proteins,
number of functional annotations are 97.06%-82.71%,
and the number of TPS genes is ranged between 72-85
(Shen et al. 2022; Sun et al. 2022; Jiang et al. 2022;
Wang et al., 2022; Li et al., 2023).

Late embryogenesis abundant (LEA) proteins were
first found in cotton seeds during dehydration and
maturation period (Cheng et al., 2021). Then, LEA
proteins were detected in many plants such as
Arabidopsis, poplar, peanut, tobacco, watermelon and
melon. These proteins were also identified in organisms
such as mosses and fungi (Hundertmark and Hintcha,
2008; Bies-Etheve et al., 2008; Altunoglu et al., 2017;
Cheng et al., 2021; Huang et al., 2022; Geng et al.,
2022). It has been determined that LEA proteins, which
are involved in the response to abiotic stress factors, are
found in many different parts of the cell, including the
inner and outer membranes, cytoplasm and organelles
(Altunoglu et al., 2017). It has been observed that LEA
proteins, which are divided into 8 subfamilies ((LEA_1,
LEA 2, LEA 3, LEA 4, LEA 5, LEA 6, DHN
(Dehydrin) and SMP (seed maturation protein))
according to their conserved domains, are rapidly
expressed in plant tissues in the face of stress factors
such as drought, saline, or cold stress (Bies-Etheve et al.,
2008). The studies show that LEA proteins are not tissue
specific and are produced at different expression levels
in tissues throughout developmental processes. These
proteins are also known to have a highly hydrophilic
structure and are thought to be intrinsically disordered
proteins under normal physiological conditions, for
example. It is estimated that these ordered structures
serve as molecular chaperones and have an important
role in ensuring cellular homoestasis by binding to
molecules such as enzymes, ions, ROS, etc. (Hong-Bo,
et al., 2005; Lin et al., 2021).

Abiotic stress factors like drought and salinity are
important affecting crop
production. Examining the response to these stress

environmental factors
factors plays an essential role in organizing the
necessary breeding studies to develop resistant plants.
At the same time, abiotic stress factors are important in
the protection of endemic or endangered plants due to
these stress factors’s environmental impact. In this
study, it was aimed to examine LEA genes and LEA
proteins in the stout camphor tree with bioinformatic
tools, classify them and determine their predicted
functions.

Material and Methods

Material

The data related with Stout camphor tree retrieved
from NCBI (The National Center for Biotechnology
Information) database (NCBI, 2024).

Methods

Conserved domains in PFAM database were found
by using CLC Genomic Workbench 21 (Qiagen, 2022).
The sequences screened with the BLASTP tool (NCBI,
2024), and LEA proteins were identified and named.
The characteristics of LEA proteins (isoelectric point,
protein length, physical position in chromosomes,
instability, etc.) were found through the ExPasy
ProtPARAm tool (Gasteiger et al., 2005) Exon-intron
regions of LEA protein genes were determined and
visualized using Gene Structure Displayer Server
(GSDS) 2.0 (Hu et al., 2015). The 3D structures of the
detected proteins were determined using the Hidden
Markov Model (HMM) algorithm in Protein Fold
Recognition Server 2 (Phyre2),
modeling was performed (Kelley et al.,

and 3D protein
2015).
Sequences of LEA proteins were aligned using the
ClustalW in the MEGA 11 program using default
options (Tamura and Kumar, 2021). Conserved motifs
in amino acid sequences and 3-dimensional structures of
proteins were determined with the MEME Suite
program (Bailey et al., 2021). Molecular function,
subcellular localization and biological processes (Gene
ontology) analyzes of LEA proteins were performed by
using the Blast2Go (Conesa et al., 2005).

Micro RNA (miRNA) targeting LEA transcripts data
retrieved from miRBase (Arabidopsis thaliana)
(Kozomara and Griffith-Jones, 2013) and LEA genes in
stout camphor tree were evaluated using the Plant Small
RNA Target Analysis Server, psRNATarget (Dai et al.
2018).
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Results
LEA genes in Cinnamomum micranthum f. Kanehirae
have been named, and their characteristics such as
starting and ending positions of genes in base pairs,
isoelectric points, protein lengths, molecular weights,
stability, hydropathy have been determined and are
given in Table 1. When the results were evaluated, 57
LEA genes were found and named. The chromosome
locations of all of these genes were found as scaffolds.
LEA genes are divided into 8 subfamilies according to
their sequence homologies and conserved domains in
the PFAM database. It is classified as LEA 1, LEA 2,
LEA 3, LEA 4, LEA 5, LEA_6, dehydrin and SMP.
While it was found that there was 1 gene belonging to
the LEA 1 subfamily and 37 genes in the LEA 2
subfamily, 2 genes were detected in the LEA 4, SMP
and Dehydrin subfamilies, 3 genes in the LEA 3 gene
family, 4 genes in LEA 5 and 5 genes in the LEA 6
gene family, respectively. Since the chromosomal
distribution was determined as scaffolds, the exact
location of LEA genes on chromosomes has not been
revealed. The largest protein length was detected as 445
aa in CmiLEA-12, the shortest protein length was
determined as 79 aa in CmiLEA-11, similarly the
highest molecular weight (50415 Da) and the lowest
molecular weight (8501 da) were calculated in
CmiLEA-12 and CmiLEA-11. According to the
isoelectric points of the proteins, the lowest isoelectric
point was observed in CmiLEA-15 with 4.72, and the
highest isoelectric point was observed in CmiLEA-47
with 10.70. The instability index values showed 27 of
proteins were stable and 30 of proteins were unstable.
The results of hydropathy properties revealed 40 of
proteins were hydrophilic and 17 of proteins were
hydrophobic. In the Aliphatic index, which is suggested
to increase the thermostability of globular proteins, the
lowest value was found in CmiLEA-2 with 33.82, and
the highest value was found in CmiLEA-19 with the
value of 113.10.

The longest upstream/downstream region was found
in CmiLEA-40 as the gene was also the longest gene,
and total of 23 genes has only exon regions and they
were found to be intronless. A total of 35 conserved
motifs were determined while CmiLEA-42 had only one
conserved motif. Although there are common motifs in
general, the motifs showed differences in LEA
subfamilies. The highest number of motifs was detected
in CmiLEA-43 and CmiLEA-03, the constructed
dendrogram shows consistency with the motif patterns.
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The distribution of exons and introns, conserved motifs
and the phylogenetic tree of CmiLEAs are given in
Figure 1, Figure 2 and Figure 3, respectively.

In the phylogenetic tree of CmLEA genes, different
subfamilies are shown in different colors. It has been
observed that it is divided into eight subfamilies. While
all families are grouped among themselves; CmLEA 42
and CmLEA-55 genes, which are belonged to the
LEA 3 subfamily, are placed in the LEA 2 group. It
was determined that the LEA 2 subfamily formed a
separate cluster in the phylogenetic tree, LEA 3 was a
separate group with a single branch, and the remaining
gene subfamilies grouped in a different cluster.

When subcellular localizations were examined, total
of 13 proteins localized in cytoplasm (CmiLEA-33,
CmiLEA- 12, CmiLEA-13, CmiLEA-20, CmiLEA-21,
CmiLEA-31, CmiLEA-43, CmiLEA-44, CmiLEA-53,
CmiLEA-55, and CmiLEA-11). Only CmiLEA-04 from
the LEA 6 family was found to localize extracellularly.
CmiLEA-01, CmiLEA-17, CmiLEA-18, CmiLEA-38,
CmiLEA-48, and CmiLEA-51 observed in the inner
membrane and all of them were members of the LEA 2
family. It has been found that there are 7 members of the
LEA 2 subfamily in the outer membrane (CmiLEA-09,
CmiLEA-16, CmiLEA-36, CmiLEA-37, CmiLEA-49,
CmiLEA-56, CmiLEA-57), 6 of which are hydrophilic
and 1 is hydrophobic. CmiLEA-50, CmiLEA-35,
CmiLEA-10, CmiLEA-15 from LEA 1, LEA 3,
LEA_5 and SMP subfamilies were found to be located
in periplasm. To accordance with structure results,
CmiLEA-21, CmiLEA-31, CmiLEA-44, CmiLEA-45
and CmiLEA-57 from the LEA 2 subfamily showed
accuracy above 90%. The 3-dimensional structure of
these proteins were given in Figure 4.

In total, 220 miRNAs were associated with 52
CmiLEA genes. A total of 13 genes were identified with
only one miRNA (CmiLEA-5, CmiLEA-6, CmiLEA-9,
CmiLEA-14, CmiLEA-15, CmiLEA-17, CmiLEA-22,
CmiLEA-23, CmiLEA-28, CmiLEA-35, CmiLEA-41,
CmiLEA-51 CmiLEA-56; ath-miR842, ath-miR5632-
5p, ath-miR447c-5p, ath-miR5652, ath-miR773a, ath-
miR5658, ath-miR472-3p, ath-miR863-5p, ath-
miR399c¢-5p, ath, respectively. -miR414, ath-miR8168,
ath-miR156¢-3p and ath-miR5657, respectively). There
is no association with any miRNAs for 5 CmiLEA genes
(CmiLEA-4, CmiLEA-20, CmiLEA-40, CmiLEA-49,
CmiLEA-50). The association between CmiLEAs and
miRNAs are given in Figure 5.
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Figure 1. Exon and intron distributions of CmiLEA genes
Sekil 1. CmiLEA genlerinde ekzon intron dagilimlar:
overexpression of LEA genes in transgenic plants shows

Discussion an increased resistance to abiotic stress factors (Bies-
LEA proteins are linked with seed development and ~ Etheve et al., 2008). LEA genes are divided into 8
abiotic stress response. It has been reported that  groups in plants according to their conservative PFAM
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domains, these are LEA 1, LEA 2, LEA 3, LEA 4, domains, 9 subfamilies were detected in Arabidopsis
LEA 5, LEA 6, DHN (Dehydrin) and SMP (seed thaliana, while 8 subfamilies were found in many other
maturation protein) (Geng et al., 2022). In our study, 57  studies. In linseed flax (Linum usitatissimum L.) fifty
CmiLEA genes divided in 8 subfamilies. However, the LEA genes (LuLEA) were determined and these genes
classification made according to repeated conserved were divided into 8 classes (Li et al., 2021).
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Figure 2. Conserved motifs of CmiLEA genes
Sekil 2. CmiLEA genlerinde korunmus proteinler
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CmiLEA-31 CmiLEA-44 CmiLEA-45 CmiLEA-57

CmiLEA-21

Figure 4. Three dimensional structure of some CmiLEA
proteins
Sekil 4. Bazi CmiLEA proteinlerinin 3 boyutlu yapisi

Among these, the highest number of genes (10) were
detected in the dehydrin subfamily. Lin et al. (2021)
identified 84 LEA genes (CrLEA) in Canavalia rosea.
They found 60 genes in LEA 2 and the fewest genes
were found tobe in LEA 4,LEA 5,LEA 6 subfamilies
with 2 genes. Similarly, Li et al. (2023) reported 79 LEA
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genes were detected in sweetgum hybrids (Liquidambar
styraciflua x Liquidambar formosana) and the most
abundant in 8 subfamilies was the LEA 2 (57 genes).
As a result of their study on tobacco, Geng et al. (2022)
observed 123 NtLEA genes in Nicotiana tabacum L.and
reported that the LEA 2 was the most abundant group.
In consistent with previous studies, the present study
identified the most abundant genes as the members of
LEA 2 subfamily

In general, the results showed LEA protein lengths
are relatively short, they are basic in terms of isoelectric
points, and their molecular weights are low. In our study,
it was revealed that 49 LEA proteins weighed less than
30 kDa, 38 of them were basic in character and their
lengths were 79-455 aa long. When the average
hydropathy values of LEA proteins were examined, it
was found that the values were generally below 0 and
the proteins mostly had hydrophilic character. These
results are also similar with the findings of linseed flax,
tobacco, lotus, and Canavalia rosae (Li et al., 2021; Lin
et al.,, 2021; Geng et al., 2022; Chen et al., 2023).
According to the hydropathy (GRAVY) values, we
observed 18 proteins from the LEA 2 subfamily were
hydrophilic and 19 proteins were hydrophobic, and all
hydrophobic proteins were in LEA 2 subfamily.

By gene structure analysis, it was determined that
there are very few introns (< 2) or no introns in LEA
genes in lotus (Chen et al., 2023). It has been reported
that the majority of genes have either no introns or 1
intron in Canavelia rosae. Li et al. (2021) stated that
there are genes without introns in the LuLEA 2,
LuLEA 3 and LuLEA 4 gene families in linseed flax,
and the majority of genes have 1 or more introns. Li et
al. (2023) were found there were very few introns in the
LsfLEA genes in hybrid sweetgum. Our findings are
compatible with other studies, and 12 genes in LEA 2
subfamily were determined to be intronless.

Among the target genes of related miRNAs of
LEA 2 genes were detected as 2-phosphoglycerate
kinase, GRAS, ERF, C2H2 transcription factors,
phosphofructokinase ~ family  protein, squamosa
promoter binding protein-like (SPL), and their possible
functions were included nutrient deficiency response,
carbohydrate metabolism, and drought response. It was
found that there were in leaf and root development
processes. For example, it was found that ath-miR447c-
5p, associated with CmiLEA-09, was induced under C
deficiency conditions but was suppressed under N
deficiency conditions (Breakfield et al., 2012; Vidal et
al., 2013; Shao et al., 2013; Liang et al., 2015; Thatcher
et al., 2015; Rakhmetullina et al., 2021).
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Figure 5. CmiLEA-miRNA interactions
Sekil 5. CmiLEA-miRNA etkilesimleri
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The target genes of ath-miR842 and ath-miR399¢-5p
miRNAs, which are associated with CmiLEA-05 and
CmiLEA-28 from LEA 6 subfamily, were found as
Jacalin lectin family protein, copper superoxide
dismutases, Ubiquitin conjugating enzyme (UCE) and
vesicle-associated membrane protein and its possible
functions can be nitrogen deficiency response and
oxidative stress response (Jones-Rhoades et al., 2004;
Sunkar and Zhu, 2004; Liang et al., 2012; Liang et al.,
2015).

The lack of introns or the low number of introns in
genes suggested the expression of LEA proeins are rapid
under abiotic stress conditions. Thus, it shows that
members of the LEA 2 subfamily are rapidly expressed
in response to abiotic stress and may have important
roles in the abiotic stress response. Previous studies also
viewed that LEA 2 proteins have an ability to perform
as molecular chaperones and they are involved in
different stress responses such as ROS scavenging,
membrane protection or preserving molecule structures
under abiotic stress conditions (Aziz et al., 2023).
Considering the possible target genes and functions of
the CmiLEA proteins and miRNAs we found in present
study, it can be suggested that some CmiLEA members
from the LEA 2 subfamily are related to the stress
response caused by nutrient deficiency.

Conclusion

In conclusion, the present study revealed LEA genes
of Stout camphor tree (Cinnamomum micranthum f
Kanerihae). for the first time. Total of 57 genes were
identified and classified in subfamilies. Gene structure
and miRNA analysis suggested the important functions
of LEA genes in abiotic stress response. These findings
suggest that it would be useful to analyze stress-
of these genes in
Cinnamomum genus, which shows differences in

sensitive expression patterns

tolerance to abiotic stress factors. The future studies can
be revealed the relationship between gene induction and
stress tolerance. Manipulating the survival of these
genes in Cinnamomum may also lead to increased stress
tolerance.
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