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Abstract: In recent times, astronomy has entered a new era with rapidly growing data sources and advanced observation techniques. 

The construction of powerful telescopes has enabled the collection of spectral data from millions of celestial objects. However, the 

increasing number and variety of data have made it challenging to categorize these celestial objects. This study employs machine 

learning methods to address the fundamental problem of classifying stars, galaxies, and quasars in astronomy. The dataset underwent 

detailed preprocessing to identify effective features for classification. KNIME Analytics Platform was used for data analysis and 

visualization, facilitating rapid and efficient data analysis through its drag-and-drop interface. Among the machine learning methods 

used in our study—Decision Trees, Random Forest, and Naive Bayes—the highest accuracy rate of 97.86% was achieved with the 

Random Forest model. Notably, despite its lower overall performance compared to other models, the Naive Bayes classifier exhibited 

superior performance in distinguishing the STAR class, which is one of the study's interesting findings. Future studies aim to enhance 

model accuracy by using larger and more diverse datasets and exploring different machine learning algorithms. Additionally, the 

impact of deep learning methods on classification performance will be investigated. 
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1. Introduction 
Nowadays, astronomy has entered a new era with rapidly 

growing data sources and advanced observation 

techniques. With the construction of more powerful 

telescopes, spectral data from millions of celestial objects 

are being collected. Additionally, it is anticipated that the 

volume of data generated by next-generation telescopes 

will significantly increase in the future (Hughes et al., 

2022). Consequently, it is becoming increasingly difficult 

for astronomers to manually examine and label the ever-

growing astronomical data. In situations where large 

quantities of data are available, as well as detailed data, 

distinguishing the source type is time-consuming and 

often impractical. Therefore, understanding this vast 

amount of data and conducting large-scale analyses to 

classify galactic and extragalactic sources has become a 

challenging task. For such large datasets, machine 

learning methods have emerged as useful and valuable 

tools for analyzing and classifying data. 

Machine learning provides powerful tools for extracting 

meaningful information from large and complex datasets, 

enabling more precise and efficient classification. 

Consequently, in recent years, the use of machine 

learning methods in the classification of quasars, stars, 

and galaxies has become increasingly widespread. 

Machine learning methods perform well in identifying 

and characterizing different types of galactic objects 

through techniques such as modeling large datasets and 

feature extraction. 

Quasars, stars, and galaxies are fundamental building 

blocks of the universe, and accurately classifying these 

cosmic objects is crucial for astronomical research. 

Quasars are highly luminous active galactic nuclei 

(Hughes et al., 2022). The identification of quasars 

emerged following the detection of radio emissions from 

star-like sources with high redshift values (Clarke et al., 

2020). Even with larger optical telescopes at their 

disposal, astronomers find it extremely difficult to 

distinguish between a star and a quasar since both 

appear as bright points of light. Machine learning 

methods are particularly advantageous in this domain 

due to their potential to overcome the limitations of 

human vision and traditional techniques. 

Machine learning algorithms can recognize complex 

patterns in large datasets and classify these objects with 

high accuracy. These algorithms process spectral 

features, brightness variations, and other astronomical 

data to distinguish subtle differences between quasars, 

stars, and galaxies. Additionally, machine learning 

provides astronomers with more precise and rapid 
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classification capabilities. In this context, a study by Omat 

et al. (2022) highlighted the importance of feature 

engineering techniques in classifying galaxies, stars, and 

quasars using machine learning methods. By employing 

machine learning methods such as Decision Trees, K-

Nearest Neighbors, Multinomial Logistic Regression, 

Naive Bayes Classifier, Support Vector Classification, and 

Random Forest, their study found that Random Forest 

performed best with an accuracy of 98%. Furthermore, 

Random Forest was found to correctly classify all 

instances labeled as stars in the dataset. 

Mehta et al. (2022) conducted a study on a dataset 

consisting of 100,000 observations, investigating the 

classification of stellar features into Galaxy and Star 

categories using machine learning algorithms. The study 

aimed to explore the effectiveness of various machine 

learning algorithms, including K-Nearest Neighbors, 

Support Vector Classifier, Random Forest, Logistic 

Regression, Decision Tree, and Naive Bayes, in classifying 

stars based on their spectral features. The findings 

revealed that the Support Vector Classifier demonstrated 

the highest accuracy among the tested models, 

highlighting its effectiveness in star classification, while 

the Decision Tree model showed the lowest accuracy. 

In their study, Kumar and Gharat (2023) presented a 

novel approach to classify stars as binary or exoplanet 

candidates using deep learning techniques. The proposed 

model is designed to accept two different types of inputs 

to enhance both accuracy and generalization. One input 

layer receives pre-computed statistical features, while 

the other input layer takes time series data from light 

curves. The proposed method demonstrated a strong 

performance with a test accuracy of 81.17%. 

Haghighi (2023) examined various machine learning 

algorithms, including Linear Regression, Logistic 

Regression, Naive Bayes, SVM, Decision Trees, and Neural 

Networks. Some of the proposed models were applied to 

a dataset consisting of variable and non-variable stars 

from the SDSS Survey Stripe 82. The findings showed that 

Decision Trees provided the best accuracy and F1 score. 

In their study, Huichaqueo and Orrego (2022) presented 

a machine learning-based method for the automatic 

spectral classification of stars using data from the SDSS 

database. They developed a Random Forest model to 

extract the spectral class of observed stars, training the 

model considering three data usage scenarios: the use of 

original data, undersampling, and oversampling 

techniques. Their study found that the model trained 

with augmented data outperformed the other scenarios. 

Furthermore, experimental results showed that the 

combinatorial use of data as an input model contributed 

to the improvement of prediction scores across all data 

usage scenarios (Huichaqueo and Orrego, 2022). 

In his study, Brice (2019) utilized standard classification 

methods such as K-Nearest Neighbors, Random Forest, 

and Support Vector Machine to automatically classify 

spectra using data from the SDSS. The study focused on 

reducing the high dimensionality of stellar spectrum data 

through Feature Selection methods, including Chi-Square 

and Fisher score, as well as incorporating domain-

specific astronomical knowledge to enable classification 

in a lower-dimensional space. The research highlighted 

the potential of machine learning to automate the 

classification of stellar spectra, offering a more efficient 

alternative to traditional, observation-based methods, 

which can be time-consuming. 

Lastly, Savyanavar et al. (2023) compared the 

performance of traditional machine learning classifiers 

with a proposed CNN model to classify star and galaxy 

images. Their study aimed to improve classification 

accuracy by leveraging the feature extraction capabilities 

of CNNs in star-galaxy classification. They proposed a 

novel CNN architecture consisting of three sub-blocks for 

feature extraction, enhancement, and noise reduction. 

While traditional machine learning algorithms achieved a 

maximum accuracy of 78%, the proposed CNN model 

outperformed them, achieving an accuracy of 92.44% on 

the star-galaxy dataset. 

The similarity of quasars to both galaxies and stars 

makes their differentiation challenging. Therefore, this 

study aims to classify stars, galaxies, and quasars based 

on their spectral features and to determine which 

classifier performs better for this problem. Decision 

Trees, Random Forest, and Naive Bayes classifiers were 

employed for this purpose, and performance metrics 

were evaluated. 

The classification of galactic objects using machine 

learning methods is a well-studied topic in the literature. 

However, determining which classifier performs better in 

classifying specific classes such as quasars, stars, and 

galaxies is the focus of this study. The KNIME Analytics 

Platform was employed for data analysis, visualization, 

and classification in the study. Its user-friendly drag-and-

drop interface facilitates rapid and effective analysis of 

data, requiring minimal technical expertise. 

 

2. Materials and Methods 
The dataset used in the study aims to classify stars, 

galaxies, and quasars based on their spectral features. 

The data, comprising a total of 100,000 space 

observations, was obtained by the Sloan Digital Sky 

Survey (SDSS) and is available on the Kaggle website 

under the title ‘Stellar Classification Dataset - SDSS17’ 

(Fedesoriano, 2022). Each data point consists of 17 

feature columns and one class column that categorizes 

the data into stars, galaxies, or quasars. The names and 

descriptions of the features are provided in Table 1. 

The analysis, model training, performance evaluation, 

graphs, and visual figures in the study were conducted 

using the KNIME Analytics Platform. The KNIME 

Analytics Platform is an open-source software that 

enables accessing, analyzing, and visualizing data without 

any coding requirements. KNIME provides a visual 

programming environment with an intuitive interface 

that integrates various technologies (Fillbrunn et al., 

2017). 
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Table 1. Attributes and descriptions of the dataset. 

Attribute Description 

obj_ID Unique value that identifies the object 

alpha Right ascension angle 

delta Deviation angle 

u 
Ultraviolet filter in the photometric 

system 

g Green filter in the photometric system 

r Red filter in the photometric system 

i 
Near infrared filter in photometric 

system 

z Infrared filter in photometric system 

run_id 
Run Number used to identify the specific 

scan 

rereun_id 
Rerun number to indicate how the image 

was processed 

cam_col 
Camera column that defines the scan line 

within the study 

field_id Field number to identify the field 

spec_obj_id 
Unique identification used for optical 

spectroscopic objects 

class Object class 

redshift 
Redshift value depending on the increase 

in wavelength 

plate 
License plate ID that identifies each 

license plate in SDSS 

mjd 
Modified Julian Date used to indicate 

when a particular piece of SDSS data was 
received 

fiber_id 
Fiber ID, which identifies the fiber 

directing light to the focal plane in each 
observation 

 
In KNIME, a workflow is constructed with nodes. Data is 

passed between nodes through connections throughout 

the workflow. Each node can perform various tasks such 

as reading and writing files, transforming data, training 

models, or generating visuals. Depending on their tasks, 

nodes have specific settings that can be configured in 

their configuration dialogs. 

2.1. Dataset Overview 

The KNIME Data Explorer node was used to examine the 

dataset broadly and to observe the characteristics of its 

attributes. The Data Explorer node provides a variety of 

options to interactively view the properties of input data 

through a table. It was checked from the resulting table 

whether there were any missing, empty, or NaN (Not-a-

Number) values in the dataset, and none of these values 

were found. 

The table also displayed the statistical properties of 

numerical columns, including their minimum, maximum, 

mean, standard deviation, and variance. Upon inspection, 

notably high standard deviation and variance values for 

certain attributes (especially u, g, and z) provided a 

significant indication that outliers might be present. 

Another important clue for identifying outliers is 

provided by the histogram of the attribute, which visually 

represents the frequency of values in the dataset. The 

histogram graph was obtained using the Statistics node 

in KNIME. Similar to the Data Explorer node, the 

Statistics node displays statistical properties but 

produces histogram graphs in a less complex and more 

easily readable format compared to the Data Explorer 

node. Therefore, histogram graphs were obtained using 

the Statistics node. 

Upon examining the histogram graphs of all attributes in 

the dataset, it was observed that the attributes u, g, z, 

field_ID, and redshift contain outliers. Additionally, the 

attribute rerun_ID was found to have the same value for 

all records. The histogram graphs of these attributes are 

provided in Figure 1. 
 

 
Figure 1. Histogram graphs of u (a), rerun_ID (b), g (c), 

field_ID (d), z (e) and redshift (f) attributes obtained with 

the Statistics node. 

Standard deviation, variance, or histogram alone are not 

sufficient to accurately identify outliers in all attributes. 

For a more detailed analysis, KNIME’s Box Plot node was 

used. Box Plot node; Displays statistical parameters such 

as minimum, lower quartile, median, upper quartile and 

maximum. The Box Plot node provides a quick overview 

of the outliers of a dataset. 

Box Plot graphics were examined for all attributes of the 

data set and it was seen that in addition to the u, g, z, 

field_ID and redshift attributes, the r and i attributes also 

had outliers. An example graphic for this is given in 

Figure 2 for the r and i attributes. 

In addition to missing and outlier values, another 

important issue to check in the data set is whether class 

labels are distributed fairly. The chart in which the 

number of data according to classes is obtained using 

KNIME’s Bar Chart node is given in Figure 3. When the 

graph is examined, it is seen that the class labels are 

unevenly distributed. 
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Figure 2. Representation of r and i attributes with box 

plot. 

When the data set is examined with KNIME’s 

visualization tools; It was determined that there were 

outliers for some attributes and class labels were 

unevenly distributed. The methods used in the study to 

overcome these problems are explained in detail under 

the heading of Data Preprocessing. 

 
Figure 3. Number of data by classes. 

 

2.2. Data Preprocessing 

KNIME’s Numeric Outliers node was used to remove 

outliers in the data set. The Numeric Outliers node 

detects and processes outliers separately for each of the 

selected columns via the interquartile range (IQR). 

KNIME's Numeric Outliers node first calculates the IQR 

value to detect outliers of a particular column. IQR 

calculation is as in equation 1. The formula used to 

calculate whether an entry is an outlier, such that the 

interquartile distance factor k≥0, is given in equation 2. 

Accordingly, if the R value falls outside its calculated 

range, it is marked as an outlier. 
 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1                     (1) 
 

𝑅 = [𝑄1 − 𝑘(𝐼𝑄𝑅),  Q3 + 𝑘(𝐼𝑄𝑅)]                   (2) 
 

In the study, 𝑘 = 1.5 value was used for the Numeric 

Outliers node, and the configuration of the node was 

made to convert these values into missing data when 

outlier treatment was found. 

After applying the Numeric Outliers node to the dataset, 

the outliers turned into missing data. KNIME’s Missing 

Value node was used to fill in the missing data. The 

configuration of the Missing Value node has been set to 

use the Linear Interpolation method to fill in the missing 

data. Linear Interpolation is a mathematical technique 

used to estimate the value between two known data 

points on a line. This method assumes a linear 

relationship between data points. The formula of Linear 

Interpolation is as in equation 3. Where 𝑦1 and 𝑦2 are two 

known points, 𝑥1 and 𝑥2 are the x-coordinates of the 

known points, y is the estimated value between 𝑦1 and 

𝑦2. 
 

𝑦 = 𝑦1  +  
(𝑦2−𝑦1)×(𝑥−𝑥1)

𝑥2−𝑥1
                 (3) 

 

After filling in the missing data, KNIME’s SMOTE node 

was used to eliminate the imbalance in class labels. 

SMOTE is a technique based on the k-Nearest Neighbor 

(kNN) algorithm. Creates new synthetic samples using 

sampling data from the minority class. These synthetic 

samples increase the representation of the minority class 

in the dataset while considering the immediate neighbors 

of existing samples, thus reducing class imbalance (Li et 

al., 2021). The graph showing the number of data in the 

classes after sampling the minority class with SMOTE is 

given in Figure 4. 

 
Figure 4. Data distribution according to classes after 
sampling with SMOTE. 

2.3. Feature Selection 

After the data preprocessing phase, feature selection was 

made. Feature selection reveals which features are more 

important and add valuable information in training the 

classifier. In addition to revealing the features that 

distinguish classes from each other, it also enables the 

removal of features that are not decisive in classification, 

thus training the model faster. For this purpose, two 

different feature selection methods were used in the 

study. The first of these is correlation analysis. 

Correlation analysis is a method used to understand the 

relationship between variables and evaluate the 

connection between data. Correlation measures the 

direction and strength of the relationship between two 
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variables, whether positive or negative. 

KNIME’s Linear Correlation node was used to perform 

correlation analysis of the features in the data set. This 

node calculates the correlation coefficient for each 

selected pair of columns. Which correlation measure to 

apply depends on the type of variables. The Linear 

Correlation node uses the Pearson Correlation Coefficient 

method for numerical data and Pearson’s Chi Square Test 

for nominal data. 

Since all values in the data set, except the class attribute, 

consist of numerical variables, the Pearson correlation 

coefficient method was used. The linear correlation 

analysis graph of the attributes in the relevant data set is 

given in Figure 5. Accordingly, the value of the 

measurement varies between -1 (strong negative 

correlation) and +1 (strong positive correlation). A value 

of 0 indicates that there is no linear correlation. 
 

 
 

Figure 5. Linear correlation analysis graph of attributes 
in the data set. 

When the linear correlation analysis given in Figure 5 is 

examined, it is seen that the rerun_ID attribute is not 

related to other attributes. It can be seen that the u, g and 

z attributes have a positive correlation with each other. 

While spec_obj_ID, plate, and MJD have a strong positive 

correlation with each other, the positive correlation with 

the redshift attribute is relatively weak. Likewise, it is 

seen that these attributes have a positive correlation, 

albeit weak, with the r and i attributes. 

When the correlation analysis was examined, it was seen 

that the rerun_ID attribute was not positively or 

negatively correlated with other attributes in the data 

set. However, it was observed from the histogram of the 

attribute in Figure 1 that it gave the same value for all 

records. Based on these analyses, it is understood that 

the attribute does not play a decisive role in the 

formation of classes. Therefore, the rerun_ID attribute is 

removed from the data set as it will not help in model 

training. 

Another method used for feature selection is Kernel 

Density Estimation (KDE). It was used to reveal at which 

values the attributes were concentrated. 

Kernel Density Estimation is given in equation 4. 

Accordingly, 𝐾(𝑥) is called the Kernel function. The 

kernel function is symmetrical, like the Gaussian 

distribution, it increases as it gets closer to the data point 

and decreases as it gets further away. KDE basically 

applies the Kernel function to each 𝑋𝑖 in the sample, with 

𝑋𝑖 being the data point. Thus, each data point represents 

𝑋𝑖 as small density bumps and then sums all these small 

bumps to get the final density estimate (Chen, 2018). 
 

𝑝�̂�(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑋𝑖−𝑥

ℎ
)𝑛

𝑖=1                     (4) 

 

where h>0 in the equation, it is the bandwidth that 

controls the amount of smoothing. Bandwidth h plays an 

important role in the quality of KDE. When the 

bandwidth h is very small, the density curve has a very 

wavy and convoluted structure. On the other hand, when 

h is very large, fusion of the bumps occurs. This excessive 

smoothing causes important values to be hidden (Chen, 

2018). Therefore, choosing the right bandwidth is 

extremely important. 

Kernel Density Estimation was used in the study to reveal 

at what values the attributes in the data set concentrated 

or differed on a class basis. KNIME’s 1D Kernel Density 

Plot node was used for this. Gaussian was chosen as the 

kernel estimation method. To select the appropriate 

bandwidth, the configuration of the node was made to 

use the Silverman Approach, which is the most practical 

and easiest to calculate method, considering the size of 

the data set. Kernel Density Estimation graphs of the 

features drawn with KNIME’s 1D Kernel Density Plot 

node are given in Figure 6, Figure 7 and Figure 8. 

When the graphs in Figure 6 and Figure 7 are examined, 

it is seen that some values of the attributes are effective 

in determining the classes. When Figure 6(f), Figure 7(a) 

and Figure 7(d) are examined, where the MJD, plate and 

spec_obj_ID attributes are given in the KDE graph 

according to classes, respectively, it is seen that the 

attributes have values that clearly distinguish all three 

classes. It has been observed that the attributes g and i in 

Figure 6(d) and Figure 6(e) and the r and u attributes in 

Figure 7(b) and Figure 7(e) clearly stand out in 

determining the QSO class. 

The alpha features in Figure 6(a) and delta in Figure 6(b) 

are not as prominent as other features in reflecting the 

characteristics of the classes. However, for some values 

of the attributes, it has values that slightly distinguish the 

GALAXY and QSO classes. 
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Figure 6. Kernel Density Estimation graphs of alpha (a), 

delta (b), fiber_ID (c), g (d), i (e) and MJD (f) attributes. 

 

 
Figure 7. Kernel Density Estimation graphs of plate (a), r 

(b), redshift (c), spec_obj_ID (d), u (e) and z(f) attributes. 

 

On the other hand, when the KDE graphs in Figure 8 are 

examined, it is seen that the attributes do not contain 

values that distinguish the classes. For almost all values, 

the distribution showed approximately the same 

characteristic. Therefore, since these features will not 

contribute to determining classes, they are removed from 

the data set before model training. 

 

 
Figure 8. Kernel Density Estimation graphs of cam_col 

(a), field_ID (b), obj_ID (c) and run_ID (d) attributes. 

 

2.4. Classifier Selection and Model Training 

In the study, three different machine learning methods 

were used for model training. These; Decision Trees, 

Random Forest and Naive Bayes. 

When the characteristics of the data set are taken into 

account, Random Forest, Decision Trees and Naive Bayes 

appear to be good machine learning methods. Naive 

Bayes works under the assumption that the 

characteristics of the data set are independent and 

generally performs well on small or medium-sized data 

sets. When there are independent features in your data 

set, Naive Bayes will evaluate this situation better and 

perform well. Random Forest and Decision Trees can 

work better on large data sets. Because these algorithms 

can capture the variations and relationships in the data 

set more effectively. 

However, Naive Bayes is quite advantageous in terms of 

the transparency and simplicity of the model. In Decision 

Trees, it is quite interpretable because it clearly shows 

which feature makes which decision at each step. 

Finally, in terms of the complexity of the algorithm, Naive 

Bayes is a relatively simpler algorithm and requires less 

computational power, which is advantageous especially 

when fast results are needed. Random Forest and 

Decision Trees require hyperparameter adjustment, 

which can increase the performance of the model. 

2.4.1. Decision trees 

Decision trees are an effective method used in the field of 

machine learning and data mining to solve classification 

and regression problems. Decision trees are basically a 

tree-structured classifier consisting of a root node, 

branches, internal nodes and leaf nodes in a hierarchical 

manner. It is a structure where internal nodes represent 

features of a dataset, branches represent decision rules, 

and each leaf node represents the outcome (Thomas et 

al., 2020). This hierarchical structure of decision trees is 

given in Figure 9. 

Decision trees divide the data set into smaller subsets 

and determine a decision rule in each split. Each rule is 

based on a specific feature of the data set. With these 

rules, data points are classified or predicted by following 
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different paths in the branches of the tree. It uses the 

divide and conquer strategy by performing greedy search 

to determine the most suitable split points within a tree 

(Thomas et al., 2020). It provides a graphical 

representation of all possible solutions to a problem 

based on given conditions. It stands out as a simple, 

understandable and high-performance model. Decision 

trees have a wide range of usage as they provide 

successful results in large data sets and complex 

problems. 

 
 

Figure 9. Hierarchical tree structure of decision trees. 

2.4.2. Random Forest 

Random forests are an ensemble learning method formed 

by combining multiple decision trees (Mouchel‐Vallon 

and Hodzic, 2023). Each tree is trained using random 

samples of the dataset and runs independently on 

different subsets. This way, each tree makes its own 

prediction and combines its results to get majority votes 

for the average. This reduces overlearning and increases 

overall reliability (Mouchel‐Vallon and Hodzic, 2023). An 

example random forest representation is given in Figure 

10. 

 
Figure 10. An example representation of the random 

forest structure consisting of a combination of decision 

trees. 

The building blocks of the random forest algorithm are 

decision trees. The main difference between decision tree 

and random forest algorithm is that in random forest, the 

creation of root nodes and the separation of nodes are 

done randomly. While decision trees are trained using 

the entire dataset, random forests use random samples of 

the dataset in training each tree. This sampling process 

allows each tree to operate independently on different 

subsets. 

Random forests can produce more stable and 

generalizing results because they consist of multiple 

trees. They also reduce overlearning and are better able 

to handle noise in the dataset. Random forests can 

operate at high speed on large data sets and provide high 

performance in classification and regression problems. 

Therefore, random forests have a wide range of 

applications. 

2.4.3. Naive Bayes 

Naive Bayes is a probability-based algorithm used to 

solve classification problems in the field of machine 

learning. Basically, it is based on the principle of Bayes 

theorem (Ramana, 2022). Naive Bayes is called “naive” 

because it assumes that the features observed in the 

classification process are independent of each other. This 

assumption means that each feature is evaluated 

independently without affecting the class. 

Naive Bayes enables the classification of a new sample 

based on a predetermined class label. The classification 

process is based on calculating the probability of each 

class. After determining the relationship of the attributes 

in the data set with the class label, classification is made 

using Bayes' theorem. This theorem uses the probability 

of the class and the probabilities of the properties being 

observed in the given class to calculate the probability 

that the data point at which the properties are observed 

belongs to a class. Bayes’ theorem is given in equation 5. 
 

𝑝(𝐴|𝐵) =
𝑝(𝐴).𝑝(𝐵|𝐴)

𝑝(𝐵)
                  (5) 

 

In the equation, P(A) represents the probability of event 

A occurring and P(B) represents the probability of event 

B occurring. P(A|B) represents the probability of event A 

occurring if event B occurs, and P(B|A) represents the 

probability of event B occurring if event A occurs. 

Naive Bayes is an algorithm that is often used 

successfully in areas such as spam filtering and text 

classification. Because it can provide effective results in 

large data sets with its simple structure and fast 

calculation ability (Ramana, 2022). However, the 

assumption that all features are independent is usually 

not valid in real life. Therefore, it may achieve low 

accuracy in cases where there are strong dependencies 

between features. 

2.4.4. Building models with KNIME 

80% of the data set was used for training and 20% for 

testing. KNIME's Partitioning node was used to divide the 

data set. This node divides the input table into two row-

wise sections. The two sections it separates are delivered 

to two output ports. Learner nodes are connected to the 

output where 80% of the data is transmitted, and 

Predictor nodes are connected to the output where 20% 

of the data is transmitted. The classifiers used for model 

training in the study and the KNIME workflow diagram 

are given in Figure 11. 
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Figure 11. Classifiers used in model training and KNIME 

workflow diagram. 

KNIME’s Decision Tree Learner and Decision Tree 

Predictor nodes were used to build the Decision Trees 

model. The Decision Tree Learner node creates a 

decision tree in main memory for classification. The 

target attribute must be nominal. Other attributes used to 

make decisions can be nominal or numerical. Numerical 

splits are always binary, dividing the domain into two 

parts at a given split point. The algorithm provides two 

quality measures for the division calculation; Gini index 

and earnings rate. Additionally, a post pruning method is 

available to reduce tree size and increase prediction 

accuracy. The Decision Tree Predictor node was used to 

predict the class value of the model. 

KNIME’s Random Forest Learner and Random Forest 

Predictor nodes were used to build the Random Forest 

model. The Random Forest model created with Random 

Forest Learner consists of a selected number of decision 

trees. Each decision tree model is built with a different 

set of records, and a randomly chosen set of columns is 

used for each split within a tree. Rowsets for each 

decision tree are created by bootstrapping and have the 

same size as the original input table. The feature set for 

an individual split in a decision tree is determined by 

randomly selecting sqrt(m) features from the available 

features, where m is the total number of learning 

columns. The output model identifies a random forest 

and passes it to the Random Forest Predictor node for 

prediction. 

KNIME’s Naive Bayes Learner and Naive Bayes Predictor 

nodes were used to establish the Naive Bayes model. The 

Naive Bayes Learner node creates a Bayesian model from 

the given training data. Calculates the number of rows 

per attribute value per class for nominal attributes and 

the Gaussian distribution for numeric attributes. The 

created model can be used as the Naive Bayes Predictor 

node to predict the class membership of unclassified 

data. 

Models were trained with the three different classifiers 

described above. Performance outputs were obtained 

with KNIME’s Scorer node, which was connected to the 

output of the Predictor node of the models. The Scorer 

node uses performance metrics such as accuracy, error, 

sensitivity, precision, specificity and F-measure to 

measure the performance of models and presents the 

results in an interactive table. The values obtained with 

the Scorer node are given in the Findings section and the 

results are discussed. 

2.5. Performance Evaluation of Models 

Machine learning performance metrics are measures 

used to evaluate how well a machine learning model 

works. These metrics help evaluate how accurate the 

model's predictions are, misclassification rates, the 

model's ability to generalize, and other performance 

characteristics. In the study, accuracy, error, sensitivity, 

precision, specificity and F1-measure metrics were used 

to evaluate the performance of the models along with the 

complexity matrix. 

2.5.1. Complexity Matrix 

A complexity matrix is a table used to evaluate the 

classification performance of a machine learning model. 

The complexity matrix helps analyze the model's 

accuracy and error types by comparing predicted class 

labels with actual class labels. 

The complexity matrix consists of four main components: 

true positive, false positive, false negative and true 

negative. True Positive (TP) is the number of samples 

that are actually positive that are correctly predicted as 

positive. False Positive (FP) is the number of samples in 

which samples that are actually negative are wrongly 

predicted as positive. False alarm situations are examples 

of FP. False Negative (FN) is the number of samples in 

which samples that were actually positive were 

incorrectly predicted as negative, while true negative 

(TN) is the number of samples that were actually 

negative were correctly predicted as negative. The 

complexity matrix contains the numerical values of these 

four components and allows to analyze the performance 

of the model in detail. This matrix can be used to 

calculate various performance metrics. 
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2.5.2. Performance Metrics 

Table 2. Performance metrics, descriptions and formula 

used to measure the performance of the model (Erickson 

and Kitamura, 2021) 
 

Metric Description Formula 

Accuracy 

It represents the 
proportion of 
samples that the 
model predicted 
correctly. 

(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 +  𝑇𝑁)
 

Sensitivity 

It indicates how 
many of the truly 
positive samples 
were correctly 
detected. 

𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

Precision 

It refers to the ratio 
of samples predicted 
to be positive to 
samples that are 
actually positive. 

𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

Specificity 

It is a performance 
metric that 
measures a model's 
ability to correctly 
predict negative 
examples that are 
actually negative in 
classification 
problems 

𝑇𝑁

(𝑇𝑁 +  𝐹𝑃)
 

F1-Score 

It is the harmonic 
average of 
sensitivity and 
sensitivity metrics. It 
is used to achieve a 
balance between 
precision and 
sensitivity in 
unbalanced data 
sets. 

2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁)
 

 

3. Results and Discussion 
Results from performance metrics were obtained by 

connecting the Scorer node to the output of the Predictor 

nodes of the models. Therefore, model performances 

were compared only on test data. 

Complexity matrices obtained from Decision Tree, 

Random Forest and Naive Bayes models are given in 

Table 3, Table 4 and Table 5, respectively. 

 

Table 3. Complexity matrix of the Decision Tree model 

Actual 

Predicted 

 GALAXY QSO STAR 

GALAXY 11464 404 21 

QSO 499 11389 1 

STAR 24 0 11865 

 

Table 4. Complexity matrix of the Random Forest model 

Actual 

Predicted 

 GALAXY QSO STAR 

GALAXY 11536 232 121 

QSO 406 11482 1 

STAR 3 0 11886 

Table 5. Complexity matrix of the Naive Bayes model 

Actual 

Predicted 

 GALAXY QSO STAR 

GALAXY 8740 2975 174 

QSO 1233 10654 2 

STAR 0 0 11889 

 

When the complexity matrices given in Table 3, Table 4 

and Table 5 are examined, it is seen that the number of 

False Positives and False Negatives for GALAXY and QSO 

classes is high in all three models. The models show the 

same tendency to misclassify and repeat certain errors. 

This indicates that the GALAXY and QSO classes are more 

difficult to recognize accurately and the characteristics of 

these classes may be more ambiguous than the STAR 

class. 

Performance values of the models are given in Table 6. 

Accuracy values for Decision Trees, Random Forest and 

Naive Bayes models were obtained as 97.34%, 97.86% 

and 87.71%, respectively, while loss values were found 

to be 2.66%, 2.14% and 12.29%, respectively. These 

results show that the Random Forest method has the 

highest accuracy rate. Although Decision Trees and Naive 

Bayes algorithms have also achieved high accuracy 

values, it is clear that Random Forest provides superior 

performance. 

When the sensitivity, precision and specificity values of 

the GALAXY and QSO classes, which are most similar to 

each other, are examined, it is seen that the Random 

Forest model obtains higher values than Decision Trees. 

However, the Naive Bayes model, which is weaker than 

other classifiers, achieved the highest sensitivity value by 

correctly predicting all true positive examples in the 

STAR class. 

It is seen that the STAR class has the highest sensitivity, 

sharpness, specificity and f1-measure values in all three 

classifiers. The fact that the star class has the highest 

values in all four metrics shows that the model is more 

successful than other classes in correctly classifying 

stars. Additionally, this shows that the features of the star 

class are more distinct and distinctive than other classes, 

so the classifiers learn the star class better. 

In terms of F1-measure, very high values for all class 

labels are seen especially in the Random Forest model 

and Decision Trees. This shows that the models generally 

exhibit a balanced performance. These findings show that 

the Random Forest model can perform effective 

classification on this data set and performs well. 
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Table 6. Results obtained from the performance metrics of the models 

Classification 
Method 

Accuracy Loss Classes Sensitivity Precision Specificity F1-measure 

Decision Trees 97.34% 2.66% 

GALAXY 96.43% 95.64% 97.80% 96.03% 

QSO 95.79% 96.57% 98.30% 96.18% 

STAR 99.80% 99.81% 99.91% 99.81% 

Random Forest 97.86% 2.14% 

GALAXY 97.03% 96.58% 98.28% 96.80% 

QSO 96.58% 98.02% 99.02% 97.29% 

STAR 99.97% 98.98% 99.49% 99.48% 

Naive Bayes 87.71% 12.29% 

GALAXY 73.51% 87.64% 94.81% 79.96% 

QSO 89.61% 78.17% 87.49% 83.50% 

STAR 100% 98.54% 99.26% 99.27% 

 

4. Conclusion 
Within the scope of this study, we evaluated the 

performance of three different machine learning 

algorithms: Decision Trees, Random Forest and Naive 

Bayes to classify GALAXY, QSO and STAR classes. Our 

study was carried out on the K-NIME platform. The 

results obtained show that all three algorithms exhibit 

superior performance in classifying the STAR class. 

Decision Trees and Random Forest models attracted 

attention with their high accuracy (97.34% and 97.86%) 

and low error rates (2.66% and 2.14%). Similarly, in the 

study of Omat et al. (2022) Random Forest showed the 

best performance with an accuracy rate of 98%. 

Especially for the STAR class, the sensitivity, precision, 

specificity and F1-measure values of these models were 

found to be almost perfect. Haghighi (2023), who tested 

various classifiers, showed that Decision Trees provided 

the best accuracy and F1 score. 

Although the Naive Bayes algorithm had lower overall 

accuracy than the other two models (87.71%), it still 

showed high performance in the STAR class. However, 

one of the interesting results of the study is that the Naive 

Bayes classifier can distinguish the STAR class in the best 

way. As a result, it has been observed that the STAR class 

can be successfully classified by all algorithms thanks to 

its distinct and distinctive features, but more advanced 

and complex models (such as Random Forest) give better 

results in separating the GALAXY and QSO classes. While 

the study helps us understand which algorithm will 

perform better on a given data set, the findings highlight 

the importance of choosing the right algorithm in 

classification problems. At the same time, these findings 

provide important clues in the selection of machine 

learning algorithms used in classifying astronomical 

objects. 

In future studies, it is aimed to increase classification 

performance by using larger data sets and more complex 

models. Improvements can be added to make the model 

better recognize and distinguish GALAXY and QSO classes. 

Different analysis techniques can be applied to reveal the 

superior ability of the Naive Bayes classifier in 

determining the STAR class. A more comprehensive 

comparison can be made using different data sets and 

algorithm parameters, and more detailed results can be 

obtained by examining different metrics. 
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