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1 Introduction

Nowadays, several researchers investigate to model the uncertainties. They use different set theories
for this, for example fuzzy set theory [1] and intuitionistic fuzzy set theory [2] are the most common.
But, such theories have their own difficulties such as constructing membership function. Therefore,
Molodtsov [6] proposed a new mathematical tool for uncertainties, called soft set theory. In this theory,
it is not necessary which constructing membership function. Soft sets can apply several areas such as
Riemann-integration, Perron integration, game theory, operations research, probability theory, etc.

Many researchers study on soft set theory, especially soft topological structures. For example, soft
topology and related properties were studied in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Then, several
paper were published about fuzzy soft topological spaces [18, 19, 20, 21, 22, 23]. Moreover, recently,
some authors have studied over intuitionistic fuzzy soft topological spaces [26, 27, 28, 29].

In this article, we introduce the connectedness on intuitionisitic fuzzy soft topological spaces.
Then, we are compare the ifs C; themselves.

2 Preliminary

In this section, we will give basic definitions and theorems with ifs-sets, intuitionistic fuzzy soft topology
and intuitionistic fuzzy soft continuous functions. Throughout this paper, P(X), F and ZF(X) denote
power set of X, set of parameter and set of all intuitionistic fuzzy sets over X, respectively.
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Definition 2.1. [2] Let X be a nonempty set. An intuitionistic fuzzy set A is defined by

A= {<$,MA(LL'),VA(ZE)> tx € X}

where pa 1 X — [0,1] and v4 : X — [0, 1] denote membership and nonmembership functions respec-
tively. Therefore, pa(z) and v4(x) are membership and nonmembership degree of each element x € X
to the intuitionistic fuzzy set A and 0 < pa(z) + va(z) <1 for each z € X.

Definition 2.2. [2] Let {A;}ie; € ZF(X), A= {(z,pa(z),va(2)) : v € X} and B = {(z, up(z),vp(z)) :
reX } be two intuitionistic fuzzy sets on X. Then, some basic set operations of intuitionistic fuzzy
sets are defined as follows.

i. ACB< ug(z) > pa(z) and vp(z) <wva(z) for all z € X
ii. A=B< AC Band BC A.
it Uses Ai = {(2. Vier 14, (0), Aiey va, @) s @ € X}
v, Nyer Ai = {<177/\ief 1A, (@), Vier VA¢($)> RS X}
v. OA = {<x,,u,4(x),1—uA(x)> tx € X}
vi. 0A = {<x,1 —va(z),va(z)) 1z € X}
vii. A° = {{z,va(x), pa(z)):z € X}
vili. 1= {(2,1,0):2€ X} and 0= {(z,0,1): 2z € X}.
Theorem 2.3. [3] Let A, B,C' € ZF(X). Then
i. ACBand BCC= ACC
i. ACB=AuUuCCBUCand ANCCBNC
iii. (ANB)° = A°UB° and (AU B)° = A°N B°
iv. (A°)°¢=A,1°=0and 0°=1
v. ACB= B°C A

Definition 2.4. [6] A pair (F, A) is called a soft set over X, if F' is a mapping defined by F': A — P(X),
where A C F.

Now, we will give a new soft set definition who was given by Cagman [7]. The definition is a new
comment for the soft sets.

Definition 2.5. [7] A soft set F' over X is a set valued function from E to P(X). It can be written a
set of ordered pairs
F={(e,F(e):e€ E}.

Note that if F(e) = (), then the element (e, F/(e)) is not appeared in F. Set of all soft sets over X is
denoted by S.

According to Definition 2.5 we will redefine ifs-set and its set operations.

Definition 2.6. An intuitionistic fuzzy soft set (or namely ifs-set) f over X is a set valued function
from F to ZF(X). It can be written a set of ordered pairs

7 ={(eA@ 10 @), vpo @) s v € X)) e € B}

Note that if f(e) = 0, then the element (e, f(e)) is not appeared in f. Set of all ifs-sets over X is
denoted by IFS%.
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Definition 2.7. Let f,g,h € HIFSE. Then some basic set operations of ifs-sets are defined as follows:
i. (Inclusion) f C g iff f(e) C g(e) for all e € E.

Equality) f=giff fCgand gC f

Union) h = fUg iff h(e) = f(e) Ug(e) for all e € E.

Intersection) h = f Mg iff h(e) = f(e)Ng(e) for all e € E.

119,

vi. (Null ifs-set) f is called the null ifs-set and denoted by ®, if f(e) =0 for all e € E.

i (
(
- (
v. (Complement) h = f€ iff h(e) = (f(e))a forallee E
(
(Universal ifs-set) f is called the universal ifs-set and denoted by X, if f (e)=1forallee€ E.

Vs,
Theorem 2.8. Let {fi}ica C IFSY and g € IFSY. Then
i. gn ([_lieA fi) = iealg M fi)
. g U (Hie/\ fl) = |_|i€A(g U fi)

(l_lieA fz)c = l_lz'eA fzé

. (l_lie/\fi) :UiEAfié
v. PC fC X, X® = and $° = X,

~

=
<

vi. gUg® = X and (gé)(E =g.

Definition 2.9. [25, 29] Let IFSY and IFS¥ be sets of all ifs-sets on X and Y, respectively. Let
p:X —Y and ¥ : E — K be two mappings. Then a mapping ¢, : ]IFS;E( — HFS{/{ is defined as:

i. For f € HIFS?, the image of f under ¢, denoted ¢y (f), is an ifs-set in ]I]P‘S{f given by

e 1
) SUPeey—1 k), mep-1(y) (o) (@), i T H(y) # 0
k -
'u(‘p(f)( () {O, otherwise

and

infeey—1(k), zep—t () Vi) (2), if o7 (y) #0
V() (K)(y) = {1 o otherwise

1. For g € ]HFS{f , the inverse image of g under ¢, denoted by (p;l(g) is an ifs-set in ]I]FS?( given by
to=1(g)(€)(2) = Lg(u(en (P(2)) and vy-1(g)(€)(x) = vg(y(e)) (¢(z))
foralle € F and z € X.

If ¢ and ¢ are injective (surjective) then the ifs-mapping ¢, is said to be ifs-injective (ifs-
surjective).

Theorem 2.10. [25] Let ¢y, : ]HFSJ)E( — FS{/( be a intuitionistic fuzzy soft mapping, f € ]H[?SJ)E( and
{fitiea CIFSY. Then

i. If f1 T fo, then oy (f1) C oy (f2)
4. (pw(I_IiGA fz) = |_|i€A (pw(fi)
. %(Hie,\ fi) C [Tiea o (fi)

. (py(f))° E ¢y (%)
v. If ¢y surjective, then o, (X) =Y

~

<
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vi. f T, (py(f)), the equality holds if gy is ifs-injective.
Theorem 2.11. [25] Let ¢y : HFS])E( — HFS{; be a intuitionistic fuzzy soft mapping, g € HIFS{f and
{9;}jes CIFSE. Then

i. If g1 C go, then o' (g1) C ' (92)

ii. oyt (Uies95) = Uyer s’ (9)
. ‘Pll ( Nics gj) =[ljes ‘P:bl(gﬂ

iv. (2349)" = ¢, (¢°)

v. @1;1(57) = X and @;1(‘1)) =0

Vi. Py (w;l(g)) C g, the equality holds if ¢y is ifs-surjective.
Definition 2.12. [26] An ifs-topological space is a triplet (X, 7, F) where X is a nonempty set and 7
a family of ifs-sets over X satisfying the following properties:

1. @,X e,

. If f,ge 7, then fMgeT,
i, If {fitien € 7, then | ],c\ fi € 7.
Then, the family 7 is called an ifs-topology on X. Every member of 7 is called ifs-open. g is called
ifs-closed in (X, 7, E) if g € 7.

If f is ifs-open and ifs-closed, then it is called ifs-clopen set. In case f # X and f # ®, f is called

ifs-proper set.
Example 2.13. 70 = {X,®} and 7' = IFS¥ are ifs-topologies on X.

Definition 2.14. [26] Let (X, 7, E) be a ifs-topological space and f € HFS)E(. Then, ifs-interior of f
denoted by f° is the union of all ifs-open subsets of f. So, we can write the ifs-interior of f as

=11

gC f
geT

Definition 2.15. [26] Let (X, 7, E) be a ifs-topological space and f € IFS%. Then, ifs-closure of f
denoted by f is the intersection of all ifs-closed supersets of f. So, we can write the ifs-closure of f as

f=11n
fCh
heer

It can be seen clearly that f° and f are the largest ifs-open set which contained in f and the
smallest ifs-closed set which contains f over X, respectively.

Definition 2.16. Let (X, 7, E) be a ifs-topological space and f € IFSE. If f = (?)o, then f is called
ifs-regular open set. If If f = f°, then f is called ifs-regular closed set.
Theorem 2.17. [26] Let (X, 7, E) be a ifs-topological space and f, g € IFSY. Then,
i. If fC g, then f°PC¢g°and fC g
1. f is a soft open set iff f° = f
iii. f is a soft closed set iff f = f
v (7)°= (/%) and (F7) = (£°)°
Definition 2.18. [29] Let (X,7,E) and (Y,0,K) be two ifs-topological spaces. An ifs-mapping
vy (X,7,E) — (Y,0,K) is called an ifs-continuous mapping if gp;l(g) crforall gco.

Example 2.19. [29] In Example 2.13, every ifs-mapping ¢y : (X,7',E) — (Y,0,K) is an ifs-
continuous mapping.
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3 Intuitionistic Fuzzy Soft Connectedness

In this section, we will give definition of ifs-connected spaces and their some properties. Further, we
will introduce ifs C;—connectedness (i = 1,2, 3,4) and ifs-super connectedness.

Definition 3.1. Let (X, 7, FE) be a ifs-topological space and f € ]HFS;E(. If there are two ifs-proper
open sets g1 and gs such that f C g U go and g1 M go = @, then the ifs-set f is called ifs-disconnected
set. If there does not exist such two ifs-proper open sets, then the ifs-set f is called ifs-connected set.
If we take X instead of f, then the (X,, E) is called ifs-disconnected (connected) space.

Example 3.2. Let consider the ifs-topological spaces (X,7% E) and (X, 7!, F) in Example 2.13,
(X, 7Y E) is an ifs-connected topological space, but (X, 7!, E) is an ifs-disconnected topological space.

Theorem 3.3. Let (X, 7, E) be a ifs-topological space. (X, 7, E) ifs-connected if and only if there
does not exist a ifs-proper clopen set f in (X, 7, E).

Proof. (=) : Let (X,7,E) be a ifs-connected space. Suppose that there exist a ifs-proper clopen set
fin (X, 7, E) such that fU f¢= X and f M f¢ = ®. It is a contradiction.
(<) : It is clear.

Theorem 3.4. Let (X, 7, F) be a ifs-topological space and ¢ C 7. Then, (X,0, E) is a connected
ifs-topological space.

Proof. 1t is clear.

Theorem 3.5. Let (X, 7, E) and (Y, 0, K) be two ifs-topological spaces, f € IFS% and vy (X, 7, E) —
(Y,0,K) be an ifs-continuous mapping. If f is an ifs-connected set, then ¢y (f) is an ifs-connected
set.

Proof. Assume that ¢, (f) is an ifs-disconnected set. Therefore, there exist two ifs-proper open sets
g and h such that ¢, (f) C gUh and g M h = @. By Theorem 2.11, we have

FE @, (eu() E eyt (g) Uyt (h)

and

e, (@) Nyt (h) = 0,1 (D) = @.
It is a contradiction and this complete the proof.
Theorem 3.6. Let (X, 7, E) and (Y, 0, K) be two ifs-topological spaces and ¢y, : (X, 7, E) — (Y, 0, K)
be an ifs-continuous and ifs-surjective mapping. If (X, 7, E) is an ifs-connected space, then (Y, o, K)
is also an ifs-connected space.

Proof. Assume that (Y0, K) is an ifs-disconnected space. So, there exist two ifs-proper open sets
g1 and g2 such that g1 Ugy = Y, g1 Mgs = ®. By Theorem 2.11 ap;l(gl) U 90;1(92) = X and

@Jl(gl) m @Jl(gg) = ®. This contradiction completes the proof.

Definition 3.7. Let (X, 7, E) be an ifs-topological space. If there exist f,g € HIFS?} which are ifs-
proper, such that fMg= ® and f Mg = ® then the ifs-sets f and g are called ifs-separated sets.

Theorem 3.8. Let (X, 7, E) be a ifs-topological space, f and g be two ifs-open sets. If fMg = ®,
then f and g are ifs-separated sets.

Proof. Let f,g €7 and fMg= ®. Then, féLg% = X. So, f C ¢° and g C f¢. f©and ¢° are ifs-closed
sets. By 2.17, we have

=g¢° and §E7:fa.

m‘

fC
Therefore, fMg=® and fNg=o.

Theorem 3.9. Let (X, 7, FE) be an ifs-topological space, f and g be two ifs-closed sets. If fT1g = ®,
then f and g are ifs-separated sets.

Proof. From Theorem 2.17, it is clear.
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Theorem 3.10. An ifs-topological space (X, 7, E) is connected if and only if X cannot be written as
union of ifs-separated sets.

Proof. (=) : Assume that X can be written as union of ifs-separated sets f and ¢g. Thus, X = fUg,
frg=®and fMg=®. So, we have fg=®, f =¢° and g = f°. Furthermore
f = fnXx

= fr(fug)

= (fnfu(fng)

— f'
Thus, f is an ifs-closed set. With similar way, it can be seen clearly that g is also an ifs-closed set.
This is a contradiction because f = g% and g = f¢, f and g are ifs-open sets.

(<) : Assume that (X, 7, E) is not an ifs-connected space. Thus, there exist an ifs-proper clopen
set f. But it contradicts by hypothesis.

Theorem 3.11. Let (X, 7, E) be an ifs-topological space and f € ]I]FS)E; be an ifs-open connected set.
If fC gC f, then g is an ifs-connected set.

Proof. Suppose that g is an ifs-disconnected set. Then, there exist two ifs-open proper sets hy and ho
such that
hlﬂhgz(b and gghluhg.

So,

f=[frh]U[fnhs]
and

[f k] T [f M he] =

But it is a contradiction. Thus g is an ifs-connected set.

Remark 3.12. Let (XLT, E) be an ifs-topological space and f € ]I]FS])E( be an ifs-open set. If f is an
ifs-connected set, then f is an ifs-connected set.

Definition 3.13. Let (X, 7, FE) be an ifs-topological space. If there exist an ifs-regular open proper
set f, then (X, 7, E) is called ifs-super disconnected.

Example 3.14. Let X = {z1,29,23} and E = {e1,ea}. Then, for

o= {(el,{<x1,0.4,0.6>,<x2,0.6,0.3> (5,0.2,0.3)}),
(2, {(x1,0.6,0.4), (z2,0.3,0.6), (x3,0.3,0.2)} )}
g = {61, (1,0.5,0.2), (x3,0.3,0.6), (x3,0.4,0.3)}),
ea, {{x1,0.2,0.5), (z2,0.6,0.3), (3,0.3,0.4)} )}
ho= {el, (1,0.5,0.4), (w3,0.4,0.5), (x3,0.2,0.4)}),

(e2, {(z1,0.4,0.5), (x2,0.5,0.4), <x3,0.4,0.2>})}

7 ={X,®, f,g,h} is an ifs-topology on X and (X, 7, E) is an ifs-super connected space.
Theorem 3.15. The followings are equivalent.
i. (X, 7, E) is an ifs-super connected space
#. For each f such that f #®, f =X
#i. For each f such that f # ®, f° =&
iv. There exist no ifs-open sets f and g such that f # ®, g # ® and f C ¢°
v. There exist no ifs-open sets fand g such that f # ®, g # ®, g = (f)° and f = (9)°
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vi. There exist no ifs-closed sets fand g such that f # X, g # X, g = (f°)% and f = (¢°)°

Proof. (i. = ii.): Suppose that there exists an ifs-open f such that f # ® and f # X. If we take
g = (f)°, then g is an ifs-proper and regular open set. But it is a contradiction.

(ii. = ui.): Let f # X be an ifs-closed set. If we take g = f¢, then g is an ifs-open and g #+ O,
For § = X, we have (¢°)° = ® and (3)° = ®. So, f° = ®.

(iii. = iv.): Let f and g be ifs-open sets such that f # ®, g # ® and f C ¢°. Thus, ¢° is an
ifs-closed set and because of g # ®, g¢ # X. So, we obtain (¢g°)° = ®. But, with f C ¢°, we can write
O £ f = f°C (¢°)° = ®. It is a contradiction

(zv = i.): Let f be an ifs-regular open proper. If we take g = (f)®, we obtain g # ®. (Otherwise,
(f)f=®=f =X and so, f = (f)° = X. But it contradicts the fact f # X.)

(. v.): Let f and g be ifs-open sets such that f # ®, g £ ®, g = (f)~ and f = (9)°. Then we
hav 7)° = (¢%)° = (5)° = f where f # ® and f # X. (Otherw1se if f =X, then X = (g)° and thus

=7g.) But it is a contradiction.

(v. = 4.): Let f be an ifs-open proper set such that f = (f)°. If we take g = (f), then we have

g#®, ge7,g=(f)° and so

@°=((H*) = ((N)) =(f
but it is a contradiction.

(v. = vi.): Let f and g be ifs-closed sets such that f # X, g # X, g = (f°)% and f = (¢°)°. If we
take hy = f© and ho = g%, then hy, and hy become ifs-open sets such that h; # ® and hy # ®. Thus
(h1)¢ = (f°)° = ((fo))c = f° = g° = hy and similarly (h2)® = hy. But this is a contradiction, clearly.

(vi. = v.): It can be proved similar way in (v. = vi.)

Now, we will introduce ifs C;—connected spaces (i = 1,2,3,4) by helping of fuzzy C;—connectedness
in intuitionistic fuzzy sets [4]. Definitions of ifs C —connected spaces can be seen as an extension of
intuitionistic fuzzy connected space.

Definition 3.16. Let (X, 7, E) be a ifs-topological space and f € IFSY. f is called

i. ifs C1—connected iff does not exist two non null ifs-open sets g and h such that f T g U h,
gMhE fe frig#®and frh#®.

1. ifs Co—connected iff does not exist two non null ifs-open sets g and h such that f T g U h,
fMNgNh=® frg#®and fMh#o.

111. ifs C3—connected iff does not exist two non null ifs-open sets g and h such that f T g U h,
gI‘Ithﬂgl fe andh,@ fe.

w. ifs Cy—connected iff does not exist two non null ifs-open sets g and h such that f T g U h,
fl‘lgl‘lh:‘b,gz fe andhz fe.

From Definition 3.16, relations between ifs C;—connectedness (i = 1,2,3,4) can be described by the

following diagram:
ifs C1 connectedness —— ifs Cs connectedness

l I

ifs C3 connectedness —— ifs Cy connectedness

In the following examples, we illustrate all reverse implications.
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Example 3.17. Let X =[0,1] and E = {a, b}. Moreover, define soft sets f, g and h as following:

f - e

{(@, 1y a) (@), Vi) (2)) s 2 € X D),

(b,{ T, ,Uf(b Vf(b)(x» RS X})}
g {(a’{ T, Pg(a $)7Vg(a)<x)> X € X})7
(b,{ x ,ug(b) l/g(b)(x)> x € X})}
h (a,{ T, fip(a) (T), Vn(a) (7)) @ € X})’
(0, {(&, pny (), vy () € X})}
where
1ogpl o0 1, if t<a<l1
_J)3 U3 = d =<7 3 _
o) {L e e Y P
1 if1<:1:<1 1 if1<:17<1
_ ) d = 3’
Vg(a)($> {é’ lf 0 < T g é? an Vg(b)(x) {1, lf 0 S X S %
1, ifi<a<1 iifi<ca<
_ ) 3 - d 3’ 3 —
/Lh(a)(flf) {é’ f0<a< % an :U'h(b)(x) {17 ifo<z< %
14l p<t 1, ifi<z<i
_J3 U3 = d =< 3 _
Vh(a)(l“) I ifo<e< % an uh(b)(x) %, ifo<a< %
11 (@) = 1y () = vy (@) = vy (@) = 3/4 forallz € [0,1]. 7= {®, X, g,h, gTh} is a ifs-topology

on X. It can be see clearly that f is ifs Cy—connected but ifs C's—disconnected.

Example 3.18. Let X =[0,1] and F = {a,b}. Moreover, define soft sets g, h and f as following:

g { (T, tg(a) (), Vg(a) (x)) : z € X }),
(b, A2 190 (@), vy (2)) 2 € X}) |

o= { (0l i (@), o (2)) £ 5 € XY),
(b, { Vmw0ﬂ>¢x€éYD}
gu

ﬂﬂﬂh(b)
f =
where
0, ifft<z<1 3, if f<a<1
= ! 3 - d = 3’
o)) {} <ot M 0@ {Q f0<a<l,
Lifl<ca<it 0, if <<l
=<3 3 - d =7 3 =
o(o) () {Q foca<t, M WO@=01 0,00
() 3, ifi<a<l d (@) 0, if $<z<1
)\T) = an x) =
e 0, f0<z<i Hacb) Loifo<ae<]
(@) 0, if g<z<l . () 5, if i<az<1
Vh(a)(Z) = . and v, T) = .
e Lifo<e<y "o 0, if0<az<i,

T ={9, X,q,h, gl h} is a ifs-topology on X. It can be seen clearly that f is ifs Cy—connected but ifs

(3 —disconnected.
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Example 3.19. Let X =

f

where
1
:ug(a)( )= {37
39
2
Vo) () = Q3§
3’
2
Hh(a) (‘T) = i
39
1
Vn(a)(T) =4 3
3’
fpa) () = ppe) (@) = Vi) (e

(1 —disconnected.

Example 3.20. Let X = [0, 1]

f

where

0,
Hg(a)(T) = {2
3
1
_ )3

Vg(a)(T) =
9(a) () 0,
L
Nh(a)( ): 8:
0,
Vh(a)(x) = {2
3

z) =

10

[0,1] and E = {a,b}. Moreover, define soft sets f, g and h as following:

{ {{(, n(@) (@), Vp(a) (7)) 1 7 € X}),
)iy () rx € X})}

@) (1), Vga) () 1 € X})7

(b, {(, gy (=
= {(e 1,
W{x%@
(@, {{z, tna)
(b, {{, vy (

if 3 <<l
if0<z<3

ey (T)) 1w € X})

)
(

}

) Vh(a) .13)> ‘T E X})a

), () w € X} |

2
and ,ug(b)(x):{i”
3
1
and  vyp)(z) =<3
3
1
and gy (7) = 5
3
2
and v () =4 F
3

if $ <<l
if 0<a <3,
if 1 <z<1
if0<z<g
if <2<l
if0<z<3i
if%<x§1
if 0<a <3,

viw(x) = 1/3 for all z € [0,1]. 7 = {®,X,9,h,g M h,gUh} is a
ifs-topology on X. It can be seen clearly that f is ifs C3—connected and ifs Cy—connected but ifs

and E = {a,b}. Moreover, define soft sets f, g and h as following:

{ {{, n@) (@), Vp(a) (7)) 1 7 € X}),

Vi (x)) rx € X})}

(0. {2, o) (@)
{(a,{ Ly lg(a

(b, { (2, pgv (x

{(a,{ € Mh(a ), Vh(a)

(b, {{, vy (

if 2<z<1

ﬁ0<x§§

if§<x§1
if0<az<?

y(@), v,

)
(

s g(a)<.7;)> T e X})7

) Vg () s € X})

}

z)):x e X}),

x), vy () s € X})}

if 2<z<1
if 0<a<2,
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1 r 2 2 e 2
Ff(a)(2) {§ fo<z<2 Hyw () 1 ifo<a<?

2 i 2oa< L if2<a<l
, _J3 m3 = d v _J3 3 >
5o (#) {;,, to<ocz IO =2 oc,c2

T={9, X.g,h,gU h} is a ifs-topology on X. It can be seen clearly that f is ifs C3—connected but ifs
Cy—disconnected and ifs C'y —disconnected.

Example 3.21. In the Example 3.19, if we take py(q) (%) = ptp) (%) = vi(a) (@) = vip)(z) = 2 for all
x € [0,1], then f is ifs Ca—connected but ifs C3—disconnected.

Theorem 3.22. Let ¢, : (X, 7, E) — (Y, 0, K) be a ifs-surjective continuous mapping and f € IFS%.
If fis a ifs C1—connected, then ¢y (f) is ifs Ch—connected.

Proof. Suppose that ¢y (f) is not ifs Cy—connected. Then, there exist two non null ifs-open sets g
and h in (Y, 0, K) such that

oy(f) & gUh,
gnh T (pu()",
ep(f)Ng # @,
ep(f)Mh # .
Thus, by Theorem 2.11 we have
f E oent(@uey,t(h),
epl (@) Ne,t(h) C f°
e l@nf # @,

Snf # o
But this contradict by hypothesis. So, ¢y (f) is an ifs C;—connected.
Theorem 3.23. Let ¢, : (X, 7, E) — (Y, 0, K) be a ifs-surjective continuous mapping and f € IFS%.
If f is a ifs Cy—connected, then ¢, (f) is ifs Ca—connected.
Proof. it can be proved similar way to above theorem.

Theorem 3.24. Let ¢y : (X, 7) — (Y, 0) be ifs-continuous surjective mapping and f € IFS. If f is
a ifs Cs—connected, then ¢, (f) is a ifs Cs—connected.

Proof. Assume that, ¢, (f) is not ifs Cs—connected. Then, there exist two non null ifs-open sets g
and h in (Y, 0, K) such that

oup(f) C gUh,
gnh T (pu()S,
g £ (eu(DN),
7 (ou(f)°

By Theorem 2.11,
FE @ (0ul£) Eyt(guh) =95 (9) Uy (h)

and i
(gﬂh) m%()zf?

Since, f C goqll(gpw(f)) implies (gow (pu(f ))) C fC and ¢y, is a ifs-continuous function, so ¢, Y(g), gpil(h) €
7. Moreover, from g ,@((pw ) and h E(% ) , there exist y1,y2 € Y such that

ge(y1) > 1=y (f)(k)(y1) (1)
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he(y2) = 1 = @y (f) (k) (y2) (2)
We claim that goqzl(g) Zfé and goll(h) zfé. To prove the claim, we suppose 90;1(9) C f¢. Clearly, this
claim contradicts by (1). Similarly, gpqll(h) C f¢ contradicts by (2). So, ¢y (f) is ifs C3—connected.

Theorem 3.25. Let ¢y : (X, 7) — (Y, 0) be ifs-continuous surjevtive mapping and f € IFS%. If f is
a ifs Cy—connected, then ¢ (f) is a SC4 connected.

Proof. Tt can be proved similarly way in Theorem 3.24.

Theorem 3.26. Let (X, 7, E) be a ifs-topological space, fi and fo be two ifs Cq—connected ifs-sets
such that f1 M fo # ®. Then, fi; U f5 is ifs C;—connected.

Proof. 1t is easy.

Remark 3.27. From Theorem 3.26, we can say easily that if f; and f; be two ifs C;—connected
ifs-sets such that f; M fo # @, then f; U fs is ifs Co—connected.

Theorem 3.28. Let (X,7,E) be a ifs-topological space and {frlrea C IFSY be family of ifs

C1—connected ifs-sets such that f;[f; # ® fori,j € A (i # j). Then, | |, o5 fx is is a ifs C1—connected
ifs-set.

Proof. 1t can be proved by using Theorem 3.26.

4 Conclusion

In this paper we introduced ifs-connectedness which super ifs connectedness and ifs C; (i = 1,2,3,4)
connectedness and presented fundamentals properties. For future works, we consider to study on ifs
Cy and C5 connected sets in ifs topological spaces.
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