http://www.newtheory.org

Received: 12.11.2014 Accepted: 24.11.2014 Year: 2015, Number: 1 , Pages: 02-16 Original Article^{**}

Connectedness on Intuitionistic Fuzzy Soft Topological Spaces

Serkan Karataş^{1,*}(serkankaratas@odu.edu.tr) Mehmet Akif İşleyen¹ (mehmetakifisleyen@msn.com)

¹Department of Mathematics, Faculty of Arts and Sciences, Ordu University, 52200 Ordu, Turkey

Abstract – In this study, we introduce intuitionistic fuzzy soft connected sets in intuitionistic fuzzy soft topological spaces and some properties. Moreover, we extend the notion of C_i connectedness (i = 1, 2, 3, 4) to intuitionistic fuzzy soft topological spaces.

Keywords – Intuitionistic fuzzy soft set, intuitionistic fuzzy soft topological space, intuitionistic fuzzy soft connectedness.

1 Introduction

Nowadays, several researchers investigate to model the uncertainties. They use different set theories for this, for example fuzzy set theory [1] and intuitionistic fuzzy set theory [2] are the most common. But, such theories have their own difficulties such as constructing membership function. Therefore, Molodtsov [6] proposed a new mathematical tool for uncertainties, called soft set theory. In this theory, it is not necessary which constructing membership function. Soft sets can apply several areas such as Riemann-integration, Perron integration, game theory, operations research, probability theory, etc.

Many researchers study on soft set theory, especially soft topological structures. For example, soft topology and related properties were studied in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Then, several paper were published about fuzzy soft topological spaces [18, 19, 20, 21, 22, 23]. Moreover, recently, some authors have studied over intuitionistic fuzzy soft topological spaces [26, 27, 28, 29].

In this article, we introduce the connectedness on intuitionisitic fuzzy soft topological spaces. Then, we are compare the *ifs* C_i themselves.

2 Preliminary

In this section, we will give basic definitions and theorems with *ifs*-sets, intuitionistic fuzzy soft topology and intuitionistic fuzzy soft continuous functions. Throughout this paper, $\mathcal{P}(X)$, E and $\mathcal{IF}(X)$ denote power set of X, set of parameter and set of all intuitionistic fuzzy sets over X, respectively.

^{**} Edited by Naim Çağman (Editors-in-Chief) and Oktay Muhtaroğlu (Area Editor).

^{*} Corresponding Author.

Journal of New Theory 1 (2015) 02-16

Definition 2.1. [2] Let X be a nonempty set. An intuitionistic fuzzy set A is defined by

$$A = \left\{ \left\langle x, \mu_A(x), \nu_A(x) \right\rangle : x \in X \right\}$$

where $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote membership and nonmembership functions respectively. Therefore, $\mu_A(x)$ and $\nu_A(x)$ are membership and nonmembership degree of each element $x \in X$ to the intuitionistic fuzzy set A and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2. [2] Let $\{A_i\}_{i \in I} \subseteq \mathcal{IF}(X)$, $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$ be two intuitionistic fuzzy sets on X. Then, some basic set operations of intuitionistic fuzzy sets are defined as follows.

i. $A \subseteq B \Leftrightarrow \mu_B(x) \ge \mu_A(x)$ and $\nu_B(x) \le \nu_A(x)$ for all $x \in X$ ii. $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$. iii. $\bigcup_{i \in I} A_i = \left\{ \langle x, \bigvee_{i \in I} \mu_{A_i}(x), \bigwedge_{i \in I} \nu_{A_i}(x) \rangle : x \in X \right\}$ iv. $\bigcap_{i \in I} A_i = \left\{ \langle x, \bigwedge_{i \in I} \mu_{A_i}(x), \bigvee_{i \in I} \nu_{A_i}(x) \rangle : x \in X \right\}$

v.
$$\Box A = \left\{ \left\langle x, \mu_A(x), 1 - \mu_A(x) \right\rangle : x \in X \right\}$$

vi.
$$\Diamond A = \left\{ \langle x, 1 - \nu_A(x), \nu_A(x) \rangle : x \in X \right\}$$

- vii. $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle : x \in X \}$
- viii. $\tilde{1} = \{ \langle x, 1, 0 \rangle : x \in X \}$ and $\tilde{0} = \{ \langle x, 0, 1 \rangle : x \in X \}.$

Theorem 2.3. [3] Let $A, B, C \in \mathcal{IF}(X)$. Then

- i. $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$
- ii. $A\subseteq B\Rightarrow A\cup C\subseteq B\cup C$ and $A\cap C\subseteq B\cap C$
- iii. $(A \cap B)^c = A^c \cup B^c$ and $(A \cup B)^c = A^c \cap B^c$
- iv. $(A^c)^c = A$, $\tilde{1}^c = \tilde{0}$ and $\tilde{0}^c = \tilde{1}$
- v. $A \subseteq B \Rightarrow B^c \subseteq A^c$

Definition 2.4. [6] A pair (F, A) is called a soft set over X, if F is a mapping defined by $F : A \to \mathcal{P}(X)$, where $A \subseteq E$.

Now, we will give a new soft set definition who was given by Çağman [7]. The definition is a new comment for the soft sets.

Definition 2.5. [7] A soft set F over X is a set valued function from E to $\mathcal{P}(X)$. It can be written a set of ordered pairs

$$F = \{ (e, F(e)) : e \in E \}.$$

Note that if $F(e) = \emptyset$, then the element (e, F(e)) is not appeared in F. Set of all soft sets over X is denoted by S.

According to Definition 2.5 we will redefine *ifs*-set and its set operations.

Definition 2.6. An intuitionistic fuzzy soft set (or namely *ifs*-set) f over X is a set valued function from E to $\mathcal{IF}(X)$. It can be written a set of ordered pairs

$$f = \left\{ \left(e, \left\{ \langle x, \mu_{f(e)}(x), \nu_{f(e)}(x) \rangle : x \in X \right\} \right) : e \in E \right\}$$

Note that if f(e) = 0, then the element (e, f(e)) is not appeared in f. Set of all *ifs*-sets over X is denoted by \mathbb{IFS}_X^E .

Definition 2.7. Let $f, g, h \in \mathbb{IFS}_X^E$. Then some basic set operations of *ifs*-sets are defined as follows:

- *i.* (Inclusion) $f \sqsubseteq g$ iff $f(e) \subseteq g(e)$ for all $e \in E$.
- *ii.* (Equality) f = g iff $f \sqsubseteq g$ and $g \sqsubseteq f$
- *iii.* (Union) $h = f \sqcup g$ iff $h(e) = f(e) \cup g(e)$ for all $e \in E$.
- *iv.* (Intersection) $h = f \sqcap g$ iff $h(e) = f(e) \cap g(e)$ for all $e \in E$.
- v. (Complement) $h = f^{\tilde{c}}$ iff $h(e) = (f(e))^{\tilde{c}}$ for all $e \in E$
- vi. (Null ifs-set) f is called the null ifs-set and denoted by Φ , if $f(e) = \tilde{0}$ for all $e \in E$.
- vii. (Universal ifs-set) f is called the universal ifs-set and denoted by \tilde{X} , if $f(e) = \tilde{1}$ for all $e \in E$.

Theorem 2.8. Let $\{f_i\}_{i \in \Lambda} \subseteq \mathbb{IFS}_X^E$ and $g \in \mathbb{IFS}_X^E$. Then

$$i. \ g \sqcap \left(\bigsqcup_{i \in \Lambda} f_i \right) = \bigsqcup_{i \in \Lambda} (g \sqcap f_i)$$

$$ii. \ g \sqcup \left(\bigsqcup_{i \in \Lambda} f_i \right) = \bigsqcup_{i \in \Lambda} (g \sqcup f_i)$$

$$iii. \ \left(\bigsqcup_{i \in \Lambda} f_i \right)^{\tilde{c}} = \bigsqcup_{i \in \Lambda} f_i^{\tilde{c}}$$

$$iv. \ \left(\bigsqcup_{i \in \Lambda} f_i \right)^{\tilde{c}} = \bigsqcup_{i \in \Lambda} f_i^{\tilde{c}}$$

$$v. \ \Phi \sqsubseteq f \sqsubseteq \tilde{X}, \ \tilde{X}^{\tilde{c}} = \Phi \text{ and } \Phi^{\tilde{c}} = \tilde{X},$$

$$vi. \ g \sqcup g^{\tilde{c}} = \tilde{X} \text{ and } (g^{\tilde{c}})^{\tilde{c}} = g.$$

Definition 2.9. [25, 29] Let \mathbb{IFS}_X^E and \mathbb{IFS}_Y^K be sets of all *ifs*-sets on X and Y, respectively. Let $\varphi: X \to Y$ and $\psi: E \to K$ be two mappings. Then a mapping $\varphi_{\psi}: \mathbb{IFS}_X^E \to \mathbb{IFS}_Y^K$ is defined as:

i. For $f \in \mathbb{IFS}_X^E$, the image of f under φ_{ψ} , denoted $\varphi_{\psi}(f)$, is an *ifs*-set in \mathbb{IFS}_Y^K given by

$$\mu_{\varphi(f)}(k)(y) = \begin{cases} \sup_{e \in \psi^{-1}(k), \ x \in \varphi^{-1}(y)} \mu_{f(e)}(x), & \text{if } \varphi^{-1}(y) \neq \emptyset\\ 0, & \text{otherwise} \end{cases}$$

and

$$\nu_{\varphi(f)}(k)(y) = \begin{cases} \inf_{e \in \psi^{-1}(k), \ x \in \varphi^{-1}(y)} \nu_{f(e)}(x), & \text{if } \varphi^{-1}(y) \neq \emptyset\\ 1, & \text{otherwise} \end{cases}$$

ii. For $g \in \mathbb{IFS}_Y^K$, the inverse image of g under φ_{ψ} , denoted by $\varphi_{\psi}^{-1}(g)$ is an *ifs*-set in \mathbb{IFS}_X^E given by

$$\mu_{\varphi^{-1}(g)}(e)(x) = \mu_{g(\psi(e))}(\varphi(x))$$
 and $\nu_{\varphi^{-1}(g)}(e)(x) = \nu_{g(\psi(e))}(\varphi(x))$

for all $e \in E$ and $x \in X$.

If φ and ψ are injective (surjective) then the *ifs*-mapping φ_{ψ} is said to be *ifs*-injective (*ifs*-surjective).

Theorem 2.10. [25] Let $\varphi_{\psi} : \mathbb{IFS}_X^E \to \mathbb{FS}_Y^K$ be a intuitionistic fuzzy soft mapping, $f \in \mathbb{IFS}_X^E$ and $\{f_i\}_{i \in \Lambda} \subseteq \mathbb{IFS}_X^E$. Then

i. If $f_1 \sqsubseteq f_2$, then $\varphi_{\psi}(f_1) \sqsubseteq \varphi_{\psi}(f_2)$ *ii.* $\varphi_{\psi}(\bigsqcup_{i \in \Lambda} f_i) = \bigsqcup_{i \in \Lambda} \varphi_{\psi}(f_i)$ *iii.* $\varphi_{\psi}(\bigsqcup_{i \in \Lambda} f_i) \sqsubseteq \bigsqcup_{i \in \Lambda} \varphi_{\psi}(f_i)$

iii.
$$\varphi_{\psi}(\mid\mid_{i\in\Lambda}f_i) \sqsubseteq \mid\mid_{i\in\Lambda}\varphi_{\psi}(f_i)$$

iv.
$$\left(\varphi_{\psi}(f)\right)^{\tilde{c}} \sqsubseteq \varphi_{\psi}\left(f^{\tilde{c}}\right)$$

v. If φ_{ψ} surjective, then $\varphi_{\psi}(\tilde{X}) = \tilde{Y}$

vi. $f \sqsubseteq \varphi_{\psi}^{-1}(\varphi_{\psi}(f))$, the equality holds if φ_{ψ} is *ifs*-injective.

Theorem 2.11. [25] Let $\varphi_{\psi} : \mathbb{IFS}_X^E \to \mathbb{IFS}_Y^K$ be a intuitionistic fuzzy soft mapping, $g \in \mathbb{IFS}_Y^K$ and $\{g_j\}_{j \in J} \subseteq \mathbb{IFS}_Y^K$. Then

i. If
$$g_1 \sqsubseteq g_2$$
, then $\varphi_{\psi}^{-1}(g_1) \sqsubseteq \varphi_{\psi}^{-1}(g_2)$
ii. $\varphi_{\psi}^{-1}\left(\bigsqcup_{i \in J} g_j\right) = \bigsqcup_{j \in J} \varphi_{\psi}^{-1}(g_j)$
iii. $\varphi_{\psi}^{-1}\left(\prod_{i \in J} g_j\right) = \prod_{j \in J} \varphi_{\psi}^{-1}(g_j)$
iv. $\left(\varphi_{\psi}^{-1}(g)\right)^{\tilde{c}} = \varphi_{\psi}^{-1}(g^{\tilde{c}})$

- v. $\varphi_{\psi}^{-1}(\tilde{Y}) = \tilde{X} \text{ and } \varphi_{\psi}^{-1}(\Phi) = \Phi$
- vi. $\varphi_{\psi}(\varphi_{\psi}^{-1}(g)) \sqsubseteq g$, the equality holds if φ_{ψ} is *ifs*-surjective.

Definition 2.12. [26] An *ifs*-topological space is a triplet (X, τ, E) where X is a nonempty set and τ a family of *ifs*-sets over X satisfying the following properties:

- i. $\Phi, \tilde{X} \in \tau$,
- *ii.* If $f, g \in \tau$, then $f \sqcap g \in \tau$,
- *iii.* If $\{f_i\}_{i \in \Lambda} \subseteq \tau$, then $\bigsqcup_{i \in \Lambda} f_i \in \tau$.

Then, the family τ is called an *ifs*-topology on X. Every member of τ is called *ifs*-open. g is called *ifs*-closed in (X, τ, E) if $g^{\tilde{c}} \in \tau$.

If f is *ifs*-open and *ifs*-closed, then it is called *ifs*-clopen set. In case $f \neq \tilde{X}$ and $f \neq \Phi$, f is called *ifs*-proper set.

Example 2.13. $\tau^0 = \{\tilde{X}, \Phi\}$ and $\tau^1 = \mathbb{IFS}_X^E$ are *ifs*-topologies on X.

Definition 2.14. [26] Let (X, τ, E) be a *ifs*-topological space and $f \in \mathbb{IFS}_X^E$. Then, *ifs*-interior of f denoted by f° is the union of all *ifs*-open subsets of f. So, we can write the *ifs*-interior of f as

$$f^\circ = \bigsqcup_{\substack{g \sqsubseteq f \\ g \in \tau}} g.$$

Definition 2.15. [26] Let (X, τ, E) be a *ifs*-topological space and $f \in \mathbb{IFS}_X^E$. Then, *ifs*-closure of f denoted by \overline{f} is the intersection of all *ifs*-closed supersets of f. So, we can write the *ifs*-closure of f as

$$\overline{f} = \prod_{\substack{f \sqsubseteq h \\ h^{\overline{c}} \in \tau}} h.$$

It can be seen clearly that f° and \overline{f} are the largest *ifs*-open set which contained in f and the smallest *ifs*-closed set which contains f over X, respectively.

Definition 2.16. Let (X, τ, E) be a *ifs*-topological space and $f \in \mathbb{IFS}_X^E$. If $f = (\overline{f})^\circ$, then f is called *ifs*-regular open set. If If $f = \overline{f^\circ}$, then f is called *ifs*-regular closed set.

Theorem 2.17. [26] Let (X, τ, E) be a *ifs*-topological space and $f, g \in \mathbb{IFS}_X^E$. Then,

- *i.* If $f \sqsubseteq g$, then $f^{\circ} \sqsubseteq g^{\circ}$ and $\overline{f} \sqsubseteq \overline{g}$
- *ii.* f is a soft open set iff $f^{\circ} = f$
- *iii.* f is a soft closed set iff $\overline{f} = f$

iv.
$$(\overline{f})^{c} = (f^{\tilde{c}})^{\circ}$$
 and $\overline{(f^{\tilde{c}})} = (f^{\circ})^{c}$

Definition 2.18. [29] Let (X, τ, E) and (Y, σ, K) be two *ifs*-topological spaces. An *ifs*-mapping $\varphi_{\psi} : (X, \tau, E) \to (Y, \sigma, K)$ is called an *ifs*-continuous mapping if $\varphi_{\psi}^{-1}(g) \in \tau$ for all $g \in \sigma$.

Example 2.19. [29] In Example 2.13, every *ifs*-mapping $\varphi_{\psi} : (X, \tau^1, E) \to (Y, \sigma, K)$ is an *ifs*-continuous mapping.

3 Intuitionistic Fuzzy Soft Connectedness

In this section, we will give definition of *ifs*-connected spaces and their some properties. Further, we will introduce *ifs* C_i -connectedness (i = 1, 2, 3, 4) and *ifs*-super connectedness.

Definition 3.1. Let (X, τ, E) be a *ifs*-topological space and $f \in \mathbb{IFS}_X^E$. If there are two *ifs*-proper open sets g_1 and g_2 such that $f \sqsubseteq g_1 \sqcup g_2$ and $g_1 \sqcap g_2 = \Phi$, then the *ifs*-set f is called *ifs*-disconnected set. If there does not exist such two *ifs*-proper open sets, then the *ifs*-set f is called *ifs*-connected set. If we take \tilde{X} instead of f, then the (X, τ, E) is called *ifs*-disconnected (connected) space.

Example 3.2. Let consider the *ifs*-topological spaces (X, τ^0, E) and (X, τ^1, E) in Example 2.13, (X, τ^0, E) is an *ifs*-connected topological space, but (X, τ^1, E) is an *ifs*-disconnected topological space.

Theorem 3.3. Let (X, τ, E) be a *ifs*-topological space. (X, τ, E) *ifs*-connected if and only if there does not exist a *ifs*-proper clopen set f in (X, τ, E) .

Proof. (\Rightarrow) : Let (X, τ, E) be a *ifs*-connected space. Suppose that there exist a *ifs*-proper clopen set f in (X, τ, E) such that $f \sqcup f^{\tilde{c}} = \tilde{X}$ and $f \sqcap f^{\tilde{c}} = \Phi$. It is a contradiction. (\Leftarrow) : It is clear.

Theorem 3.4. Let (X, τ, E) be a *ifs*-topological space and $\sigma \subseteq \tau$. Then, (X, σ, E) is a connected *ifs*-topological space.

Proof. It is clear.

Theorem 3.5. Let (X, τ, E) and (Y, σ, K) be two *ifs*-topological spaces, $f \in \mathbb{IFS}_X^E$ and $\varphi_{\psi} : (X, \tau, E) \to (Y, \sigma, K)$ be an *ifs*-continuous mapping. If f is an *ifs*-connected set, then $\varphi_{\psi}(f)$ is an *ifs*-connected set.

Proof. Assume that $\varphi_{\psi}(f)$ is an *ifs*-disconnected set. Therefore, there exist two *ifs*-proper open sets g and h such that $\varphi_{\psi}(f) \sqsubseteq g \sqcup h$ and $g \sqcap h = \Phi$. By Theorem 2.11, we have

$$f \sqsubseteq \varphi_{\psi}^{-1}(\varphi_{\psi}(f)) \sqsubseteq \varphi_{\psi}^{-1}(g) \sqcup \varphi_{\psi}^{-1}(h)$$

and

$$\varphi_{\psi}^{-1}(g) \sqcap \varphi_{\psi}^{-1}(h) = \varphi_{\psi}^{-1}(\Phi) = \Phi.$$

It is a contradiction and this complete the proof.

Theorem 3.6. Let (X, τ, E) and (Y, σ, K) be two *ifs*-topological spaces and $\varphi_{\psi} : (X, \tau, E) \to (Y, \sigma, K)$ be an *ifs*-continuous and *ifs*-surjective mapping. If (X, τ, E) is an *ifs*-connected space, then (Y, σ, K) is also an *ifs*-connected space.

Proof. Assume that (Y, σ, K) is an *ifs*-disconnected space. So, there exist two *ifs*-proper open sets g_1 and g_2 such that $g_1 \sqcup g_2 = \tilde{Y}$, $g_1 \sqcap g_2 = \Phi$. By Theorem 2.11 $\varphi_{\psi}^{-1}(g_1) \sqcup \varphi_{\psi}^{-1}(g_2) = \tilde{X}$ and $\varphi_{\psi}^{-1}(g_1) \sqcap \varphi_{\psi}^{-1}(g_2) = \Phi$. This contradiction completes the proof.

Definition 3.7. Let (X, τ, E) be an *ifs*-topological space. If there exist $f, g \in \mathbb{IFS}_X^E$ which are *ifs*-proper, such that $\overline{f} \sqcap g = \Phi$ and $f \sqcap \overline{g} = \Phi$ then the *ifs*-sets f and g are called *ifs*-separated sets.

Theorem 3.8. Let (X, τ, E) be a *ifs*-topological space, f and g be two *ifs*-open sets. If $f \sqcap g = \Phi$, then f and g are *ifs*-separated sets.

Proof. Let $f, g \in \tau$ and $f \sqcap g = \Phi$. Then, $f^{\tilde{c}} \sqcup g^{\tilde{c}} = \tilde{X}$. So, $f \sqsubseteq g^{\tilde{c}}$ and $g \sqsubseteq f^{\tilde{c}}$. $f^{\tilde{c}}$ and $g^{\tilde{c}}$ are *ifs*-closed sets. By 2.17, we have

$$\overline{f} \sqsubseteq \overline{g^{\tilde{c}}} = g^{\tilde{c}}$$
 and $\overline{g} \sqsubseteq \overline{f^{\tilde{c}}} = f^{\tilde{c}}$

Therefore, $\overline{f} \sqcap g = \Phi$ and $f \sqcap \overline{g} = \Phi$.

Theorem 3.9. Let (X, τ, E) be an *ifs*-topological space, f and g be two *ifs*-closed sets. If $f \sqcap g = \Phi$, then f and g are *ifs*-separated sets.

Proof. From Theorem 2.17, it is clear.

Theorem 3.10. An *ifs*-topological space (X, τ, E) is connected if and only if \tilde{X} cannot be written as union of *ifs*-separated sets.

Proof. (\Rightarrow) : Assume that \tilde{X} can be written as union of *ifs*-separated sets f and g. Thus, $\tilde{X} = f \sqcup g$, $\overline{f} \sqcap g = \Phi$ and $f \sqcap \overline{g} = \Phi$. So, we have $f \sqcap g = \Phi$, $f = g^{\tilde{c}}$ and $g = f^{\tilde{c}}$. Furthermore

$$\overline{f} = \overline{f} \sqcap \tilde{X}
= \overline{f} \sqcap (f \sqcup g)
= (\overline{f} \sqcap f) \sqcup (\overline{f} \sqcap g)
= f.$$

Thus, f is an *ifs*-closed set. With similar way, it can be seen clearly that g is also an *ifs*-closed set. This is a contradiction because $f = g^{\tilde{c}}$ and $g = f^{\tilde{c}}$, f and g are *ifs*-open sets.

 (\Leftarrow) : Assume that (X, τ, E) is not an *ifs*-connected space. Thus, there exist an *ifs*-proper clopen set f. But it contradicts by hypothesis.

Theorem 3.11. Let (X, τ, E) be an *ifs*-topological space and $f \in \mathbb{IFS}_X^E$ be an *ifs*-open connected set. If $f \sqsubseteq g \sqsubseteq \overline{f}$, then g is an *ifs*-connected set.

Proof. Suppose that g is an *ifs*-disconnected set. Then, there exist two *ifs*-open proper sets h_1 and h_2 such that

$$h_1 \sqcap h_2 = \Phi$$
 and $g \sqsubseteq h_1 \sqcup h_2$.

So,

$$f = \left[f \sqcap h_1 \right] \sqcup \left[f \sqcap h_2 \right]$$

and

$$f \sqcap h_1] \sqcap [f \sqcap h_2] = \Phi.$$

But it is a contradiction. Thus g is an *ifs*-connected set.

Remark 3.12. Let (X, τ, E) be an *ifs*-topological space and $f \in \mathbb{IFS}_X^E$ be an *ifs*-open set. If f is an *ifs*-connected set, then \overline{f} is an *ifs*-connected set.

Definition 3.13. Let (X, τ, E) be an *ifs*-topological space. If there exist an *ifs*-regular open proper set f, then (X, τ, E) is called *ifs*-super disconnected.

Example 3.14. Let $X = \{x_1, x_2, x_3\}$ and $E = \{e_1, e_2\}$. Then, for

$$f = \left\{ \left(e_1, \{ \langle x_1, 0.4, 0.6 \rangle, \langle x_2, 0.6, 0.3 \rangle, \langle x_3, 0.2, 0.3 \rangle \} \right), \\ \left(e_2, \{ \langle x_1, 0.6, 0.4 \rangle, \langle x_2, 0.3, 0.6 \rangle, \langle x_3, 0.3, 0.2 \rangle \} \right) \right\} \\ g = \left\{ \left(e_1, \{ \langle x_1, 0.5, 0.2 \rangle, \langle x_2, 0.3, 0.6 \rangle, \langle x_3, 0.4, 0.3 \rangle \} \right), \\ \left(e_2, \{ \langle x_1, 0.2, 0.5 \rangle, \langle x_2, 0.6, 0.3 \rangle, \langle x_3, 0.3, 0.4 \rangle \} \right) \right\} \\ h = \left\{ \left(e_1, \{ \langle x_1, 0.5, 0.4 \rangle, \langle x_2, 0.4, 0.5 \rangle, \langle x_3, 0.4, 0.2 \rangle \} \right) \right\} \\ \left(e_2, \{ \langle x_1, 0.4, 0.5 \rangle, \langle x_2, 0.5, 0.4 \rangle, \langle x_3, 0.4, 0.2 \rangle \} \right) \right\}$$

 $\tau = {\tilde{X}, \Phi, f, g, h}$ is an *ifs*-topology on X and (X, τ, E) is an *ifs*-super connected space. **Theorem 3.15.** The followings are equivalent.

- *i.* (X, τ, E) is an *ifs*-super connected space
- *ii.* For each f such that $f \neq \Phi$, $\overline{f} = \tilde{X}$
- *iii.* For each f such that $f \neq \Phi$, $f^{\circ} = \Phi$
- *iv.* There exist no *ifs*-open sets f and g such that $f \neq \Phi$, $g \neq \Phi$ and $f \sqsubseteq g^{\tilde{c}}$
- v. There exist no *ifs*-open sets f and g such that $f \neq \Phi$, $g \neq \Phi$, $g = (\overline{f})^{\tilde{c}}$ and $f = (\overline{g})^{\tilde{c}}$

vi. There exist no ifs-closed sets f and g such that $f \neq \tilde{X}, g \neq \tilde{X}, g = (f^{\circ})^{\tilde{c}}$ and $f = (g^{\circ})^{\tilde{c}}$

Proof. $(i. \Rightarrow ii.)$: Suppose that there exists an *ifs*-open f such that $f \neq \Phi$ and $\overline{f} \neq \tilde{X}$. If we take $g = (\overline{f})^{\circ}$, then g is an *ifs*-proper and regular open set. But it is a contradiction.

 $(ii. \Rightarrow iii.)$: Let $f \neq \tilde{X}$ be an *ifs*-closed set. If we take $g = f^{\tilde{c}}$, then g is an *ifs*-open and $g \neq \Phi$. For $\overline{g} = \tilde{X}$, we have $(g^{\circ})^{\tilde{c}} = \Phi$ and $(\overline{g})^{\circ} = \Phi$. So, $f^{\circ} = \Phi$.

(*iii.* \Rightarrow *iv.*): Let f and g be *ifs*-open sets such that $f \neq \Phi$, $g \neq \Phi$ and $f \sqsubseteq g^{\tilde{c}}$. Thus, $g^{\tilde{c}}$ is an *ifs*-closed set and because of $g \neq \Phi$, $g^{\tilde{c}} \neq \tilde{X}$. So, we obtain $(g^{\tilde{c}})^{\circ} = \Phi$. But, with $f \sqsubseteq g^{\tilde{c}}$, we can write $\Phi \neq f = f^{\circ} \sqsubseteq (g^{\tilde{c}})^{\circ} = \Phi$. It is a contradiction

 $(iv. \Rightarrow i.)$: Let f be an *ifs*-regular open proper. If we take $g = (\overline{f})^{\tilde{c}}$, we obtain $g \neq \Phi$. (Otherwise, $(\overline{f})^{\tilde{c}} = \Phi \Rightarrow \overline{f} = \tilde{X}$ and so, $f = (\overline{f})^{\circ} = \tilde{X}$. But it contradicts the fact $f \neq \tilde{X}$.) $(i. \Rightarrow v.)$: Let f and g be *ifs*-open sets such that $f \neq \Phi$, $g \neq \Phi$, $g = (\overline{f})^{\tilde{c}}$ and $f = (\overline{g})^{\tilde{c}}$. Then we have $(\overline{f})^{\circ} = (\overline{g})^{\circ} = (\overline{g})^{\tilde{c}} = f$ where $f \neq \Phi$ and $f \neq \tilde{X}$. (Otherwise, if $f = \tilde{X}$, then $\tilde{X} = (\overline{g})^{\tilde{c}}$ and thus $\Phi = \overline{q}$.) But it is a contradiction.

 $(v. \Rightarrow i.)$: Let f be an *ifs*-open proper set such that $f = (\overline{f})^{\circ}$. If we take $g = (\overline{f})^{\tilde{c}}$, then we have $g \neq \Phi, g \in \tau, g = (\overline{f})^{\tilde{c}}$ and so

$$(\overline{g})^{\tilde{c}} = \left(\overline{(\overline{f})^{\tilde{c}}}\right)^{\tilde{c}} = \left(\left((\overline{f})^{\circ}\right)^{\tilde{c}}\right)^{\tilde{c}} = (\overline{f})^{\circ} = f$$

but it is a contradiction.

 $(v. \Rightarrow vi.)$: Let f and g be *ifs*-closed sets such that $f \neq \tilde{X}, g \neq \tilde{X}, g = (f^{\circ})^{\tilde{c}}$ and $f = (g^{\circ})^{\tilde{c}}$. If we take $h_1 = f^{\tilde{c}}$ and $h_2 = g^{\tilde{c}}$, then h_1 and h_2 become *ifs*-open sets such that $h_1 \neq \Phi$ and $h_2 \neq \Phi$. Thus $(\overline{h_1})^{\tilde{c}} = (\overline{f^{\tilde{c}}})^{\tilde{c}} = ((f^{\circ}))^{\tilde{c}} = f^{\circ} = g^{\tilde{c}} = h_2$ and similarly $(\overline{h_2})^{\tilde{c}} = h_1$. But this is a contradiction, clearly. $(vi. \Rightarrow v.)$: It can be proved similar way in $(v. \Rightarrow vi.)$

Now, we will introduce ifs C_i -connected spaces (i = 1, 2, 3, 4) by helping of fuzzy C_i -connectedness in intuitionistic fuzzy sets [4]. Definitions of ifs C_i -connected spaces can be seen as an extension of intuitionistic fuzzy connected space.

Definition 3.16. Let (X, τ, E) be a *ifs*-topological space and $f \in \mathbb{IFS}_X^E$. f is called

- *i.* if C_1 -connected iff does not exist two non null if s-open sets g and h such that $f \sqsubseteq g \sqcup h$, $g \sqcap h \sqsubseteq f^{\tilde{c}}, f \sqcap g \neq \Phi \text{ and } f \sqcap h \neq \Phi.$
- *ii. ifs* C_2 -connected iff does not exist two non null *ifs*-open sets g and h such that $f \subseteq g \sqcup h$, $f \sqcap g \sqcap h = \Phi \ f \sqcap g \neq \Phi \text{ and } f \sqcap h \neq \Phi.$
- *iii. ifs* C_3 -connected iff does not exist two non null *ifs*-open sets g and h such that $f \sqsubseteq g \sqcup h$, $g \sqcap h \sqsubseteq f^{\tilde{c}}, g \not\sqsubseteq f^{\tilde{c}} \text{ and } h \not\sqsubseteq f^{\tilde{c}}.$
- *iv.* if C_4 -connected iff does not exist two non null if sopen sets g and h such that $f \sqsubseteq g \sqcup h$, $f \sqcap g \sqcap h = \Phi, g \not\sqsubseteq f^{\tilde{c}} \text{ and } h \not\sqsubseteq f^{\tilde{c}}.$

From Definition 3.16, relations between ifs C_i -connectedness (i = 1, 2, 3, 4) can be described by the following diagram:

ifs C_1 connectedness \longrightarrow ifs C_2 connectedness

ifs C_3 connectedness \longrightarrow *ifs* C_4 connectedness

In the following examples, we illustrate all reverse implications.

Example 3.17. Let X = [0, 1] and $E = \{a, b\}$. Moreover, define soft sets f, g and h as following:

$$f = \left\{ \left(a, \{ \langle x, \mu_{f(a)}(x), \nu_{f(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{f(b)}(x), \nu_{f(b)}(x) \rangle : x \in X \} \right) \right\} \\ g = \left\{ \left(a, \{ \langle x, \mu_{g(a)}(x), \nu_{g(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{g(b)}(x), \nu_{g(b)}(x) \rangle : x \in X \} \right) \right\} \\ h = \left\{ \left(a, \{ \langle x, \mu_{h(a)}(x), \nu_{h(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{h(b)}(x), \nu_{h(b)}(x) \rangle : x \in X \} \right) \right\}$$

where

$$\mu_{g(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 1, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \mu_{g(b)}(x) = \begin{cases} 1, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases}$$
$$\nu_{g(a)}(x) = \begin{cases} 1, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases} \text{ and } \nu_{g(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 1, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$
$$\mu_{h(a)}(x) = \begin{cases} 1, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \mu_{h(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 1, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 1, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \nu_{h(b)}(x) = \begin{cases} 1, & \text{if } \frac{1}{3} < x \le 1\\ 1, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 1, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \nu_{h(b)}(x) = \begin{cases} 1, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$

 $\mu_{f(a)}(x) = \mu_{f(b)}(x) = \nu_{f(a)}(x) = \nu_{f(b)}(x) = 3/4 \text{ for all } x \in [0,1]. \ \tau = \{\Phi, \tilde{X}, g, h, g \sqcap h\} \text{ is a ifs-topology on } X. \text{ It can be see clearly that } f \text{ is ifs } C_4 - \text{connected but ifs } C_3 - \text{disconnected.}$

Example 3.18. Let X = [0, 1] and $E = \{a, b\}$. Moreover, define soft sets g, h and f as following:

$$g = \left\{ \left(a, \{ \langle x, \mu_{g(a)}(x), \nu_{g(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{g(b)}(x), \nu_{g(b)}(x) \rangle : x \in X \} \right) \right\} \\ h = \left\{ \left(a, \{ \langle x, \mu_{h(a)}(x), \nu_{h(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{h(b)}(x), \nu_{h(b)}(x) \rangle : x \in X \} \right) \right\} \\ f = g \sqcup h$$

where

$$\mu_{g(a)}(x) = \begin{cases} 0, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \mu_{g(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases}$$
$$\nu_{g(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases} \text{ and } \nu_{g(b)}(x) = \begin{cases} 0, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases}$$
$$\mu_{h(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases} \text{ and } \mu_{h(b)}(x) = \begin{cases} 0, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} 0, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \nu_{h(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$

 $\tau = \{\Phi, \tilde{X}, g, h, g \sqcup h\}$ is a *ifs*-topology on X. It can be seen clearly that f is *ifs* C₄-connected but *ifs* C₂-disconnected.

Example 3.19. Let X = [0, 1] and $E = \{a, b\}$. Moreover, define soft sets f, g and h as following:

$$f = \left\{ \left(a, \{ \langle x, \mu_{f(a)}(x), \nu_{f(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{f(b)}(x), \nu_{f(b)}(x) \rangle : x \in X \} \right) \right\} \\ g = \left\{ \left(a, \{ \langle x, \mu_{g(a)}(x), \nu_{g(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{g(b)}(x), \nu_{g(b)}(x) \rangle : x \in X \} \right) \right\} \\ h = \left\{ \left(a, \{ \langle x, \mu_{h(a)}(x), \nu_{h(a)}(x) \rangle : x \in X \} \right), \\ \left(b, \{ \langle x, \mu_{h(b)}(x), \nu_{h(b)}(x) \rangle : x \in X \} \right) \right\}$$

where

$$\mu_{g(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \mu_{g(b)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases}$$
$$\nu_{g(a)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases} \text{ and } \nu_{g(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases}$$
$$\mu_{h(a)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases} \text{ and } \mu_{h(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{1}{3}, \end{cases} \text{ and } \nu_{h(b)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases} \text{ and } \nu_{h(b)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{1}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{1}{3} \end{cases}$$

.

 $\mu_{f(a)}(x) = \mu_{f(b)}(x) = \nu_{f(a)}(x) = \nu_{f(b)}(x) = 1/3$ for all $x \in [0,1]$. $\tau = \{\Phi, \tilde{X}, g, h, g \sqcap h, g \sqcup h\}$ is a *ifs*-topology on X. It can be seen clearly that f is *ifs* C₃-connected and *ifs* C₂-connected but *ifs* C_1 -disconnected.

Example 3.20. Let X = [0, 1] and $E = \{a, b\}$. Moreover, define soft sets f, g and h as following:

$$\begin{split} f &= \left\{ \left(a, \{ \langle x, \mu_{f(a)}(x), \nu_{f(a)}(x) \rangle : x \in X \} \right), \\ & \left(b, \{ \langle x, \mu_{f(b)}(x), \nu_{f(b)}(x) \rangle : x \in X \} \right) \right\} \\ g &= \left\{ \left(a, \{ \langle x, \mu_{g(a)}(x), \nu_{g(a)}(x) \rangle : x \in X \} \right), \\ & \left(b, \{ \langle x, \mu_{g(b)}(x), \nu_{g(b)}(x) \rangle : x \in X \} \right) \right\} \\ h &= \left\{ \left(a, \{ \langle x, \mu_{h(a)}(x), \nu_{h(a)}(x) \rangle : x \in X \} \right), \\ & \left(b, \{ \langle x, \mu_{h(b)}(x), \nu_{h(b)}(x) \rangle : x \in X \} \right) \right\} \end{split}$$

where

$$\mu_{g(a)}(x) = \begin{cases} 0, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases} \quad \text{and} \quad \mu_{g(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{2}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{2}{3}, \end{cases}$$
$$\nu_{g(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{2}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{2}{3}, \end{cases} \quad \text{and} \quad \nu_{g(b)}(x) = \begin{cases} 0, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases}$$
$$\mu_{h(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{2}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{2}{3}, \end{cases} \quad \text{and} \quad \mu_{h(b)}(x) = \begin{cases} 0, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} 0, & \text{if } \frac{2}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{2}{3}, \end{cases} \quad \text{and} \quad \mu_{h(b)}(x) = \begin{cases} 1, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases}$$
$$\nu_{h(a)}(x) = \begin{cases} 0, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases} \quad \text{and} \quad \nu_{h(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{2}{3} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{2}{3}, \end{cases}$$

$$\mu_{f(a)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases} \quad \text{and} \quad \mu_{f(b)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{2}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases}$$
$$\nu_{f(a)}(x) = \begin{cases} \frac{2}{3}, & \text{if } \frac{2}{3} < x \le 1\\ \frac{1}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases} \quad \text{and} \quad \nu_{f(b)}(x) = \begin{cases} \frac{1}{3}, & \text{if } \frac{2}{3} < x \le 1\\ \frac{2}{3}, & \text{if } 0 \le x \le \frac{2}{3} \end{cases}$$

 $\tau = \{\Phi, \tilde{X}, g, h, g \sqcup h\}$ is a *ifs*-topology on X. It can be seen clearly that f is *ifs* C_3 -connected but *ifs* C_2 -disconnected and *ifs* C_1 -disconnected.

Example 3.21. In the Example 3.19, if we take $\mu_{f(a)}(x) = \mu_{f(b)}(x) = \nu_{f(a)}(x) = \nu_{f(b)}(x) = \frac{2}{3}$ for all $x \in [0, 1]$, then f is *ifs* C_2 -connected but *ifs* C_3 -disconnected.

Theorem 3.22. Let $\varphi_{\psi} : (X, \tau, E) \to (Y, \sigma, K)$ be a *ifs*-surjective continuous mapping and $f \in \mathbb{IFS}_X^E$. If f is a *ifs* C_1 -connected, then $\varphi_{\psi}(f)$ is *ifs* C_1 -connected.

Proof. Suppose that $\varphi_{\psi}(f)$ is not if C_1 -connected. Then, there exist two non null if s-open sets g and h in (Y, σ, K) such that

$$\begin{array}{rcl} \varphi_{\psi}(f) & \sqsubseteq & g \sqcup h, \\ g \sqcap h & \sqsubseteq & \left(\varphi_{\psi}(f)\right)^{\tilde{c}}, \\ \varphi_{\psi}(f) \sqcap g & \neq & \Phi, \\ \varphi_{\psi}(f) \sqcap h & \neq & \Phi. \end{array}$$

Thus, by Theorem 2.11 we have

$$\begin{array}{rcl} f & \sqsubseteq & \varphi_{\psi}^{-1}(g) \sqcup \varphi_{\psi}^{-1}(h) \\ \varphi_{\psi}^{-1}(g) \sqcap \varphi_{\psi}^{-1}(h) & \sqsubseteq & f^{\tilde{c}} \\ & \varphi_{\psi}^{-1}(g) \sqcap f & \neq & \Phi, \\ & \varphi_{\psi}^{-1}(h) \sqcap f & \neq & \Phi. \end{array}$$

But this contradict by hypothesis. So, $\varphi_{\psi}(f)$ is an *ifs* C_1 -connected.

Theorem 3.23. Let $\varphi_{\psi} : (X, \tau, E) \to (Y, \sigma, K)$ be a *ifs*-surjective continuous mapping and $f \in \mathbb{IFS}_X^E$. If f is a *ifs* C_2 -connected, then $\varphi_{\psi}(f)$ is *ifs* C_2 -connected.

Proof. it can be proved similar way to above theorem.

Theorem 3.24. Let $\varphi_{\psi} : (X, \tau) \to (Y, \sigma)$ be *ifs*-continuous surjective mapping and $f \in \mathbb{IFS}_X^E$. If f is a *ifs* C_3 -connected, then $\varphi_{\psi}(f)$ is a *ifs* C_3 -connected.

Proof. Assume that, $\varphi_{\psi}(f)$ is not if C_3 -connected. Then, there exist two non null if s-open sets g and h in (Y, σ, K) such that

$$\begin{array}{rcl} \varphi_{\psi}(f) & \sqsubseteq & g \sqcup h, \\ g \sqcap h & \sqsubseteq & \left(\varphi_{\psi}(f)\right)^{\tilde{c}}, \\ g & \nsubseteq & \left(\varphi_{\psi}(f)\right)^{\tilde{c}}, \\ h & \oiint & \left(\varphi_{\psi}(f)\right)^{\tilde{c}}. \end{array}$$

By Theorem 2.11,

$$f \sqsubseteq \varphi_{\psi}^{-1} \big(\varphi_{\psi}(f) \big) \sqsubseteq \varphi_{\psi}^{-1} \big(g \sqcup h \big) = \varphi_{\psi}^{-1}(g) \sqcup \varphi_{\psi}^{-1}(h)$$

and

$$\varphi_{\psi}^{-1}(g \sqcap h) = \varphi_{\psi}^{-1}(g) \sqcap \varphi_{\psi}^{-1}(h) \sqsubseteq f^{\tilde{c}}.$$

Since, $f \sqsubseteq \varphi_{\psi}^{-1}(\varphi_{\psi}(f))$ implies $(\varphi_{\psi}^{-1}(\varphi_{\psi}(f)))^{\tilde{c}} \sqsubseteq f^{\tilde{c}}$ and φ_{ψ} is a *ifs*-continuous function, so $\varphi_{\psi}^{-1}(g), \varphi_{\psi}^{-1}(h) \in \tau$. Moreover, from $g \not\sqsubseteq (\varphi_{\psi}(f))^{\tilde{c}}$ and $h \not\sqsubseteq (\varphi_{\psi}(f))^{\tilde{c}}$, there exist $y_1, y_2 \in Y$ such that

$$g_e(y_1) \ge 1 - \varphi_\psi(f)(k)(y_1) \tag{1}$$

$$h_e(y_2) \ge 1 - \varphi_\psi(f)(k)(y_2) \tag{2}$$

We claim that $\varphi_{\psi}^{-1}(g) \not\sqsubseteq f^{\tilde{c}}$ and $\varphi_{\psi}^{-1}(h) \not\sqsubseteq f^{\tilde{c}}$. To prove the claim, we suppose $\varphi_{\psi}^{-1}(g) \sqsubseteq f^{\tilde{c}}$. Clearly, this claim contradicts by (1). Similarly, $\varphi_{\psi}^{-1}(h) \sqsubseteq f^{\tilde{c}}$ contradicts by (2). So, $\varphi_{\psi}(f)$ is *ifs* C_3 -connected.

Theorem 3.25. Let $\varphi_{\psi} : (X, \tau) \to (Y, \sigma)$ be *ifs*-continuous surjective mapping and $f \in \mathbb{IFS}_X^E$. If f is a *ifs* C_4 -connected, then $\varphi_{\psi}(f)$ is a SC_4 connected.

Proof. It can be proved similarly way in Theorem 3.24.

Theorem 3.26. Let (X, τ, E) be a *ifs*-topological space, f_1 and f_2 be two *ifs* C_1 -connected *ifs*-sets such that $f_1 \sqcap f_2 \neq \Phi$. Then, $f_1 \sqcup f_2$ is *ifs* C_1 -connected.

Proof. It is easy.

Remark 3.27. From Theorem 3.26, we can say easily that if f_1 and f_2 be two *ifs* C_2 -connected *ifs*-sets such that $f_1 \sqcap f_2 \neq \Phi$, then $f_1 \sqcup f_2$ is *ifs* C_2 -connected.

Theorem 3.28. Let (X, τ, E) be a *ifs*-topological space and $\{f_k\}_{k \in \Lambda} \subseteq \mathbb{IFS}_X^E$ be family of *ifs* C_1 -connected *ifs*-sets such that $f_i \sqcap f_j \neq \Phi$ for $i, j \in \Lambda$ $(i \neq j)$. Then, $\bigsqcup_{k \in \Lambda} f_k$ is a *ifs* C_1 -connected *ifs*-set.

Proof. It can be proved by using Theorem 3.26.

4 Conclusion

In this paper we introduced *ifs*-connectedness which super *ifs* connectedness and *ifs* C_i (i = 1, 2, 3, 4) connectedness and presented fundamentals properties. For future works, we consider to study on *ifs* C_M and C_5 connected sets in *ifs* topological spaces.

References

- [1] L.A. Zadeh, *Fuzzy sets*, Information and Control 8, 338.353, 1965.
- [2] K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20(1986)87-96.
- [3] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997)81-89.
- [4] S. Ozçağ and D. Çoker, On connectedness in intuitionistic fuzzy special topological spaces, Int. J. Math. & Math. Sci. Vol. 21, No. 1 33-40. CMP 1 486 955. Zbl 892.54005.
- [5] N. Turanli and D. Çoker, Fuzzy connectedness in intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 116 (2000) 369-375.
- [6] D. Molodtsov, Soft set theory-first results, Computers Math. Appl. 37 (4/5), 19.31, 1999.
- [7] N. Çağman, Contributions to the theory of soft sets, Journal of New Results in Science (4)(2014), 33-41.
- [8] M. Shabir and M. Naz, On soft topological spaces, Computers and Mathematics with Applications 61, 1786.1799, 2011.
- [9] N. Çağman, S. Karataş and S. Enginoğlu, Soft topology, Computers and Mathematics with Applications, 62 (2011), 351-358.
- [10] A. Aygünoğlu and H. Aygün, Some notes on soft topological spaces, Neural Comput and Applic, (2011), 1-7.
- S. Hussain and B. Ahmad, Some properties of soft topological spaces, Computers and Mathematics with Applications, 62 (2011) 4058–4067.

- [12] S. Hussain, A note on soft connectedness, Journal of Egyptian Mathematical Society DOI: 10.1016/j.joems.2014.02.003.
- [13] I. Zorlutuna, M. Akdağ, W.K. Min, S. Atmaca, *Remarks on soft topological spaces*, Annals of Fuzzy Mathematics and Informatics, Volume 3, No. 2, pp. 171-185.
- [14] E. Peyghan, B. Samadi and A. Tayebi, About soft topological spaces Journal of New Results in Science Number: 2, Year: 2013, Pages: 60-75.
- [15] D. N. Georgiou and A. C. Megaritis, Soft set theory and topology, Applied General Topology, 14, (2013).
- [16] D. N. Georgiou, A. C. Megaritis and V. I. Petropoulos, On Soft Topological Spaces, Applied Mathematics & Information Sciences, 7, No. 5, 1889-1901 (2013).
- [17] B. P. Varol, A. Shostak and H. Aygün, A new approach to soft topology, Hacettepe Journal of Mathematics and Statistics Volume 41(5) (2012), 731-741.
- [18] B. Tanay and M.B. Kandemir, Topological structures of fuzzy soft sets, Computers and Mathematics with Applications 61, 412.418, 2011.
- [19] S. Roy and T.K. Samanta, A note on fuzzy soft topological spaces, Annals of Fuzzy Mathematics and Informatics Volume 3, No. 2, (April 2012), pp. 305- 311 ISSN 2093–9310
- [20] B.P. Varol and H. Aygün, Fuzzy soft topology, Hacettepe Journal of Mathematics and Statistics Volume 41 (3)(2012), 407–419.
- [21] P.K. Gain, P. Mukherjee, R.P. Chakraborty and M. Pal, On some structural properties of fuzzy soft topological spaces, Intern. J. Fuzzy Mathematical Archive Vol. 1, 2013, 1-15 ISSN: 2320–3242 (P), 2320–3250.
- [22] T. Şimşekler and Ş. Yüksel, Fuzzy soft topological spaces, Annals of Fuzzy Mathematics and Informatics Volume 5, No. 1, (January 2013), pp. 8796.
- [23] Ç. Gündüz and S. Bayramov Some results on fuzzy soft topological spaces Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 835308.
- [24] P.K. Maji, R. Biswas, and A.R. Roy, Intuitionistic fuzzy soft sets, The Journal of Fuzzy Mathematics 9(3), 677–692 (2001)
- [25] Y. Yin, H. Li, Y.B. Jun, On algebraic structures of intuitionistic fuzzy soft sets, Computers and Mathematics with Applications 61 (2012) 2896-2911.
- [26] Z. Li and R. Cui, On the topological structure of intuitionistic fuzzy soft set, Annals of Fuzzy Mathematics and Informatics, Volume 5, No. 1 (2013), pp. 229-239.
- [27] I. Osmanoğlu and D. Tokat, On Intuitionistic Fuzzy Soft Topology, General Mathematics Notes, 19(2), 59-70, 2013.
- [28] N. Turanh and A. H. Es, A note on compactness in intuitionistic fuzzy soft topological spaces, World Applied Sciences Journals, 9(9) (2012),1355-1359.
- [29] S. Karataş and M. Akdağ, On intuitionistic fuzzy soft continuous mappings, Journal of New Results in Science, Number: 4, Year: 2014, Pages: 55-70.