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Abstract – Because prototype based classifiers are both easy and reasonable methods, there have been many 

studies on similarity based supervised learning. In order to detect each class region, they should not only 

appropriately locate the prototypes, but also deal with overfitting and instability. In this study, by considering 

all these criteria, we develop a new classifier method based on the prototypes selected from dense patterns. 

While the method determines details of the prototypes, it evades overfitting according to relation of the 

correct classification accuracy and the number of prototypes. Because of its similarity in point of architecture, 

we compare it with learning vector quantization (LVQ) method by using some synthetic and benchmark 

datasets. This comparison shows that our method is better than the other, and it may cause new suggestions 

on classification and some real applications. 
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1. Introduction 
 

The simplest supervised learning method classifies samples based on similarity according 

to their class labels. Because prototype based classifiers are both easy and reasonable 

methods, there have been many studies on similarity based supervised learning. Each 

prototype represents a group of patterns with the same class. There are different viewpoints 

to prototype term. In the some of the approaches, each pattern acts as a prototype, but the 

approaches using fewer prototypes are more widespread. Learning Vector Quantization 

(LVQ) which finds prototypes using cluster analyze [7] and self-generating neural tree [19] 

are well-known prototype classifiers. Some other prototype classifiers are hyper-spheres 

[13], hyper-ellipsoids [8] and hyper-rectangles [14] based methods.  
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In some studies, special terms are used instead of prototypes. For instance Expectation 

Maximization (EM) and Gaussian Mixture (GM) models use components instead of 

prototypes in estimation of the class densities [6]. Minimum enclosing axis-parallel boxes 

in the method of Kudo et al. [9] and Takigawa et al. [15] represent also prototypes. In two 

algorithms offered by Takigawa et al. [16], convex balls are regarded as prototypes. 

Besides some researchers proposed some methods on logical analysis of box-based data [1, 

4], ball-based combinatorial classifier [2, 3, 10, 12], and support vector machines (SVM) 

[18]. SVM is a classifier which selects the vectors on the margin of the classes. If the 

selected vectors are considered as the prototypes, SVM can be regarded as a prototype 

based classifier. In contrast to other prototype classifiers, SVM selects the weakest patterns 

as prototypes. Fayed et al. [5] suggest starting with one prototype for each class, assigns 

patterns into prototypes, and reduces prototypes. 

 

The commonest handicaps of all prototype based methods are determining the number and 

starting positions of prototypes. In order to prevent these disadvantages, the most methods 

are run for different numbers of prototypes. In this paper, we offer a novel supervised 

learning algorithm called supervised learning based on the prototypes selected from dense 

patterns (SLDP) which no need running more times. 

 

The paper is organized as follows: section 2 describes the structure of new method, section 

3 presents some applications on some artificial and real datasets to verify the effectiveness 

of the proposed method, and finally, section 4 gives the conclusions. 

 

 

2. Supervised Learning Based on the Prototypes Selected from Dense 

Patterns 
 

A dataset usually includes many regions which have different densities based on the 

distances among the patterns.  Dense regions within each class can be symbolized by the 

prototypes.  

 

Inspired by gravity, we suppose that each pattern has potential energy, and this energy (or 

weight) can be computed by using neighborhood among patterns. If we accept that each 

pattern has unit mass [11], the potential weight can be easily calculated as follow. 
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where n is the number of patterns, ji xx   is  Euclidean distance between patterns xi and xj, 

Ck is class k and c is the number of classes in the dataset.  

 

The pattern with the maximum potential weight is selected as a prototype. The location (xi) 

and the potential weight (wi) of the selected pattern are assigned the location (Xi) of the 

prototype and its absolute weight (Wi) respectively. According to the second step of the 

study, the classification process is operated by the determined prototypes. The 

classification effect of each class (Ck) on a new pattern (Y) is calculated by 
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where j values list is increased as new prototypes are discovered. Then the class of the new 

pattern (Z) can be estimated by 

 

)(arg kmaxZ  , for k =1, 2,…,c (3) 

where Z is the estimated class of pattern Y. In training process, the pattern is identified as a 

misclassified pattern, if its desired class is not the same with Z. Then, the one with 

maximum potential weight among the misclassified patterns is selected as a new prototype. 

Training process stays in this loop until the gradient between number of prototypes and 

misclassification error get less than a predefined threshold value. Our learning algorithm 

consists of the following steps. 

 

Step 1. Calculate wj using Equation 1, and choose one prototype for each class. 

Step 2. For each pattern in dataset, calculate ki ,..,1  using Equation 2, and decide Z by 

Equation 3. If YCZ  , signify Y as a misclassified pattern. 

Step 3. Compute the gradient between misclassification error and the number of prototypes. 

If it is less than a predefined threshold value, stop the algorithm. 

Step 4. Set the misclassified pattern with the maximum weight as new prototype. 

Step 5. Go to Step 2. 

 

Unlike a common LVQ network, the locations and weights of the prototypes does not 

change in SLDP. In each iteration of the training process, only one prototype is discovered. 

 

 

3. Numerical Results and Comparisons 
 

In the numerical experiments, we use some synthetic and real datasets. To show behaviors 

of the proposed method, five synthetic datasets are preferred as two dimensional, and to 

prove success of it, four real datasets are chosen from multidimensional benchmark 

datasets. The classification behaviors of the method are illustrated in Figure 1(a) and 1(b). 

In the first experiment, the method classifies an asymmetric dataset with 171 patterns. In 

Figure 1(a), the algorithm reaches success 81.38% with 12 prototypes by avoiding 

overfitting. As seen in Figure 1(b), if the algorithm does not consider overfitting, it can 

reach 100% success with 44 prototypes. 
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 (a)  (b) 

Figure 1. The classification maps of SLDP for a dataset including outliers (a) by avoiding 

overfitting (b) by not avoiding overfitting. 

 

 

Frequently, high success brings to mind overfitting. The success of the algorithm is 81.38% 

for 12 prototypes in Figure 1(a). Even though 32 new prototypes are discovered, the 

success increases only 18.62%. This increase values cannot be accepted as consistent. 

We have also prepared four synthetic datasets which are discrete, complex, symmetric and 

asymmetric. Figure 2 shows the classification maps of the method for these four synthetic 

datasets. 
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 (c) (d) 

Figure 2. The classification maps of SLDP for synthetic datasets with (a) 4 symmetric classes 

(b) chain shaped 2 classes (c) 2 asymmetric classes (d) 3 symmetric classes 
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In order to compare our algorithm with some other methods, we applied it to some 

benchmark datasets listed in Table 1 [17].  

 

 
Table 1.  Summary of datasets. 

 

Dataset 
Instan

ces 

Attribute

s 

The 

number 

of 

classes 

Iris 150 4 3 

Parkinson 195 22 2 

Spect Heart 267 44 2 

Statlog (Landsat) 6435 36 6 

 

 

The numbers of prototypes found by SLDP for Iris, Parkinson, Spect Heart, and Statlog are 

5, 6, 3, and 7 respectively. They are also used as the number of prototypes of LVQ for real 

datasets. For example, the new method finds 1, 2, and 2 prototypes for each class of Iris 

dataset. LVQ is started with the same distribution of prototypes for each class. Table 2 

shows the correct classification values of LVQ and SLDP for real datasets. 

 

 
Table 2. The correct classification values of LVQ and SLDP for real datasets. 

 

Datasets 

LVQ 

(%) 
SLDP 

(%) 

Iris 95,33 96,00 

Parkinson 60,00 88,72 

Spect Heart 53,18 81,27 

Statlog (Landsat) 20,45 68,47 

 

 

The novel method reaches the same result each time. But LVQ is run 500 times and 500 

iterations for each dataset and the highest results are selected for this comparison. As seen 

in Table 2, the most successful method is SLDP. 

 

There is no method which is able to reach high success for every dataset without 

overfitting. The relation between the misclassification error and the number of prototypes is 

very important in dealing with overfitting. In Figure 3, we can see the regions with 

overfitting for four real datasets.  
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Figure 3. The relation between misclassification error and the number of prototypes for real 

datasets. 

 

 

In Figure 3, if gradient of the relation is less than 0.01, overfitting starts. In this situation, 

the algorithm must be stopped. Otherwise, it will continue overfitting. Thus there is no 

learning after 5 prototypes for Iris, 6 prototypes for Parkinson, 3 prototypes for Spect 

Heart, and 7 prototypes for Statlog. 

 

 

4. Conclusion 
 

In this paper, we proposed a new method called supervised learning based on the 

prototypes selected from dense patterns (SLDP). While the method learns the number of 

prototypes and its locations by avoiding overfitting, it determines prototypes by using the 

potential weights of each pattern. Its other two advantages are that it does not depend on 

the sequence of patterns in a dataset and does not require any input parameters. The method 

also offers a new approach to control overfitting. Although it needs many more 

experiments, we hope that SLDP will be a source of inspiration for new methods. 
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