http://www.newtheory.org
Neg Theory

On $(1,2)^{\star}-g^{\#}$-Continuous Functions

O. Ravi ${ }^{1, *}$ (siingam@yahoo.com)
I. Rajasekaran ${ }^{1}$ (rajasekarani@yahoo.com)
A. Pandi ${ }^{1}$ (pandi2085@yahoo.com)
${ }^{1}$ Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract

The aim of this paper is to study and characterize $(1,2)^{\star}-g^{\#}$-continuous functions and $(1,2)^{\star}-g^{\#}$-irresolute functions formed with the help of $(1,2)^{\star}$ - $g^{\#}$-closed sets.

Keywords - Bitopological space, $(1,2)^{\star}-g^{\#}$-closed set, $(1,2)^{\star}-g^{\#}$-continuous function, $(1,2)^{\star}-g^{\#}-$ irresolute function.

1 Introduction

Several authors ([1, 4, 5, 19]) working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous functions. A weak form of continuous functions called g-continuous functions were introduced by Balachandran et al [3]. Recently Sheik John [18] have introduced and studied another form of generalized continuous functions called ω-continuous functions.

In this paper, we first study $(1,2)^{\star}-g^{\#}$-continuous functions and investigate their relations with various generalized $(1,2)^{\star}$-continuous functions. We also discuss some properties of $(1,2)^{\star}-g^{\#}$-continuous functions. We also introduce $(1,2)^{\star}-g^{\#}$-irresolute functions and study some of its applications. Finally using $(1,2)^{\star}$ - $g^{\#}$-continuous function we obtain a decomposition of $(1,2)^{\star}$-continuity.

2 Preliminary

Throughout this paper, X, Y and Z denote bitopological spaces $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right),\left(\mathrm{Y}, \sigma_{1}, \sigma_{1}\right)$ and $\left(\mathrm{Z}, \eta_{1}\right.$, η_{2}) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$-open [9] if $A=P$ $\cup Q$, for some $P \in \tau_{1}$ and $Q \in \tau_{2}$. The complement of $\tau_{1,2}$-open set is called $\tau_{1,2}$-closed.

The family of all $\tau_{1,2}$-open (resp. $\tau_{1,2}$-closed) sets of X is denoted by $(1,2)^{\star}-O(X)\left(\right.$ resp. $(1,2)^{\star}$ $C(X)$).

Definition 2.2. Let A be a subset of a bitopological space X. Then

[^0]1. the $\tau_{1,2}$-interior of A, denoted by $\tau_{1,2}$-int (A), is defined by $\cup\left\{U: U \subseteq A\right.$ and U is $\tau_{1,2}$-open $\}$;
2. the $\tau_{1,2}$-closure of A, denoted by $\tau_{1,2}-c l(A)$, is defined by $\cap\left\{U: A \subseteq U\right.$ and U is $\tau_{1,2}$-closed $\}$.

Remark 2.3. Notice that $\tau_{1,2}$-open subsets of X need not necessarily form a topology.
Definition 2.4. Let A be a subset of a bitopological space X is called

1. $(1,2)^{\star}$-semi-open set [9] if $A \subseteq \tau_{1,2}-c l\left(\tau_{1,2}-\operatorname{int}(A)\right)$.
2. $(1,2)^{\star}$-preopen set [9] if $A \subseteq \tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-c l(A)\right)$.
3. $(1,2)^{\star}-\alpha$-open set [9] if $A \subseteq \tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}(A)\right)\right)$.
4. (1,2)*- β-open set $[12]$ if $A \subseteq \tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-c l(A)\right)\right)$.
5. $(1,2)^{\star}$-regular open set [13] if $A=\tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-c l(A)\right)$.

The complements of the above mentioned open sets are called their respective closed sets.
The (1,2) ${ }^{\star}$-preclosure [11] (resp. $(1,2)^{\star}$-semi-closure [11], $(1,2)^{\star}$ - α-closure [11], $(1,2)^{\star}$ - β-closure [16]) of a subset A of X, denoted by (1, 2 $)^{\star}-p c l(A)\left(r e s p . ~(1,2)^{\star}-\operatorname{scl}(A),(1,2)^{\star}-\alpha c l(A),(1,2)^{\star}-\beta c l(A)\right)$ is defined to be the intersection of all $(1,2)^{\star}$-preclosed (resp. $(1,2)^{\star}$-semi-closed, $(1,2)^{\star}$ - α-closed, $(1,2)^{\star}$ -β-closed) sets of X containing A. It is known that $(1,2)^{\star}-p c l(A)\left(r e s p . ~(1,2)^{\star}-\operatorname{scl}(A),(1,2)^{\star}-\alpha c l(A)\right.$, $\left.(1,2)^{\star}-\beta \operatorname{cl}(A)\right)$ is a $(1,2)^{\star}$-preclosed (resp. (1,2$)^{\star}$-semi-closed, $(1,2)^{\star}-\alpha$-closed, $(1,2)^{\star}-\beta$-closed) set. For any subset A of an arbitrarily chosen bitopological space, the (1,2$)^{\star}$-semi-interior [11] (resp. (1,2$)^{\star}$ -α-interior [11], (1, 2) ${ }^{\star}$-preinterior [11]) of A, denoted by (1,2 $)^{\star}-\operatorname{sint}(A)\left(r e s p .(1,2)^{\star}-\alpha \operatorname{int}(A),(1,2)^{\star}-\right.$ pint (A)), is defined to be the union of all $(1,2)^{\star}$-semi-open (resp. $(1,2)^{\star}-\alpha$-open, $(1,2)^{\star}$-preopen) sets of X contained in A.

Definition 2.5. Let A be a subset of a bitopological space X is called

1. a $(1,2)^{\star}$-generalized closed (briefly, $(1,2)^{\star}$ - g-closed) set [17] if $\tau_{1,2-c l}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$-open in X.
The complement of $(1,2)^{\star}$ - g-closed set is called $(1,2)^{\star}$ - g-open set.
2. a $(1,2)^{\star}-g^{\star}$-closed set $[17]$ if $\tau_{1,2}-c l(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{\star}$ - g-open in X. The complement of $(1,2)^{\star}-g^{\star}$-closed set is called $(1,2)^{\star}-g^{\star}$-open set.
3. a $(1,2)^{\star}$-semi-generalized closed (briefly, $(1,2)^{\star}$-sg-closed) set [2] if $(1,2)^{\star}-\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{\star}$-semi-open in X.
The complement of $(1,2)^{\star}$-sg-closed set is called $(1,2)^{\star}$-sg-open set.
4. a $(1,2)^{\star}$-generalized semi-closed (briefly, $(1,2)^{\star}$-gs-closed) set [2] if $(1,2)^{\star}$-scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2 \text {-open in } X}$.
The complement of $(1,2)^{\star}$-gs-closed set is called $(1,2)^{\star}$-gs-open set.
5. an $(1,2)^{\star}$ - α-generalized closed (briefly, $(1,2)^{\star}-\alpha g$-closed) set [6] if $(1,2)^{\star}-\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$-open in X.
The complement of $(1,2)^{\star}-\alpha g$-closed set is called $(1,2)^{\star}-\alpha g$-open set.
6. a $(1,2)^{\star}$-generalized semi-preclosed (briefly, $(1,2)^{\star}$-gsp-closed) set [6] if $(1,2)^{\star}-\beta c l(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$-open in X.
The complement of $(1,2)^{\star}$-gsp-closed set is called $(1,2)^{\star}$-gsp-open set.
7. $a(1,2)^{\star}$-g α-closed set $[15]$ if $(1,2)^{\star}-\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{\star}$ - α-open in X. The complement of $(1,2)^{\star}$-g α-closed set is called $(1,2)^{\star}$-g α-open set.

Remark 2.6. The collection of all $(1,2)^{\star}$ - g^{\star}-closed (resp. $(1,2)^{\star}$ - g-closed, $(1,2)^{\star}$-gs-closed, $(1,2)^{\star}$ -gsp-closed, $(1,2)^{\star}$ - α g-closed, $(1,2)^{\star}$-sg-closed, $(1,2)^{\star}-\alpha$-closed, $(1,2)^{\star}$-semi-closed) sets of X is denoted by $(1,2)^{\star}-G^{\star} C(X)\left(\right.$ resp. $(1,2)^{\star}-G C(X),(1,2)^{\star}-G S C(X),(1,2)^{\star}-G S P C(X),(1,2)^{\star}-\alpha G C(X),(1,2)^{\star}-$ $\left.S G C(X),(1,2)^{\star}-\alpha C(X),(1,2)^{\star}-S C(X)\right)$.

The collection of all $(1,2)^{\star}-g^{\star}$-open (resp. $(1,2)^{\star}$-g-open, $(1,2)^{\star}$-gs-open, $(1,2)^{\star}$-gsp-open, $(1,2)^{\star}$ -α-open, $(1,2)^{\star}$-sg-open, $(1,2)^{\star}$ - α-open, $(1,2)^{\star}$-semi-open) sets of X is denoted by $(1,2)^{\star}-G^{\star} O(X)$ (resp. $(1,2)^{\star}-G O(X),(1,2)^{\star}-G S O(X),(1,2)^{\star}-G S P O(X),(1,2)^{\star}-\alpha G O(X),(1,2)^{\star}-S G O(X),(1,2)^{\star}-$ $\left.\alpha O(X),(1,2)^{\star}-S O(X)\right)$.

We denote the power set of X by $P(X)$.
Definition 2.7. [10] Let A be a subset of a bitopological space X. Then A is called

1. $(1,2)^{\star}-g^{\#}$-closed set if $\tau_{1,2}-c l(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{\star}$ - αg-open in X. The family of all $(1,2)^{\star}-g^{\#}$-closed sets in X is denoted by $(1,2)^{\star}-G^{\#} C(X)$.
2. $(1,2)^{\star}$ - $g_{\alpha}^{\#}$-closed set if $(1,2)^{\star}-\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{\star}$ - αg-open in X. The family of all $(1,2)^{\star}-g_{\alpha}^{\#}$-closed sets in X is denoted by $(1,2)^{\star}-G_{\alpha}^{\#} C(X)$.

Definition 2.8. A function $f: X \rightarrow Y$ is called:

1. $(1,2)^{\star}-g^{\star}$-continuous [7] if $f^{-1}(V)$ is a $(1,2)^{\star}-g^{\star}$-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
2. $(1,2)^{\star}-g$-continuous [7] if $f^{-1}(V)$ is a $(1,2)^{\star}-g$-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
3. $(1,2)^{\star}-\alpha g$-continuous [16] if $f^{-1}(V)$ is an $(1,2)^{\star}-\alpha g$-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
4. $(1,2)^{\star}$-gs-continuous [16] if $f^{-1}(V)$ is a $(1,2)^{\star}$-gs-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
5. $(1,2)^{\star}$-gsp-continuous [16] if $f^{-1}(V)$ is a $(1,2)^{\star}$-gsp-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
6. $(1,2)^{\star}$-sg-continuous [14] if $f^{-1}(V)$ is a $(1,2)^{\star}$-sg-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
7. $(1,2)^{\star}$-semi-continuous [11] if $f^{-1}(V)$ is a $(1,2)^{\star}$-semi-open set in X for every $\sigma_{1,2}$-open set V of Y.
8. $(1,2)^{\star}-\alpha$-continuous [11] if $f^{-1}(V)$ is an $(1,2)^{\star}-\alpha$-closed set in X for every $\sigma_{1,2}$-closed set V of Y.

Definition 2.9. A function $f: X \rightarrow Y$ is called:

1. $(1,2)^{\star}$ - αg-irresolute [16] if the inverse image of every $(1,2)^{\star}$ - αg-closed (resp. $(1,2)^{\star}-\alpha g$-open) set in Y is $(1,2)^{\star}-\alpha g$-closed (resp. $(1,2)^{\star}-\alpha g$-open) in X.
2. $(1,2)^{\star}$-gc-irresolute [7] if the inverse image of every $(1,2)^{\star}$ - g-closed set in Y is $(1,2)^{\star}$ - g-closed in X.
3. $(1,2)^{\star}$-sg-irresolute [16] if the inverse image of every $(1,2)^{\star}$-sg-closed (resp. $(1,2)^{\star}$-sg-open) set in Y is $(1,2)^{\star}$-sg-closed (resp. $(1,2)^{\star}$-sg-open) in X.

Definition 2.10. [16] A function $f: X \rightarrow Y$ is called pre- $(1,2)^{\star}$ - αg-closed if $f(U)$ is $(1,2)^{\star}$ - αg-closed in Y, for each $(1,2)^{\star}$ - αg-closed set U in X.

Definition 2.11. A bitopological space X is called:

1. $(1,2)^{\star}-T_{1 / 2}$-space [14] if every $(1,2)^{\star}-g$-closed set in it is $\tau_{1,2}$-closed.
2. $(1,2)^{\star}-T_{\star 1 / 2}$-space [12] if every $(1,2)^{\star}{ }^{\star} g$-closed set in it is $\tau_{1,2}$-closed.
3. $(1,2)^{\star}{ }^{\star} T_{1 / 2}$-space [12] if every $(1,2)^{\star}-g$-closed set in it is $(1,2)^{\star}-g^{\star}$-closed.
4. $(1,2)^{\star}$ - T_{b}-space [12] if every $(1,2)^{\star}$-gs-closed set in it is $\tau_{1,2}$-closed.
5. $(1,2)^{\star}{ }_{-} T_{b}$-space [16] if every $(1,2)^{\star}-\alpha g$-closed set in it is $\tau_{1,2}$-closed.
6. $(1,2)^{\star}$ - T_{d}-space [16] if every $(1,2)^{\star}$ - αg-closed set in it is $(1,2)^{\star}$ - g-closed.
7. $(1,2)^{\star}$ - α-space [11] if every $(1,2)^{\star}-\alpha$-closed set in it is $\tau_{1,2}$-closed.
8. $(1,2)^{\star}-T_{\#}$-space [10] if every $(1,2)^{\star}-g^{\#}$-closed set in it is $\tau_{1,2}$-closed.

Theorem 2.12. [10] A set A of X is $(1,2)^{\star}-g^{\#}$-open if and only if $F \subseteq \tau_{1,2}-\operatorname{int}(A)$ whenever F is $(1,2)^{\star}-\alpha g$-closed and $F \subseteq A$.

Theorem 2.13. [10] For a space X, the following properties are equivalent:

1. X is a $(1,2)^{\star}-T_{g}^{\#}$-space.
2. Every singleton subset of X is either $(1,2)^{\star}-\alpha g$-closed or $\tau_{1,2}$-open.

$3(1,2)^{\star}-g^{\#}$-Continuous Functions

We introduce the following definitions:
Definition 3.1. A function $f: X \rightarrow Y$ is called:

1. $(1,2)^{\star}-g^{\#}$-continuous if the inverse image of every $\sigma_{1,2}$-closed set in Y is $(1,2)^{\star}$ - $g^{\#}$-closed set in X.
2. $(1,2)^{\star}-g_{\alpha}^{\#}$-continuous if $f^{-1}(V)$ is an $(1,2)^{\star}-g_{\alpha}^{\#}$-closed set in X for every $\sigma_{1,2}$-closed set V of Y.
3. strongly $(1,2)^{\star}-g^{\#}$-continuous if the inverse image of every $(1,2)^{\star}$ - $g^{\#}$-open set in Y is $\tau_{1,2}$-open in X.

Example 3.2. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{c\}, X\}$ and $\tau_{2}=\{\phi,\{a, c\}, X\}$. Then the sets in $\{\phi$, $\{c\},\{a, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b\},\{a, b\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=$ $\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{c\}, Y\}$. Then the sets in $\{\phi,\{c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a, b\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{b\},\{a, b\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\#}$-continuous.

Proposition 3.3. Every $(1,2)^{\star}$-continuous function is $(1,2)^{\star}-g^{\#}$-continuous but not conversely.
Example 3.4. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then the sets in $\{\phi,\{a, b\}$, $X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $\{b\}, Y\}$ and $\sigma_{2}=\{\phi, Y\}$. Then the sets in $\{\phi,\{b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a$, $c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\#}$-continuous but not $(1,2)^{\star}$-continuous, since $f^{-1}(\{a, c\})$ $=\{a, c\}$ is not $\tau_{1,2}$-closed in X.

Proposition 3.5. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}-g_{\alpha}^{\#}$-continuous but not conversely.
Example 3.6. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{b\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $Y\}$ and $\sigma_{2}=\{\phi,\{b, c\}, Y\}$. Then the sets in $\{\phi,\{b, c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi$, $\{a\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{a, c\}, X\}$ and $(1,2)^{\star}-G_{\alpha}^{\#} C(X)=\{\phi$, $\{a\},\{c\},\{a, c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g_{\alpha}^{\#}$-continuous but not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{a\})=\{a\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Proposition 3.7. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}-g^{\star}$-continuous but not conversely.
Example 3.8. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{c\}, X\}$ and $\tau_{2}=\{\phi,\{a, c\}, X\}$. Then the sets in $\{\phi$, $\{c\},\{a, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b\},\{a, b\}, X\}$ are called $\tau_{1,2}$-closed. Let Y $=\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{a\}, Y\}$. Then the sets in $\{\phi,\{a\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{b, c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{b\},\{a, b\}, X\}$ and $(1,2)^{\star}-G^{\star} C(X)=\{\phi,\{b\},\{a, b\},\{b, c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\star}$-continuous but not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{b, c\})=\{b, c\}$ is not $(1,2)^{\star}$ - $g^{\#}$-closed in X.

Proposition 3.9. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}-g$-continuous but not conversely.
Example 3.10. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\}, X\}$ and $\tau_{2}=\{\phi,\{b, c\}, X\}$. Then the sets in $\{\phi$, $\{a\},\{b, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a\},\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=$ $\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{c\}, Y\}$. Then the sets in $\{\phi,\{c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a, b\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{a\},\{b, c\}, X\}$ and $(1,2)^{\star}-G C(X)=P(X)$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g$-continuous but not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{a, b\})=\{a, b\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Proposition 3.11. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}-\alpha g$-continuous but not conversely.
Example 3.12. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\}, X\}$ and $\tau_{2}=\{\phi,\{b, c\}, X\}$. Then the sets in $\{\phi$, $\{a\},\{b, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a\},\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=$ $\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{b\}, Y\}$. Then the sets in $\{\phi,\{b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a, c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{a\},\{b, c\}, X\}$ and $(1,2)^{\star}-\alpha G C(X)=P(X)$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-\alpha g$-continuous but not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{a, c\})=\{a, c\}$ is not $(1,2)^{\star}$ - $g^{\#}$-closed in X.

Proposition 3.13. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}$-gs-continuous but not conversely.
Example 3.14. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the sets in $\{\phi,\{a\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{a, b\}, Y\}$. Then the sets in $\{\phi,\{a, b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{c\}$, $Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{b, c\}, X\}$ and $(1,2)^{\star}-G S C(X)=\{\phi,\{b\}$, $\{c\},\{a, b\},\{a, c\},\{b, c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}$-gs-continuous but not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{c\})=\{c\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Proposition 3.15. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}$-gsp-continuous but not conversely.
Example 3.16. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{b\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{a, b\}, Y\}$. Then the sets in $\{\phi,\{a, b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{c\}$, $Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{a, c\}, X\}$ and $(1,2)^{\star}-G S P C(X)=\{\phi,\{a\}$, $\{c\},\{a, b\},\{a, c\},\{b, c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}$-gsp-continuous but not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{c\})=\{c\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Proposition 3.17. Every $(1,2)^{\star}-g^{\#}$-continuous function is $(1,2)^{\star}$-sg-continuous but not conversely.
Example 3.18. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\}, X\}$ and $\tau_{2}=\{\phi,\{b, c\}, X\}$. Then the sets in $\{\phi$, $\{a\},\{b, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a\},\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=$ $\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{a, b\}, Y\}$. Then the sets in $\{\phi,\{a, b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{a\},\{b, c\}, X\}$ and $(1,2)^{\star}-S G C(X)=P(X)$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}$-sg-continuous but not $(1,2)^{\star}$ - $g^{\#}$-continuous, since $f^{-1}(\{c\})=\{c\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Remark 3.19. The following examples show that $(1,2)^{\star}$ - $g^{\#}$-continuity is independent of $(1,2)^{\star}-\alpha$ continuity and (1,2$)^{\star}$-semi-continuity.

Example 3.20. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then the sets in $\{\phi,\{a, b\}$, $X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $Y\}$ and $\sigma_{2}=\{\phi,\{a\}, Y\}$. Then the sets in $\{\phi,\{a\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{b, c\}$, $Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$ and $(1,2)^{\star}-\alpha C(X)=$ $(1,2)^{\star}-S C(X)=\{\phi,\{c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\#}$-continuous but it is neither $(1,2)^{\star}$ - α-continuous nor $(1,2)^{\star}$-semi-continuous, since $f^{-1}(\{b, c\})=\{b, c\}$ is neither $(1,2)^{\star}-\alpha$-closed nor $(1,2)^{\star}$-semi-closed in X.

Example 3.21. In Example 3.14, we have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{b, c\}, X\}$ and $(1,2)^{\star}-\alpha C(X)=$ $(1,2)^{\star}-S C(X)=\{\phi,\{b\},\{c\},\{b, c\}, X\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is both $(1,2)^{\star}-\alpha$-continuous and $(1,2)^{\star}$-semi-continuous but it is not $(1,2)^{\star}-g^{\#}$-continuous, since $f^{-1}(\{c\})=$ $\{c\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Proposition 3.22. A function $f: X \rightarrow Y$ is $(1,2)^{\star}-g^{\#}$ - continuous if and only if $f^{-1}(U)$ is $(1,2)^{\star}-g^{\#}$ open in X for every $\sigma_{1,2}$-open set U in Y.

Proof. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be $(1,2)^{\star}$ - $g^{\#}$-continuous and U be an $\sigma_{1,2}$-open set in Y. Then U^{c} is $\sigma_{1,2}$-closed in Y and since f is $(1,2)^{\star}$ - $g^{\#}$-continuous, $\mathrm{f}^{-1}\left(\mathrm{U}^{c}\right)$ is $(1,2)^{\star}-g^{\#}$-closed in X . But $\mathrm{f}^{-1}\left(\mathrm{U}^{c}\right)=\left(\mathrm{f}^{-1}(\mathrm{U})\right)^{c}$ and so $\mathrm{f}^{-1}(\mathrm{U})$ is $(1,2)^{\star}-g^{\#}$-open in X .

Conversely, assume that $\mathrm{f}^{-1}(\mathrm{U})$ is $(1,2)^{\star}$ - $g^{\#}$-open in X for each $\sigma_{1,2}$-open set U in Y . Let F be a
 Since $\mathrm{f}^{-1}\left(\mathrm{~F}^{c}\right)=\left(\mathrm{f}^{-1}(\mathrm{~F})\right)^{c}$, we have $\mathrm{f}^{-1}(\mathrm{~F})$ is $(1,2)^{\star}-g^{\#}$-closed in X and so f is $(1,2)^{\star}-g^{\#}$-continuous.

Remark 3.23. The composition of two $(1,2)^{\star}-g^{\#}$-continuous functions need not be a $(1,2)^{\star}-g^{\#}$ continuous function as is shown in the following example.

Example 3.24. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{a, c\}, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then the sets in $\{\phi,\{a\},\{a, b\},\{a, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b\},\{c\},\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{a, b\}, Y\}$. Then the sets in $\{\phi,\{a, b\}$, $Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{c\}, Y\}$ are called $\sigma_{1,2}$-closed. Let $Z=\{a, b, c\}, \eta_{1}=\{\phi$, $Z\}$ and $\eta_{2}=\{\phi,\{b\}, Z\}$. Then the sets in $\{\phi,\{b\}, Z\}$ are called $\eta_{1,2}$-open and the sets in $\{\phi,\{a, c\}$, $Z\}$ are called $\eta_{1,2}$-closed. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be the identity functions. Then f and g are $(1,2)^{\star}$ - $g^{\#}$-continuous but their g o $f: X \rightarrow Z$ is not $(1,2)^{\star}$ - $g^{\#}$-continuous, since for the set $V=\{a$, c\} is $\eta_{1,2}$-closed in $Z,(g \circ f)^{-1}(V)=f^{-1}\left(g^{-1}(V)\right)=f^{-1}\left(g^{-1}(\{a, c\})\right)=f^{-1}(\{a, c\})=\{a, c\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.

Proposition 3.25. Let X and Z be bitopological spaces and Y be a $(1,2)^{\star}-T_{g}^{\#}$-space. Then the composition g of $: X \rightarrow Z$ of the $(1,2)^{\star}{ }_{-} g^{\#}$-continuous functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is $(1,2)^{\star}{ }_{-} g^{\#}$ _ continuous.

Proof. Let F be any $\eta_{1,2}$-closed set of Z. Then $g^{-1}(\mathrm{~F})$ is $(1,2)^{\star}{ }_{-} g^{\#}$-closed in Y, since g is $(1,2)^{\star}{ }_{-} g^{\#}$ continuous. Since Y is a $(1,2)^{\star}-\mathrm{T}_{g}^{\#}$-space, $g^{-1}(\mathrm{~F})$ is $\sigma_{1,2}$-closed in Y. Since f is $(1,2)^{\star}$ - $g^{\#}$-continuous,
 continuous.

Proposition 3.26. Let X and Z be bitopological spaces and Y be $a(1,2)^{\star}-T_{1 / 2}$-space (resp. $(1,2)^{\star}-T_{b}$ space, $(1,2)^{\star}-{ }_{\alpha} T_{b}$-space). Then the composition g o $f: X \rightarrow Z$ of the $(1,2)^{\star}-g^{\#}$-continuous function f $: X \rightarrow Y$ and the $(1,2)^{\star}-g$-continuous (resp. $(1,2)^{\star}$-gs-continuous, $(1,2)^{\star}-\alpha g$-continuous) function g : $Y \rightarrow Z$ is $(1,2)^{\star}-g^{\#}$-continuous.

Proof. Similar to Proposition 3.25.
Proposition 3.27. If $f: X \rightarrow Y$ is $(1,2)^{\star}-g^{\#}$-continuous and $g: Y \rightarrow Z$ is $(1,2)^{\star}$-continuous, then their composition g o $f: X \rightarrow Z$ is $(1,2)^{\star}$ - $g^{\#}$-continuous.

Proof. Let F be any $\eta_{1,2}$-closed set in Z. Since $g: \mathrm{Y} \rightarrow \mathrm{Z}$ is $(1,2)^{\star}$-continuous, $g^{-1}(\mathrm{~F})$ is $\sigma_{1,2^{2}}$-closed in Y. Since $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $(1,2)^{\star}-g^{\#}$-continuous, $\mathrm{f}^{-1}\left(g^{-1}(\mathrm{~F})\right)=(g o f)^{-1}(\mathrm{~F})$ is $(1,2)^{\star}$ - $g^{\#}$-closed in X and so g of is $(1,2)^{\star}-g^{\#}$-continuous.

Proposition 3.28. Let A be $(1,2)^{\star}-g^{\#}$-closed in X. If $f: X \rightarrow Y$ is $(1,2)^{\star}$ - αg-irresolute and $(1,2)^{\star}-$ closed, then $f(A)$ is $(1,2)^{\star}-g^{\#}$-closed in Y.

Proof. Let U be any $(1,2)^{\star}$ - αg-open in Y such that $\mathrm{f}(\mathrm{A}) \subseteq \mathrm{U}$. Then $\mathrm{A} \subseteq \mathrm{f}^{-1}(\mathrm{U})$ and by hypothesis, $\tau_{1,2}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{f}^{-1}(\mathrm{U})$. Thus $\mathrm{f}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right) \subseteq \mathrm{U}$ and $\mathrm{f}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right)$ is a $\sigma_{1,2}-\mathrm{closed}$ set. Now, $\sigma_{1,2}-\mathrm{cl}(\mathrm{f}(\mathrm{A})) \subseteq$ $\sigma_{1,2}-\mathrm{cl}\left(\mathrm{f}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right)\right)=\mathrm{f}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right) \subseteq \mathrm{U}$. i.e., $\sigma_{1,2}-\mathrm{cl}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{U}$ and so $\mathrm{f}(\mathrm{A})$ is $(1,2)^{\star}$ - $g^{\#}$-closed in Y .

Theorem 3.29. Let $f: X \rightarrow Y$ be a pre- $(1,2)^{\star}-\alpha g$-closed and $(1,2)^{\star}$-open bijection. If X is a $(1,2)^{\star}-$ $T_{g^{\#}}$-space, then Y is also a $(1,2)^{\star}$ - $T_{g^{\#}}$-space.

Proof. Let $\mathrm{y} \in \mathrm{Y}$. Since f is bijective, $\mathrm{y}=\mathrm{f}(\mathrm{x})$ for some $\mathrm{x} \in \mathrm{X}$. Since X is a $(1,2)^{\star}-\mathrm{T}_{g} \#$-space, $\{\mathrm{x}\}$ is $(1,2)^{\star}-\alpha g$-closed or $\tau_{1,2}$-open by Theorem 2.13. If $\{\mathrm{x}\}$ is $(1,2)^{\star}-\alpha g$-closed then $\{\mathrm{y}\}=\mathrm{f}(\{\mathrm{x}\})$ is $(1,2)^{\star}-\alpha g$-closed, since f is pre- $(1,2)^{\star}$ - αg-closed. Also $\{\mathrm{y}\}$ is $\sigma_{1,2}$-open if $\{\mathrm{x}\}$ is $\tau_{1,2}$-open since f is $(1,2)^{\star}$-open. Therefore by Theorem $2.13, \mathrm{Y}$ is a $(1,2)^{\star}-\mathrm{T}_{g^{\#}}$-space.

Theorem 3.30. If $f: X \rightarrow Y$ is $(1,2)^{\star}-g^{\#}$-continuous and pre- $(1,2)^{\star}-\alpha g$-closed and if A is an $(1,2)^{\star}$ -$g^{\#}$-open (or (1,2$)^{\star}-g^{\#}$-closed) subset of Y, then $f^{-1}(A)$ is $(1,2)^{\star}-g^{\#}$-open (or (1,2$)^{\star}-g^{\#}$-closed) in X.

Proof. Let A be an $(1,2)^{\star}-g^{\#}$-open set in Y and F be any $(1,2)^{\star}$ - αg-closed set in X such that $\mathrm{F} \subseteq$ $\mathrm{f}^{-1}(\mathrm{~A})$. Then $\mathrm{f}(\mathrm{F}) \subseteq \mathrm{A}$. By hypothesis, $\mathrm{f}(\mathrm{F})$ is $(1,2)^{\star}-\alpha g$-closed and A is $(1,2)^{\star}-g^{\#}$-open in Y. Therefore, $\mathrm{f}(\mathrm{F}) \subseteq \sigma_{1,2}-\operatorname{int}(\mathrm{A})$ by Theorem 2.12 , and so $\mathrm{F} \subseteq \mathrm{f}^{-1}\left(\sigma_{1,2}-\operatorname{int}(\mathrm{A})\right)$. Since f is $(1,2)^{\star}-g^{\#}$-continuous and $\sigma_{1,2}-\operatorname{int}(\mathrm{A})$ is $\sigma_{1,2^{-}}$open in $\mathrm{Y}, \mathrm{f}^{-1}\left(\sigma_{1,2}-\operatorname{int}(\mathrm{A})\right)$ is $(1,2)^{\star}-g^{\#}$-open in X . Thus $\mathrm{F} \subseteq \tau_{1,2^{-}}-\operatorname{int}\left(\mathrm{f}^{-1}\left(\sigma_{1,2^{-}}\right.\right.$
 in X. By taking complements, we can show that if A is $(1,2)^{\star}-g^{\#}$-closed in $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{~A})$ is $(1,2)^{\star}-g^{\#}$-closed in X .

Corollary 3.31. If $f: X \rightarrow Y$ is $(1,2)^{\star}$-continuous and pre- $(1,2)^{\star}-\alpha g$-closed and if B is a $(1,2)^{\star}$ -$g^{\#}$-closed (or (1, 2) $)^{\star}$ - $g^{\#}$-open) subset of Y, then $f^{-1}(B)$ is $(1,2)^{\star}$ - $g^{\#}$-closed (or (1,2$)^{\star}$ - $g^{\#}$-open) in X.

Proof. Follows from Proposition 3.3, and Theorem 3.30.
Corollary 3.32. Let X, Y and Z be any three bitopological spaces. If $f: X \rightarrow Y$ is $(1,2)^{\star}{ }_{-} g^{\#}$ continuous and pre- $(1,2)^{\star}-\alpha g$-closed and $g: Y \rightarrow Z$ is $(1,2)^{\star}-g^{\#}$-continuous, then their composition g of $: X \rightarrow Z$ is $(1,2)^{\star}-g^{\#}$-continuous.

Proof. Let F be any $\eta_{1,2^{2}}$-closed set in Z. Since $g: \mathrm{Y} \rightarrow \mathrm{Z}$ is $(1,2)^{\star}-g^{\#}$-continuous, $g^{-1}(\mathrm{~F})$ is $(1,2)^{\star}$ -$g^{\#}$-closed in Y. Since $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $(1,2)^{\star}-g^{\#}$-continuous and pre- $(1,2)^{\star}-\alpha g$-closed, by Theorem 3.30, $\mathrm{f}^{-1}\left(g^{-1}(\mathrm{~F})\right)=(\mathrm{g} o \mathrm{f})^{-1}(\mathrm{~F})$ is $(1,2)^{\star}-g^{\#}$-closed in X and so $g o \mathrm{f}$ is $(1,2)^{\star}-g^{\#}$-continuous.

$4(1,2)^{\star}-g^{\#}$-Irresolute Functions

We introduce the following definition.
Definition 4.1. A function $f: X \rightarrow Y$ is called an $(1,2)^{\star}$ - $g^{\#}$-irresolute if the inverse image of every $(1,2)^{\star}-g^{\#}$-closed set in Y is $(1,2)^{\star}-g^{\#}$-closed in X.

Remark 4.2. The following examples show that the notions of $(1,2)^{\star}$-sg-irresolute functions and $(1,2)^{\star}-g^{\#}$-irresolute functions are independent.

Example 4.3. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then the sets in $\{\phi,\{a, b\}$, $X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{c\}, X\}$ are called $\tau_{1,2^{-}}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $\{a\},\{a, b\}, Y\}$ and $\sigma_{2}=\{\phi,\{b\}, Y\}$. Then the sets in $\{\phi,\{a\},\{b\},\{a, b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{c\},\{a, c\},\{b, c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{c\}$, $\{a, c\},\{b, c\}, X\},(1,2)^{\star}-S G C(X)=\{\phi,\{c\},\{a, c\},\{b, c\}, X\},(1,2)^{\star}-G^{\#} C(Y)=\{\phi,\{c\},\{a, c\}$, $\{b, c\}, Y\}$ and $(1,2)^{\star}-S G C(Y)=\{\phi,\{a\},\{b\},\{c\},\{a, c\},\{b, c\}, Y\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\#}$-irresolute but it is not $(1,2)^{\star}$-sg-irresolute, since $f^{-1}(\{b\})=\{b\}$ is not $(1,2)^{\star}$-sg-closed in X.

Example 4.4. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{a\},\{b\},\{a, b\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi,\{b\}, Y\}$ and $\sigma_{2}=\{\phi,\{b, c\}, Y\}$. Then the sets in $\{\phi,\{b\}$, $\{b, c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a\},\{a, c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$ and $(1,2)^{\star}-S G C(X)=\{\phi,\{a\},\{b\},\{c\},\{a, c\},\{b, c\}$, $X\},(1,2)^{\star}-G^{\#} C(Y)=\{\phi,\{a\},\{a, c\}, Y\}$ and $(1,2)^{\star}-S G C(Y)=\{\phi,\{a\},\{c\},\{a, c\}, Y\}$. Let $f: X$ $\rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}$-sg-irresolute but it is not $(1,2)^{\star}-g^{\#}$-irresolute, since $f^{-1}(\{a\})=\{a\}$ is not $(1,2)^{\star}-g^{\#}$-closed in X.
Proposition 4.5. A function $f: X \rightarrow Y$ is $(1,2)^{\star}$ - $g^{\#}$-irresolute if and only if the inverse of every $(1,2)^{\star}-g^{\#}$-open set in Y is $(1,2)^{\star}$ - $g^{\#}$-open in X.

Proof. Similar to Proposition 3.22.
Proposition 4.6. If a function $f: X \rightarrow Y$ is $(1,2)^{\star}-g^{\#}$-irresolute then it is $(1,2)^{\star}-g^{\#}$-continuous but not conversely.

Example 4.7. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{b\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $Y\}$ and $\sigma_{2}=\{\phi,\{a, b\}, Y\}$. Then the sets in $\{\phi,\{a, b\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi$, $\{c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{a, c\}, X\}$ and $(1,2)^{\star}-G^{\#} C(Y)=\{\phi$, $\{c\},\{a, c\},\{b, c\}, Y\}$. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\#}$-continuous but it is not $(1,2)^{\star}-g^{\#}$-irresolute, since $f^{-1}(\{a\})=\{a\}$ is not $(1,2)^{\star}$ - $g^{\#}$-open in X.
Proposition 4.8. Let X be any bitopological space, Y be $a(1,2)^{\star}$ - $T_{g^{\#}}$-space and $f: X \rightarrow Y$ be a function. Then the following are equivalent:

1. f is $(1,2)^{\star}-g^{\#}$-irresolute.
2. f is $(1,2)^{\star}-g^{\#}$-continuous.

Proof. (1) \Rightarrow (2) Follows from Proposition 4.6.
$(2) \Rightarrow(1)$ Let F be a $(1,2)^{\star}$ - $g^{\#}$-closed set in Y. Since Y is a $(1,2)^{\star}$ - $\mathrm{T}_{g^{\#}}$-space, F is a $\sigma_{1,2}$-closed set in Y and by hypothesis, $\mathrm{f}^{-1}(\mathrm{~F})$ is $(1,2)^{\star}-g^{\#}$-closed in X. Therefore f is $(1,2)^{\star}-g^{\#}$-irresolute.
Definition 4.9. A function $f: X \rightarrow Y$ is called pre- $(1,2)^{\star}-\alpha g$-open if $f(U)$ is $(1,2)^{\star}$ - αg-open in Y, for each $(1,2)^{\star}-\alpha g$-open set U in X.

Proposition 4.10. If $f: X \rightarrow Y$ is bijective pre- $(1,2)^{\star}-\alpha g$-open and $(1,2)^{\star}$ - $g^{\#}$-continuous then f is $(1,2)^{\star}-g^{\#}$-irresolute.

Proof. Let A be $(1,2)^{\star}-g^{\#}$-closed set in Y. Let U be any $(1,2)^{\star}$ - α g-open set in X such that $\mathrm{f}^{-1}(\mathrm{~A})$ $\subseteq \mathrm{U}$. Then $\mathrm{A} \subseteq \mathrm{f}(\mathrm{U})$. Since A is $(1,2)^{\star}-g^{\#}$-closed and $\mathrm{f}(\mathrm{U})$ is $(1,2)^{\star}$ - αg-open in $\mathrm{Y}, \sigma_{1,2-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{f}(\mathrm{U})}$ holds and hence $\mathrm{f}^{-1}\left(\sigma_{1,2}-\mathrm{cl}(\mathrm{A})\right) \subseteq \mathrm{U}$. Since f is $(1,2)^{\star}-g^{\#}$-continuous and $\sigma_{1,2^{-}}-\mathrm{cl}(\mathrm{A})$ is $\sigma_{1,2}$-closed in $\mathrm{Y}, \mathrm{f}^{-1}\left(\sigma_{1,2}-\mathrm{cl}(\mathrm{A})\right)$ is $(1,2)^{\star}-g^{\#}$-closed and hence $\tau_{1,2^{-}-\mathrm{cl}\left(\mathrm{f}^{-1}\left(\sigma_{1,2}-\mathrm{cl}(\mathrm{A})\right)\right) \subseteq \mathrm{U} \text { and so } \tau_{1,2}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~A})\right) \subseteq}$ U . Therefore, $\mathrm{f}^{-1}(\mathrm{~A})$ is $(1,2)^{\star}-g^{\#}$-closed in X and hence f is $(1,2)^{\star}$ - $g^{\#}$-irresolute.

The following examples show that no assumption of Proposition 4.10 can be removed.
Example 4.11. The identity function defined in Example 4.7 is $(1,2)^{\star}-g^{\#}$-continuous and bijective but not pre- $(1,2)^{\star}$ - αg-open and so f is not $(1,2)^{\star}$ - $g^{\#}$-irresolute.

Example 4.12. Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{a\},\{b\},\{a, b\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi,\{a\}, Y\}$ and $\sigma_{2}=\{\phi,\{b, c\}, Y\}$. Then the sets in $\{\phi,\{a\}$, $\{b, c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a\},\{b, c\}, Y\}$ are called $\sigma_{1,2}$-closed. We have $(1,2)^{\star}-G^{\#} C(X)=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$ and $(1,2)^{\star}-S G C(X)=\{\phi,\{a\},\{b\},\{c\},\{a, c\},\{b$, $c\}, X\},(1,2)^{\star}-G^{\#} C(Y)=\{\phi,\{a\},\{b, c\}, Y\}$ and $(1,2)^{\star}-S G C(Y)=P(Y)$. Let $f: X \rightarrow Y$ be the identity function. Then f is bijective and pre- $(1,2)^{\star}-\alpha g$-open but not $(1,2)^{\star}-g^{\#}$-continuous and so f is not $(1,2)^{\star}-g^{\#}$-irresolute, since $f^{-1}(\{a\})=\{a\}$ is not $(1,2)^{\star}$ - $g^{\#}$-closed in X.
Proposition 4.13. If $f: X \rightarrow Y$ is bijective $(1,2)^{\star}$-closed and $(1,2)^{\star}$ - αg-irresolute then the inverse function $f^{-1}: Y \rightarrow X$ is $(1,2)^{\star}$ - $g^{\#}$-irresolute.

Proof. Let A be $(1,2)^{\star}$ - $g^{\#}$-closed in X . Let $\left(\mathrm{f}^{-1}\right)^{-1}(\mathrm{~A})=\mathrm{f}(\mathrm{A}) \subseteq \mathrm{U}$ where U is $(1,2)^{\star}$ - αg-open in Y . Then $\mathrm{A} \subseteq \mathrm{f}^{-1}(\mathrm{U})$ holds. Since $\mathrm{f}^{-1}(\mathrm{U})$ is $(1,2)^{\star}-\alpha g$-open in X and A is $(1,2)^{\star}-g^{\#}$-closed in $\mathrm{X}, \tau_{1,2}-\mathrm{cl}(\mathrm{A})$ $\subseteq \mathrm{f}^{-1}(\mathrm{U})$ and hence $\mathrm{f}\left(\tau_{1,2^{-}} \mathrm{cl}(\mathrm{A})\right) \subseteq \mathrm{U}$. Since f is $(1,2)^{\star}$-closed and $\tau_{1,2^{-}} \mathrm{cl}(\mathrm{A})$ is $\tau_{1,2^{-}}$-closed in $\mathrm{X}, \mathrm{f}\left(\tau_{1,2^{-}}\right.$ $\mathrm{cl}(\mathrm{A}))$ is $\sigma_{1,2}-\operatorname{closed}$ in Y and so $\mathrm{f}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right)$ is $(1,2)^{\star}-g^{\#}$-closed in Y. Therefore $\sigma_{1,2}-\mathrm{cl}\left(\mathrm{f}\left(\tau_{1,2}-\mathrm{cl}(\mathrm{A})\right)\right)$ $\subseteq \mathrm{U}$ and hence $\sigma_{1,2}-\mathrm{cl}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{U}$. Thus $\mathrm{f}(\mathrm{A})$ is $(1,2)^{\star}-g^{\#}$-closed in Y and so f^{-1} is $(1,2)^{\star}-g^{\#}$-irresolute.

5 Applications

To obtain a decomposition of $(1,2)^{\star}$-continuity, we introduce the notion of $(1,2)^{\star}$ - $\alpha g l c^{\#}$-continuous function in bitopological spaces and prove that a function is $(1,2)^{\star}$-continuous if and only if it is both $(1,2)^{\star}$ - $g^{\#}$-continuous and (1,2$)^{\star}$ - $\alpha g l c^{\#}$-continuous.

Definition 5.1. A subset A of a bitopological space X is called $(1,2)^{\star}$ - α glc c^{\star}-set if $A=M \cap N$, where M is $(1,2)^{\star}$ - αg-open and N is $\tau_{1,2}$-closed in X.

The family of all $(1,2)^{\star}-\alpha g l c^{\star}$-sets in a space X is denoted by $(1,2)^{\star}-\alpha g l c^{\star}(\mathrm{X})$.
Example 5.2. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{c\}, X\}$. Then the sets in $\{\phi,\{c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a, b\}, X\}$ are called $\tau_{1,2}$-closed. Then $\{a\}$ is $(1,2)^{\star}$ - $\alpha g l c^{\star}$-set in X.

Remark 5.3. Every $\tau_{1,2}$-closed set is $(1,2)^{\star}$ - α glc ${ }^{\star}$-set but not conversely.
Example 5.4. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the sets in $\{\phi,\{a\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Then $\{a, b\}$ is $(1,2)^{\star}-\alpha g l c^{\star}$-set but not $\tau_{1,2}$-closed in X.

Remark 5.5. $(1,2)^{\star}-g^{\#}$-closed sets and $(1,2)^{\star}-\alpha g l c^{\star}$-sets are independent of each other.
Example 5.6. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a, c\}, X\}$. Then the sets in $\{\phi$, $\{a, c\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b\}, X\}$ are called $\tau_{1,2}$-closed. Then $\{b, c\}$ is a $(1,2)^{\star}-g^{\#}$-closed set but not $(1,2)^{\star}-\alpha g l c^{\star}$-set in X.

Example 5.7. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{b\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a, c\}, X\}$ are called $\tau_{1,2}$-closed. Then $\{a, b\}$ is an $(1,2)^{\star}-\alpha g l c^{\star}$-set but not $(1,2)^{\star}-g^{\#}$-closed set in X.
Proposition 5.8. Let X be a bitopological space. Then a subset A of X is $\tau_{1,2}$-closed if and only if it is both $(1,2)^{\star}-g^{\#}$-closed and $(1,2)^{\star}-\alpha g l c^{\star}$-set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both $(1,2)^{\star}$ - $g^{\#}$-closed and $(1,2)^{\star}$ $\alpha g l c^{\star}$-set. Then $\mathrm{A}=\mathrm{M} \cap \mathrm{N}$, where M is $(1,2)^{\star}$ - αg-open and N is $\tau_{1,2}$-closed in X . Therefore, $\mathrm{A} \subseteq \mathrm{M}$ and $\mathrm{A} \subseteq \mathrm{N}$ and so by hypothesis, $\tau_{1,2}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{M}$ and $\tau_{1,2}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{N}$. Thus $\tau_{1,2^{2}}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{M} \cap \mathrm{N}=\mathrm{A}$ and hence $\tau_{1,2}$-cl(A) $=\mathrm{A}$ i.e., A is $\tau_{1,2}$-closed in X .

We introduce the following definition.
Definition 5.9. A function $f: X \rightarrow Y$ is said to be $(1,2)^{\star}$ - $\alpha g l c^{\#}$-continuous if for each $\sigma_{1,2}$-closed set V of $Y, f^{-1}(V)$ is an $(1,2)^{\star}-\alpha g l c^{\star}$-set in X.

Example 5.10. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the sets in $\{\phi,\{a\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $\{a\}, Y\}$ and $\sigma_{2}=\{\phi,\{b, c\}, Y\}$. Then the sets in $\{\phi,\{a\},\{b, c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a\},\{b, c\}, Y\}$ are called $\sigma_{1,2}$-closed. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-\alpha g l c^{\#}$-continuous function.

Remark 5.11. From the definitions it is clear that every $(1,2)^{\star}$-continuous function is $(1,2)^{\star}$ - α glc ${ }^{\#}$ continuous but not conversely.
Example 5.12. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{b\}, X\}$. Then the sets in $\{\phi,\{b\}$, $X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{a, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=$ $\{\phi,\{b\}, Y\}$ and $\sigma_{2}=\{\phi,\{a, c\}, Y\}$. Then the sets in $\{\phi,\{b\},\{a, c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{b\},\{a, c\}, Y\}$ are called $\sigma_{1,2}$-closed. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}$ - $\alpha g l c^{\#}$-continuous function but not $(1,2)^{\star}$-continuous. Since for the $\sigma_{1,2}$-closed set $\{b\}$ in Y, $f^{-1}(\{b\})=\{b\}$, which is not $\tau_{1,2}$-closed in X.

Remark 5.13. $(1,2)^{\star}-g^{\#}$-continuity and $(1,2)^{\star}-\alpha g l c^{\#}$-continuity are independent of each other.
Example 5.14. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then the sets in $\{\phi,\{a, b\}$, $X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi$, $Y\}$ and $\sigma_{2}=\{\phi,\{a\}, Y\}$. Then the sets in $\{\phi,\{a\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{b$, $c\}, Y\}$ are called $\sigma_{1,2}$-closed. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}-g^{\#}$-continuous function but not $(1,2)^{\star}-\alpha g l c^{\#}$-continuous.

Example 5.15. Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the sets in $\{\phi,\{a\}, X\}$ are called $\tau_{1,2}$-open and the sets in $\{\phi,\{b, c\}, X\}$ are called $\tau_{1,2}$-closed. Let $Y=\{a, b, c\}, \sigma_{1}=\{\phi, Y\}$ and $\sigma_{2}=\{\phi,\{b, c\}, Y\}$. Then the sets in $\{\phi,\{b, c\}, Y\}$ are called $\sigma_{1,2}$-open and the sets in $\{\phi,\{a\}$, $Y\}$ are called $\sigma_{1,2}$-closed. Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)^{\star}$ - α glc ${ }^{\#}$-continuous function but not $(1,2)^{\star}-g^{\#}$-continuous.

We have the following decomposition for $(1,2)^{\star}$-continuity.
Theorem 5.16. A function $f: X \rightarrow Y$ is $(1,2)^{\star}$-continuous if and only if it is both $(1,2)^{\star}-g^{\#}$ _ continuous and $(1,2)^{\star}-\alpha g l c^{\#}$-continuous.

Proof. Assume that f is $(1,2)^{\star}$-continuous. Then by Proposition 3.3 and Remark 5.11, f is both $(1,2)^{\star}-g^{\#}$-continuous and $(1,2)^{\star}$ - $\alpha g l c^{\#}$-continuous.

Conversely, assume that f is both $(1,2)^{\star}-g^{\#}$-continuous and $(1,2)^{\star}-\alpha g l c^{\#}$-continuous. Let V be a $\sigma_{1,2}$-closed subset of Y. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is both $(1,2)^{\star}-g^{\#}$-closed set and $(1,2)^{\star}-\alpha g l c^{\star}$-set. By Proposition $5.8, \mathrm{f}^{-1}(\mathrm{~V})$ is a $\tau_{1,2}$-closed set in X and so f is $(1,2)^{\star}$-continuous.

6 Conclusion

The notions of the sets, functions and spaces in bitopological spaces are highly developed and used extensively in many practical and engineering problems, computational topology for geometric design, computer-aided geometric design, engineering design research and mathematical sciences. Also, topology plays a significant role in space time geometry and high-energy physics. Thus generalized continuity is one of the most important subjects on topological spaces. Hence we studied new types of generalizations of non-continuous functions, obtained some of their properties in bitopological spaces.

References

[1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
[2] Antony Rex Rodrigo, J., Ravi, O., Pandi, A. and Santhana, C. M.: On (1, 2) ${ }^{\star}$-s-normal spaces and pre-(1,2) ${ }^{\star}$-gs-closed functions, International Journal of Algorithms, Computing and Mathematics, 4(1) (2011), 29-42.
[3] Balachandran, K., Sundaram, P. and Maki, H.: On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12 (1991), 5-13.
[4] Devi, R., Balachandran, K. and Maki, H.: On generalized α-continuous maps and α-generalized continuous maps, Far East J. Math. Sci., Special Volume, part I (1997), 1-15.
[5] Dontchev, J. and Ganster, M.: On δ-generalized closed sets and $T_{3 / 4}$-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 15-31.
[6] Duszynski, Z., Jeyaraman, M., Joseph, M. S., Ravi, O. and Thivagar, M. L.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
[7] Kayathri, K., Ravi, O., Thivagar, M. L. and Joseph Israel, M.: Decompositions of (1,2)^-rgcontinuous maps in bitopological spaces, Antarctica J. Math., 6(1) (2009), 13-23.
[8] Kelly, J. C.: Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
[9] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1, 2) ${ }^{\star}$-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
[10] Rajan, C.: Further study of new bitopological generalized continuous functions, Ph. D. Thesis, Madurai Kamaraj University, (2014).
[11] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of $(1,2)^{\star}$-continuity and $(1,2)^{\star}-\alpha-$ continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
[12] Ravi, O. and Thivagar, M. L.: Remarks on λ-irresolute functions via $(1,2)^{\star}$-sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
[13] Ravi, O., Ekici, E. and Lellis Thivagar, M.: On (1, 2)^-sets and decompositions of bitopological $(1,2)^{\star}$-continuous mappings, Kochi J. Math., 3 (2008), 181-189.
[14] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1, 2)${ }^{\star}$-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.
[15] Ravi, O., Thivagar, M. L. and Ekici, E.: Decomposition of $(1,2)^{\star}$-continuity and complete $(1,2)^{\star}$ continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008), 29-37.
[16] Ravi, O., Pandi, A. and Latha, R.: Contra-pre-(1,2)^-semi-continuous functions, Bessel Journal of Mathematics (To appear).
[17] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of $(1,2)^{\star}$ - g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
[18] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
[19] Veera kumar, M. K. R. S.: \hat{g}-closed sets in topological spaces, Bull. Allah. Math. Soc., 18 (2003), 99-112.
[20] Veera kumar, M. K. R. S.: $g^{\#}$-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.)., 24 (2003), 1-13.

[^0]: ${ }^{* *}$ Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editors-in-Chief).

 * Corresponding Author.

