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Abstract 

Industrial robots enhance manufacturing efficiency, productivity, and precision. However, failures can disrupt production lines, 
leading to losses and significant system impact. In this study, robot failures are predicted using the UR3 CobotOps dataset and the 
impact of feature selection on the performance of various classification algorithms in predicting two targets (protective stops, and 
grip losses) is explored. Initially, the baseline performance of classifiers without feature selection has been evaluated. Then, two 
different feature selection methods (recursive feature elimination and chi-square) are applied to select the top 10 features and 
reassess the classifier’s performance. High classification success rates are obtained with Decision Tree and Random Forest after 
feature selection in this study, which tests five different classifiers (Logistic Regression, Decision Tree, Random Forest, Support Vector 
Machine, and k-Nearest Neighbors) in the classification stage. This paper provides valuable insights into the different applications of 
classifiers, contributing to the field of machine learning by identifying different feature selection techniques and their impacts on 
classification accuracy. According to the experimental tests, an accuracy rate of about 99% has been obtained when Random Forest 
is used. This success has been also achieved when Chi-Square is used for feature selection. This paper shows that this prediction can 
be achieved in a shorter time using feature selection. 
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Öz 

Endüstriyel robotlar üretim verimliliğini, üretkenliği ve hassasiyeti artırır. Ancak arızalar üretim hatlarını kesintiye uğratarak 
kayıplara ve önemli sistem etkilerine yol açabilir. Bu çalışmada, UR3 CobotOps veri seti kullanılarak robot arızaları tahmin 
edilmektedir. Özellik seçiminin, iki hedefi (protective stops, and grip losses) tahmin etmede çeşitli sınıflandırma algoritmalarının 
performansı üzerindeki etkisini araştırıyor. Başlangıçta öznitelik seçimi yapılmayan sınıflandırıcıların temel performansı 
değerlendirilmiştir. Daha sonra ilk 10 özniteliğin seçilmesi ve sınıflandırıcı performansının yeniden değerlendirilmesi için iki farklı 
öznitelik seçme yöntemi (özyinelemeli öznitelik eleme ve Ki-Kare) uygulanmıştır. Beş farklı sınıflandırıcının (lojistik regresyon, karar 
ağacı, rastgele orman, destek vektör makinesi, ve k-en yakın komşu) test edildiği bu çalışmada öznitelik seçimi sonrasında 
sınıflandırma aşamasında karar ağacı ve rastgele orman ile yüksek sınıflandırma başarıları elde edilmiştir. Bu makale, farklı öznitelik 
seçme tekniklerini ve bunların sınıflandırma doğruluğu üzerindeki etkilerini belirleyerek makine öğrenimi alanına katkıda bulunarak 
sınıflandırıcıların farklı uygulamalarına ilişkin değerli bilgiler sağlar. Yapılan deneyler, rastgele orman algoritmasının endüstriyel 
robot arızalarını 0,99'a varan bir doğrulukla tahmin edebildiğini göstermektedir. Feature selection için Ki-Kare kullanıldığında da bu 
başarıya erişilmiştir. Bu araştırma sayesinde feature selection kullanılarak daha kısa sürede bu tahminin gerçekleştirilebileceği 
görülür. 

Anahtar Kelimeler: Kestirimci Bakım, Operasyonel Verimlilik, Öznitelik Seçimi, Makine Öğrenmesi 

1. Introduction 

Industrial robots are essential components of modern 
manufacturing, improving efficiency, productivity, and precision 
in a variety of applications [1]. Industrial robot failures can occur 
during real-world industrial operations, forcing production lines 
to stop and resulting in losses. Any failure of an industrial robot 
can have a significant impact on the overall operation of the 
system. Robot failures may be due to the following reasons: 
mechanical failures (wear and tear on components, improper 
maintenance, design flaws, corrosion and material fatigue), 
electrical issues (power supply disruptions, short circuits, 
overloading, faulty wiring and connections), human errors 
(incorrect programming, improper installation, lack of training, 

poor maintenance practices), software malfunctions (software 
bugs and glitches, incompatibility with hardware, outdated 
software versions, cybersecurity vulnerabilities), and 
environmental factors (temperature extremes, humidity and 
moisture, dust and debris, electromagnetic interference). As can 
be seen, robot failures can occur for a variety of reasons. These 
robots' frequent failures can have serious repercussions, 
including more downtime, lower production, and higher 
maintenance expenses [2]. Susto et al. categorize robot 
maintenance strategies into four groups based on their 
complexity and efficiency [3]. These are run-to-failure (RTF) 
maintenance, preventive maintenance, condition-based 
maintenance, and predictive maintenance. To reduce the 
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possibility of a production halt brought on by robot malfunctions, 
robot predictive maintenance should be effectively executed. 
This should be followed by suitable management during failure 
repairs. These procedures are often based on a study of the data 
gathered during the robot's operational period. 

To overcome robot failures, the application of predictive 
maintenance strategies, especially through the use of machine 
learning algorithms, has received great attention in the industry. 
Predictive maintenance reduces maintenance costs while also 
preventing mechanical failures, which can lead to unscheduled 
production interruptions. The first phase of predictive 
maintenance methods involves estimating the parameters [4]. 
Forecasts for predictive maintenance are broadly classified into 
two types: cross-sectional forecasting and time series 
forecasting. Several studies have shown that predictive 
maintenance systems are useful in identifying probable issues 
before they occur.  The systems developed by Strauß et al. and 
Ayvaz et al. [5-6] use real-time data from IoT sensors to detect 
early warning signals of probable failures, allowing operators to 
take preventative measures and reduce production downtime.  A 
novel neural network-based method for predicting robot 
execution failures is presented in the study of Diryag et al. [7]. The 
neural network training has been made using real data, which 
includes robot forces and torques acquired after a system failure. 
In the study of Pinto and Carquitelli [8], the performances of 
Extremely Randomized Trees, k-nearest neighbors (KNN), and 
convolutional neural networks (CNN) in the classification stage 
have been investigated. The study also examines the effect of 
Principal component analysis (PCA) for feature selection. 
Morettini [9] provides a machine learning approach for 
conducting predictive maintenance with torque profiles. The 
methods used are evaluated on simulated data generated by wear 
and temperature models. A Random Forest (RF) based machine 
learning architecture for predictive maintenance is proposed by 
Paolanti et al. [10]. Predictions have been made with 95% 
accuracy on a dataset consisting of 15 different features 
(functional spindle rotor status, time for event recorded, running 
machine, spindle rotation speed, power absorbed by the spindle, 
spindle angular position, real-to-nominal position diff for all axis, 
speed for all axis, absorbed current for all axis) collected in real-
time from the cutting machine. In the study of Susto et al. [11], 
where the performance comparison of KNN and support vector 
machine (SVM) are made, different maintenance techniques such 
as preventive maintenance and predictive maintenance are also 
examined.  

This study aims to evaluate the baseline performance of multiple 
classification algorithms on a dataset of industrial robot 
operations, select the most relevant features for predicting 
protective stops and grip losses, and compare the performances 
of the classifiers before and after feature selection to determine 
the impact of this preprocessing step. Our research contributes 
to the field of machine learning in industrial applications by 
providing a comprehensive analysis of the role of feature 
selection in improving the accuracy and reliability of 
classification models. By identifying the optimal conditions for 
deploying algorithms like decision tree (DT) and RF, we offer 
practical insights for practitioners aiming to enhance predictive 
maintenance systems. 

The remainder of the paper is organized as follows: Materials and 
Methods are given in Section 2. Experimental Results and 
discussions are given in Section 3. In Section 4, the paper's 
conclusion is provided. 

 

2. Materials and Methods 

2.1. The UR3 CobotOps Dataset 

The UR3 CobotOps Dataset [12] has been used in this study. The 
experimental setup used to create this dataset is shown in Figure 
1. It has 7409 instances and 20 features (Current_J0, 
Temperature_T0, Current_J1, Temperature_J1, Current_J2, 
Temperature_J2, Current_J3, Temperature_J3, Current_J4, 
Temperature_J4, Current_J5, Temperature_J5, Speed_J0, 
Speed_J1, Speed_J2, Speed_J3, Speed_J4, Speed_J5, Total_current, 
and Cycle). The features collected via MODBUS and real-time data 
exchange (RTDE) protocols and the targets are given in Table 1. 
Three features (speed, temperature and current) have been kept 
for each joint (J) of the production machine.  

The UR3 CobotOps dataset provides insights into the operation 
of the UR3 robot, a flexible, lightweight 6-axis industrial robot 
equipped with 5 joints, designed for tasks requiring high 
precision in small workspaces. The UR3 robot, with a 3 kg 
payload and a 500 mm reach, is ideal for light assembly tasks and 
collaborative work, thanks to its built-in force/torque sensor and 
advanced safety features, allowing it to work efficiently alongside 
humans. 

 

Figure 1. The experimental setup [13] 

Additionally, the dataset records the gripper current and the 
operation cycle count, which together provide a comprehensive 
view of the robot’s performance. These input parameters help us 
understand how the UR3 robot's operation leads to two key 
failure types—protective stops and grip losses. Protective stops 
occur when the UR3 robot halts its operations to prevent 
potential damage or ensure safety, often triggered by 
irregularities in joint movement or excessive force detected by 
the built-in sensors. Grip losses, on the other hand, indicate 
situations where the robot's gripper fails to maintain a firm hold 
on objects, which can result from improper gripper current or 
inaccuracies in joint movements, impacting the robot’s ability to 
perform precise assembly tasks. The ranges of features and 
targets have been given in Table 2.  
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Table 1. Features and Targets 

Features 

Electrical currents (J0-
J5) 

Current_J0, Current_J1, 
Current_J2, Current_J3, 
Current_J4, Current_J5 

Temperatures (J0-J5) Temperature_T0, 
Temperature_J1, Temperature_J2, 
Temperature_J3, Temperature_J4, 

Temperature_J5 

Speeds across joints  

(J0-J5) 

Speed_J0, Speed_J1, Speed_J2, 
Speed_J3, Speed_J4, Speed_J5 

Gripper current Tool_current 

Operation cycle count Cycle 

Targets 

Protective stops Robot_ProtectiveStop 

Grip losses grip_lost 

 

Table 2. Ranges of the Features and Targets 

Features Min Max 

Current_J0 -6.2478 6.8069 
Temperature_T0 27.8125 37.2500 
Current_J1 -5.8087 1.0836 
Temperature_J1 29.3125 40.5000 
Current_J2 -4.1720 2.4649 
Temperature_J2 29.3750 40.9375 
Current_J3 -3.3331 2.2703 
Temperature_J3 32.1250 43.4375 
Current_J4 -4.7384 4.0894 
Temperature_J4 32.2500 45.375 
Current_J5 -0.4746 0.3925 
Temperature_J5 32.0000 44.9375 
Speed_J0 -0.6563 0.7919 
Speed_J1 -0.3308 0.6155 
Speed_J2 -2.7331 2.6798 
Speed_J3 -1.2715 1.3631 
Speed_J4 -0.2262 0.1939 
Speed_J5 -1.6297 1.3780 
Tool_current 0.0202 0.6021 
Cycle 1 264 
Targets Min Max 

Robot_ProtectiveStop 0 1 
grip_lost TRUE FALSE 

2.2. Data Preprocessing Step 

Data preprocessing involves standardizing the features using 
Standard Scaler to ensure all features contribute equally to the 
model performance [14]. This step is crucial as it helps mitigate 
the impact of varying scales of different features on the 
classification algorithms.  

𝑧 = (𝑥𝑖 − 𝜇)𝜎−1 (1) 

𝜇 =
1

𝑁
∑(𝑥İ)

𝑁

𝑖=1

 (2) 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 
(3) 

 

The equation of the Standard Scaler is given in (1). 𝜇 is mean (2) 
and 𝜎 is standart deviation (3).  Additionally, synthetic minority 
over-sampling technique (SMOTE) has been applied to prevent 
the unbalanced distribution in the dataset [15]. Thus, the 
performances of the algorithms are increased.  

𝑓𝑛𝑒𝑤 = 𝑓𝑖 + (𝑓𝑖 − 𝑓𝑗)𝑐   (4) 

To balance the distribution, synthetic samples are produced 
based on (4). 𝑓𝑖  is the feature vector in the dataset. The difference 
between 𝑓𝑖  and its nearest neighbor 𝑓𝑗  is taken and this difference 

is multiplied by a random number c between 0-1. 

2.3. Feature Selection Step 

The relationship between the feature and the target is considered 
in feature selection techniques. The feature influence in 
classification problems is found by comparing the class 
distribution to a given class and calculating the difference. 

Recursive feature elimination (RFE) and Chi-Square have been 
used as estimators to select the top 10 most relevant features for 
predicting the target variables. RFE iteratively removes the least 
significant features based on the model coefficients until the 
desired number of features is reached [16]. This method helps in 
identifying and retaining the most informative features while 
eliminating redundant or irrelevant ones. The Chi-Square is 
primarily a statistical test used to evaluate the association 
between two categorical variables [17]. It is not strictly a feature 
selection method, but it is commonly used in feature selection 
processes. Specifically, in classification problems, it can be 
employed to measure how strongly each feature is related to the 
target variable. Features with higher Chi-Square values are 
considered more relevant as they show a stronger relationship 
with the target variable. 

2.4. Classification Step 

Various algorithms can be employed for classification, each with 
its strengths and weaknesses. While classification algorithms 
may have advantages such as simplicity, efficiency, robustness, 
handling missing values, and flexibility; they may also have 
disadvantages such as high computational costs, low 
performance in small data sets, and susceptibility to overfitting. 
Therefore, the performances of five different classifiers have 
been examined in the classification phase: logistic regression 
(LR), DT, RF, SVM and KNN. 

LR attempts to build a model between one or more independent 
variables and the outcome variable [18]. It is a popular option for 
many applications since it is specially designed to handle 
categorical outcomes, unlike linear regression, which is intended 
for continuous dependent variables. 

DT is a frequently used classification algorithm [19]. Asking a 
series of questions about the data and utilizing the responses to 
go as quickly as possible to the outcome might be considered the 
fundamental idea behind creating a decision tree structure using 
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training data. After compiling the responses, the decision tree 
generates decision rules. 

RF produces decent results without hyperparameter estimation 
and may be used to solve regression and classification problems 
[20]. It can handle datasets with both continuous and categorical 
variables.  

SVM has been developed for classification and regression 
analysis [21]. Typically, the dataset is separated into two subsets: 
the training set and the test set. The SVM method finds the 
optimal hyperplane dividing the classes using a labeled training 
set. To divide the two classes, more than one hyperplane could be 
employed. In this case, the hyperplane that maximizes the 
distance between each class's closest data points is considered 
the ideal one. 

The k value in KNN is used in this method to indicate how many 
nearby data points should be taken into account for classification 
[22]. The similarity between the items in the dataset is measured 
using a variety of distance techniques, including Euclidean, 
Manhattan, and Minkowski. Next, by looking at the classes of the 
data point's closest neighbors, it guesses the class to which the 
data point belongs.  

2.5. Evaluation Metrics 

The performances of the classification models have been 
assessed using five different key metrics. The values of True 
Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN) are used to calculate these metrics [23]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP + TN

TP + FP + FN + TN
 

  (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

(7) 

𝐹1𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ Precision ∗ Recall

Precision + Recall
 

(8) 

 
• Accuracy: The proportion of cases that were correctly 

classified out of all the situations (5). 
• Precision: The proportion of true positives to the sum 

of TP and FP (6). 
• Recall: The proportion of true positives to the sum of 

TP and FN (7). 
• F1-Score: The harmonic means of precision and recall 

(8). 
• Area Under the Curve (AUC): Estimating the area 

under the receiver operating characteristic (ROC) 
curve. 

3. Experimental Results and Discussion 

Flowchart of the system is given in Figure 2. In this study, where 
five different classification algorithms (LR, DT, RF, SVM and KNN) 
were compared in the experiments, the following steps were 
taken for each target variable: 

• Without Feature Selection: Models have been trained and 
evaluated using the original, standardized dataset. This step 
shows the baseline performance of the algorithms. 

• With Feature Selection: Models have been trained and 
evaluated using the dataset with the top 10 features selected. 

 

Figure 2. Flowchart of the system 

The models’ performances have been assessed prior to and 
following the implementation of feature selection. A potentially 
confusing point in the study is that the dataset has two targets. 
Supervised machine learning algorithms have been used in the 
study. Therefore, to measure the classification performance, the 
dataset must first be trained. In this study, the dataset is trained 
separately for each target and the classification results are 
recorded. The dataset has been split into training and testing sets 
with a 70:30 ratio. 

Initially, the baseline performance of the classification models 
without applying feature selection has been evaluated (Table 3). 
The performance metrics for predicting 'Robot_ProtectiveStop' 
and 'grip_lost' using all available features indicated that the RF 
classifier exhibited the highest accuracy for both target variables 
(0.9848 for target 'Robot_ProtectiveStop' and 0.9898 for 
'grip_lost' target), with DT and kNN also showing strong 
performance, particularly in terms of precision and recall. On the 
other hand, LR is the classifier with the lowest accuracy rate 
(0.7344 for target 'Robot_ProtectiveStop' and 0.7308 for 
'grip_lost' target). 

A correlation matrix is a statistical tool that demonstrates the 
strength and direction of a relationship between many variables. 
Figure 3 shows the correlation matrix for the features in the 
dataset considered in this study. When this matrix is examined, it 
is seen that there is a positive correlation between 
Temperature_J1 and Temperature_J2, while there is a negative 
correlation between Temperature_J1 and Current_J2. 

After this stage, experiments focus on feature selection. Each 
feature selection method is applied to the dataset for each target. 
When feature selection methods are applied, the top 10 features 
with the highest priority for Robot_ProtectiveStop and grip_lost 
targets are given in Table 4. 

Although the application of RFE slightly reduces the performance 
of the classifiers, the success of RF is particularly good (Table 5). 
While DT and RF are the classifiers least affected by RFE, other 
classifiers are more affected. While the accuracy rates of the DT 
classifier are 0.9767 for the ‘Robot_ProtectiveStop’ target and 
0.9371 for the ‘grip_lost’ target, the accuracy rates of the RF are 
0.9767 and 0.9596, respectively. Among the five classifiers, the 
classifier that is most affected by RFE and whose performance 
decreases the most is SVM. 

The classification performances obtained after applying Chi-
Square are given in Table 6. When the table is examined, it is seen 
that significantly different results are obtained compared to 
Table 5. While this difference is positive for all classifiers except 
SVM, it can be said that SVM should be avoided as a classifier if 
Chi-Square is to be used for feature selection. The highest 
performance is observed when classification is performed with 
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RF (0.9842 for the ‘Robot_ProtectiveStop’ target and 0.9885 for 
the ‘grip_lost’ target). 

Figure 4 shows a comparison of the achieved accuracy rates. This 
figure can also be considered a summary of Table 3, Table 4, and 
Table 5. The accuracy rates of RF in all situations are quite 
remarkable. 

By focusing on the most relevant features in this study, not only 
high accuracy rates are achieved, but also the computational 
complexity and training time are reduced, making the models 
more efficient for real-time applications. 

 

Table 3.  Experimental Results Before Feature Selection 

Target Model Accuracy Precision Recall F1-Score AUC 

Robot_ProtectiveStop 

LR 0.7344 0.7004 0.8103 0.7513 0.7351 

DT 0.9710 0.9622 0.9800 0.9710 0.9711 

RF 0.9848 0.9729 0.9971 0.9849 0.9849 

SVM 0.9258 0.9043 0.9508 0.9270 0.9261 

KNN 0.9647 0.9369 0.9957 0.9654 0.9650 

grip_lost 

LR 0.7308 0.7316 0.7357 0.7337 0.7307 

DT 0.9592 0.9489 0.9714 0.9600 0.9591 

RF 0.9898 0.9862 0.9937 0.9900 0.9898 

SVM 0.8742 0.8611 0.8947 0.8776 0.8740 

KNN 0.9533 0.9232 0.9895 0.9552 0.9530 

Table 4.  Selected Features After RFE and Chi-Square 

After RFE After Chi-Square 

Robot_ProtectiveStop grip_lost Robot_ProtectiveStop grip_lost 
Temperature_T0 Current_J0 Temperature_T0  Temperature_J5  
Temperature_J1 Temperature_T0 Temperature_J1   Temperature_J3  
Current_J2 Temperature_J1 Temperature_J2   Temperature_J4   
Temperature_J2 Current_J2 Tool_current  Temperature_J2   
Temperature_J3 Current_J3 Temperature_J5   Temperature_J1   
Temperature_J5' Temperature_J3 Temperature_J3   Temperature_T0   
Speed_J0  Temperature_J4 Temperature_J4   Tool_current   
Speed_J3  Current_J5 Current_J1   Current_J1   
Speed_J5 Speed_J3 Current_J2   Current_J2   
Tool_current Tool_current Current_J3   Current_J5   

Table 5.  Experimental Results After Feature Selection (RFE) 

Target Model Accuracy Precision Recall F1 AUC 

Robot_ProtectiveStop 

LR 0.6552 0.6341 0.7183 0.6736 0.6558 

DT 0.9562 0.9438 0.9693 0.9564 0.9563 

RF 0.9767 0.9626 0.9914 0.9768 0.9768 

SVM 0.8569 0.8161 0.9180 0.8640 0.8575 

KNN 0.9110 0.8773 0.9536 0.9139 0.9114 

grip_lost 

LR 0.6823 0.7250 0.5955 0.6539 0.6830 

DT 0.9371 0.9272 0.9498 0.9383 0.9370 

RF 0.9596 0.9489 0.9721 0.9604 0.9595 

SVM 0.7634 0.7885 0.7252 0.7555 0.7638 

KNN 0.9019 0.8695 0.9477 0.9069 0.9016 

Table 6.  Experimental Results After Feature Selection (Chi-Square) 

Target Model Accuracy Precision Recall F1 AUC 

Robot_ProtectiveStop 

LR 0.7156 0.7109 0.7322 0.7214 0.7496 

DT 0.9647 0.9559 0.9747 0.9652 0.9646 

RF 0.9842 0.9726 0.9967 0.9845 0.9988 

SVM 0.6115 0.5911 0.7378 0.6564 0.6979 

KNN 0.9567 0.9221 0.9981 0.9586 0.9834 

grip_lost 

LR 0.7165 0.7182 0.7081 0.7131 0.7988 

DT 0.9595 0.9489 0.9708 0.9597 0.9595 

RF 0.9885 0.9855 0.9915 0.9885 0.9994 

SVM 0.5928 0.6590 0.3766 0.4793 0.6736 

KNN 0.9524 0.9171 0.9944 0.9541 0.9838 
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Figure 3. Correlation Matrix 

 

Figure 4. Comparison of the classifiers 
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4. Conclusions 

Recurrent operational failures in manufacturing systems require 
careful consideration. Both the temporary interventions and the 
prolonged malfunctioning states incur excessive time and 
financial cost. In this study, a machine learning based model for 
system failure prediction is built by using the values of electrical 
currents, temperatures, speeds across joints, gripper current, and 
operation cycle count of the robot system. Predictive 
maintenance of the machinery is effectively managed by the 
proposed study. 

Our study demonstrated the significant impact of feature 
selection on the performance of classification models used for 
predictive maintenance in industrial applications. Although there 
are decreases in the accuracy, precision, recall, F1 score and AUC 
values of the classifiers after applying RFE, the least decrease is 
in the RF classifier. On the other hand, the results obtained after 
the application of Chi-Square are different from the results 
obtained after the application of RFE. When Chi-Square is used, 
the classifiers of DT and RF are as successful as the results before 
feature selection. In this study, the Chi-Square test has been used 
as a tool to assess the importance of features and select those 
with the most significant impact on the target variable. It has 
proven effective in identifying key features that enhance model 
performance, demonstrating the utility of the Chi-Square test in 
feature selection. 

As shown in experiments, the structure of DT and RF made it 
inherently more robust, thus benefiting more from feature 
selection techniques. Our findings highlight feature selection as a 
crucial preprocessing step that reduces computational 
complexity and training time, making the models more suitable 
for real-time applications.  

Since the dataset used is a newly shared and not yet discovered 
dataset, the results obtained in the study are important in terms 
of comparison with future studies. Additionally, our study 
underscores the need for careful feature selection in industrial 
applications of machine learning. In the future studies, the 
performances of other feature selection methods, such as 
principal component analysis, could be explored and the 
experiments could be extended using other types of industrial 
data and failure modes. Additionally, integrating domain 
knowledge into the feature selection process could further 
enhance model performance and reliability. 
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