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Abstract. This study explores the formation of polynomials of at most degree

n using the first n+1 terms of the Jacobsthal and Jacobsthal-Lucas sequences

through Lagrange interpolation. The paper provides a detailed examination of
the recurrence relations and various identities associated with the Jacobsthal

and Jacobsthal-Lucas Lagrange Interpolation Polynomials.

1. Introduction

As is well known, Fibonacci numbers have been prominently featured in applied
sciences. There have been many studies on Fibonacci numbers and their gener-
alizations over the centuries. Lucas numbers, which share the same recurrence
relation but have different initial conditions from Fibonacci numbers, have many
relationships with the Fibonacci numbers. Both Fibonacci and Lucas numbers are
sequences of second-order recurrence relations. There are many sequences of the
same order, some of which include Pell, Jacobsthal, Pell-Lucas, and Jacobsthal-
Lucas sequences. Among the generalizations of the Fibonacci sequence, the Tri-
bonacci sequence has a third-order recurrence relation. Some sequences with a
third-order recurrence relation are the Narayana, Perrin, and Padovan sequences.
The purpose of this study is to establish a relationship between the Lagrange in-
terpolation with the Jacobsthal sequences.
Jacobsthal numbers have attracted a lot of interest due to their intriguing char-
acteristics. Jacobsthal and Jacobsthal-Lucas numbers appear respectively as the
integer sequences A001045 and A014551 from [21, 22]. The Jacobsthal sequence
{Jn}n≥0 is

Jn+2 = Jn+1 + 2Jn.(1.1)
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with the initial elements J0 = 1 and J1 = 1. First few terms of the sequence {Jn}
are

1, 1, 3, 5, 11, 21, 43, 85, 171, 341.

The Jacobsthal-Lucas sequence {jn}n≥0 is

jn+2 = jn+1 + 2jn.(1.2)

with the initial elements j0 = 2 and j1 = 1. First few terms of the sequence {jn}
are

2, 1, 5, 7, 17, 31, 65, 127, 257, 511.

Some studies related to the sequences {Jn} and {jn} can be found in [1–12, 14–
16, 18, 19, 23]. The characteristic equation of the recurrences {Jn} and {jn} is

x2 − x− 2 = 0(1.3)

where the roots of the equation (1.3) are

x1 = 2 and x2 = −1

in order for,

x1 + x2 = 1, x1 − x2 = 3 and x1x2 = −2.

The Binet-like formulas of the sequences {Jn} and {jn} are

Jn =
2n − (−1)n

3
(1.4)

and

jn = 2n + (−1)n,(1.5)

respectively. Some interrelationships are

Jn + jn = 2Jn+1(1.6)

3Jn + jn = 2n+1(1.7)

The Lagrange interpolating polynomial is essentially a rephrased version of the
Newton polynomial that eliminates the need to calculate divided differences. La-
grange interpolation is beneficial because it is effective for data points that are
unevenly spaced along the independent variable. In the realm of numerical anal-
ysis, interpolation refers to the method of identifying the most suitable function
based on certain given points. The most basic form of interpolation uses a poly-
nomial. This implies that for a set of specified points, there is a polynomial that
intersects all these points. This polynomial approximates the underlying function
closely. One technique for polynomial interpolation is the Lagrange interpolation
method [20].

Let Pn be the set of all real-valued polynomials of degree at most n defined over
the set R of real numbers, given that n is a nonnegative integer. The basic interpo-
lation problem is as follows: identify a polynomial p0 ∈ P0 such that p0(x0) = y0,
given x0 and y0 in R. This can be solved by using the formula p0(x) ≡ y0. Exam-
ining the subsequent, more general problem is the primary purpose [13].

Let n ≥ 1, and assume that xi for i = 0, 1, . . . , n are distinct real numbers (i.e.,
xi 6= xj for i 6= j), and yi for i = 0, 1, . . . , n are real numbers. We want to find
pn ∈ Pn such that pn(xi) = yi for i = 0, 1, . . . , n.

There exist polynomials Lk ∈ Pn for k = 0, 1, . . . , n, such that
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Lk(xi) =

{
1 if i = k,

0 if i 6= k,

for all i, k = 0, 1, . . . , n. Furthermore,

pn(x) =

n∑
k=0

Lk(x)yk

satisfies the interpolation conditions mentioned above. In other words, pn ∈ Pn

and pn(xi) = yi for i = 0, 1, . . . , n. For each fixed k, 0 ≤ k ≤ n, Lk is required to
have n zeros at xi for i = 0, 1, . . . , n and i 6= k. Thus, Lk(x) is of the form

Lk(x) =

n∏
i=0
i 6=k

x− xi

xk − xi
.

Once these basis polynomials are constructed, the Lagrange interpolation polyno-
mial can be expressed as follows:

pn(x) =

n∑
k=0

Lk(x)yk =

n∑
k=0

 n∏
i=0
i6=k

x− xi

xk − xi

 yk.(1.8)

Based on these statements, Mufid and at al. showed that a polynomial of degree n
at most can be created from the first n + 1 terms of the Fibonacci sequence using
Lagrange interpolation, and that this Fibonacci Lagrange Interpolation Polynomial
(FLIP) can be obtained both recursively and implicitly [17].

In this study, we first investigate the formation of polynomials of degree at most
n using the first n + 1 terms of the sequences {Jn} and {jn}es via Lagrange inter-
polation. Then, we present a detailed examination of the recurrence relations and
various identities associated with the Jacobsthal and Jacobsthal-Lucas Lagrange
Interpolation Polynomials.

2. The Lagrange interpolation of the Jacobsthal sequences

Before we commence the interpolations of the sequences {Jn} and {jn}, we will
plot these sequences on the xy−coordinate system. Let’s denote the Jacobsthal
point as pn = (n, Jn) and the Jacobsthal-Lucas point as qn = (n, jn), representing
the points associated with the n−th terms of the sequences {Jn} and {jn}, respec-
tively. For illustration, the points of the sequences {Jn} and {jn} from n = 0 to
n = 5 are depicted in Figure 1.
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Figure 1. The points of the sequences {Jn} and {jn}

We define Jn(x) as the polynomial constructed using the Lagrange interpolation
from the points jk for k ∈ {0, 1, . . . , n}. Specifically, we interpolate using the points
(xk, yk) = (k, Jk). Accordingly, with xk = k and yk = Jk in equation (1.8), we write

Jn(x) =

n∑
k=0

 n∏
i=0
i6=k

x− i

k − i

 Jk.(2.1)

The factors (k − i) in equation (2.1) can be simplified as follows.

n∏
i=0
i 6=k

(k − i) = (−1)n−k(n− k)!k! = (−1)n−k
(
n

k

)
n!(2.2)

Upon incorporating equation (2.2) into equation (2.1), we obtain:

Jn(x) =
1

n!

n∑
k=0

(−1)n−k
(
n

k

) n∏
i=0
i 6=k

(x− i)

 Jk.(2.3)

For instance, we can obtain Jn(x) for n = 1, 2, 3, 4 using equation (2.3) as follows:

J1(x) = 1,

J2(x) = x2 − x + 1,

J3(x) = −1

6

(
2x3 − 12x2 + 10x− 6

)
,

J4(x) =
1

24

(
6x4 − 44x3 + 114x2 − 76x + 24

)
.

In Figure 2, the graphs of the above polynomials are displayed. Recall that
Jn(k) = Jk for k ∈ {0, 1, . . . , n}.
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Figure 2. Graphs of J1(x), J2(x), J3(x), and J4(x)

Similarly, the interpolation of the Jacobsthal-Lucas sequence is expressed as:

n(x)ג =
1

n!

n∑
k=0

(−1)n−k
(
n

k

) n∏
i=0
i 6=k

(x− i)

 jk.(2.4)

For instance, we can obtain n(x)ג for n = 1, 2, 3, 4 using equation (2.4) as follows:

(x)1ג = −x + 2,

(x)2ג =
1

2

(
5x2 − 7x + 4

)
,

(x)3ג = −1

6

(
7x3 − 36x2 + 35x− 12

)
,

(x)4ג =
1

24

(
17x4 − 130x3 + 331x2 − 242x + 48

)
.

In Figure 3, the graphs of the above polynomials are displayed. Recall that
n(k)ג = jk for k ∈ {0, 1, . . . , n}.
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Figure 3. Graphs of ,(x)1ג ,(x)2ג ,(x)3ג and (x)4ג

We shall establish a leading coefficient theorem for Jn(x), before obtaining more
formulas for it.

Theorem 2.1. The leading coefficients of Jn(x) and n(x)ג are

(−1)n+1Jn
n!

and

(−1)n+1jn
n!

,

respectively.

Proof. The leading coefficient of Jn(x) is equal to 1
n!

∑n
k=0(−1)n−kJk

(
n
k

)
. Thus, we

just have to demonstrate that
n∑

k=0

(−1)n−kJk

(
n

k

)
=

1

3

n∑
k=0

(−1)n−k
(
2k − (−1)k

)(n
k

)

=
1

3

[
n∑

k=0

(−1)n−k2k
(
n

k

)
−

n∑
k=0

(−1)n−k(−1)k
(
n

k

)]

=
1

3
[(2− 1)n − (−1− 1)n] (by identity (1))

=
(−1)n+1

3
[2n − (−1)n]

= (−1)n+1

[
2n − (−1)n

3

]
= (−1)n+1Jn

Similarly, the leading coefficient of n(x)ג is found to be
(−1)n+1jn

n!
. �
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3. Recurrence relations of the Jn(x) and n(x)ג

In this part, we will derive the additional formulas for Jn(x) and .n(x)ג It’s
remarkable that Jn(x) and n(x)ג can be constructed recurrence relations, much like
the sequences {Jn} and {jn} respectively.

Consider the polynomials Jn+1(x) and Jn(x). For each i ∈ {0, 1, 2, . . . , n}, we
have Jn+1(i) = Jn(i). In other words, the polynomials Jn+1(x) and Jn(x) intersect
at n + 1 points. Consequently, we can express the relationship as follows:

Jn+1(x)− Jn(x) = a · x(x− 1) · · · (x− n),

where a denotes the leading coefficient of Jn+1(x). As a results, when Pn(x) =
x(x− 1) · · · (x− n),

Jn+1(x) = Jn(x) +
(−1)nJn+1

(n + 1)!
Pn(x)

is a recursive formula.
By successively applying the recursive formula for Jn(x), Jn−1(x), . . ., J2(x), we

derive the following implicit formula:

Jn+1(x) = J1(x) +

n∑
i=1

(−1)iJi+1

(i + 1)!
Pi(x)

which simplifies to

Jn(x) =

n∑
i=1

(−1)i−1Ji
i!

Pi−1(x).(3.1)

Similarly, the recurrence relation of the n(x)ג is derived as:

n(x)ג = −2x + 2 +

n∑
i=1

(−1)i−1ji
i!

Pi−1(x).(3.2)

Some relationships between recurrence relations (3.1) and (3.2) are as follows:

1.

Jn(x) + n(x)ג = −2x + 2 + 2

n∑
i=1

(−1)i−1Ji+1

i!
Pi−1(x)

2.

3Jn(x) + n(x)ג = −2x + 2−
n∑

i=1

(−2)i

i!
Pi−1(x)

Theorem 3.1. The Binet-like formulas of the recurrence relations of the Jn(x) and
n(x)ג are, respectively,

Jn(x) =

n∑
i=1

1− (−2)i

3i!
Pi−1(x)

and

n(x)ג = −2x + 2−
n∑

i=1

(−2)i + 1

i!
Pi−1(x).

Proof. It is easily proven using the equalities of (1.4) and (1.5). �
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4. Conclusion

This study investigated the formation of polynomials of degree at most n using
the first n+1 terms of the sequences {Jn} and {jn} through Lagrange interpolation.
The article provided a detailed examination of recurrence relations and various
identities associated with Jacobsthal and Jacobsthal-Lucas Lagrange Interpolation
Polynomials.

The interpolation polynomials of the sequences {Jn} and {jn} offer valuable tools
that reflect the properties and structure of these sequences. These polynomials can
be used to determine the value of the independent variable x corresponding to a
given function value, even when the parameters are not evenly spaced.

These results lay a foundation for future research, opening new avenues to ex-
plore the applicability of these important number sequences and their interpolation
polynomials in broader fields. Particularly, there is potential for further use and
development of these polynomials in areas such as image processing, numerical
analysis, and other engineering applications.
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