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INTRODUCTION

Glycosylation of the proteins starts with transferring 
the common N-glycan precursor to the growing pep-
tide in the lumen of endoplasmic reticulum. The pre-
cursor (2 GlcNAc, 9 Man, 3 Glc) is attached in the amide 
nitrogen of the asparagine residue in the β-glycosidic 
linkage (GlcNAc β1-Asn) by oligosaccharyltransferase. 
Maturation reactions continue in endoplasmic retic-
ulum and Golgi lumens by the successive actions of 
glycosidases and glycosyltransferases. The structure of 
the common glycan precursor changes. These enzymes 
cause the formation of high mannose-, hybrid-, and 
complex- types of N-linked oligosaccharides (Figure 
1) (1-3). The branched structures of complex- and hy-
brid-type N-glycans are the carrier for Sia. 

Many carrier proteins for sialylated N-glycans are pres-
ent within the structure of the plasma membrane 
and extracellular matrix. The effects of sialylation on 
the structure/function of a glycoprotein is dependent 
on the localization of the Sia on the glycoprotein (4). 
Sialylated glycans significantly changes during devel-
opment depending on the manner of cell and tissue 
type (5). Light and heavily sialylated plasma membrane 
glycoproteins are responsible for different functions. 
Transmembrane adhesive proteins (cadherins and inte-
grins), voltage-gated ion channels (for Na+, K+ and Ca+2) 
and many ligand-activated receptors (for EGF and oth-
ers) are examples of heavily sialylated membrane gly-
coproteins. Cadherins are responsible for attachment 
to neighboring cells and provide a strong intercellular 
adhesion (6). Integrins mediate attachment to the ex-
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tracellular matrix and transmit the signals across the plasma 
membrane in both directions (7). Voltage-gated ion channels 
are largely distributed in cell membranes and regulate mem-
brane permeability for Na+, K+ and Ca+2 ions. Excitable cells in 
the nerve, skeletal and cardiac muscles play a significant role 
in regulating electrical excitability. In comparison with other 
membrane glycoproteins voltage-gated ion channels contain 
larger amount of Sia molecules (8). 

Voltage-gated Na+ channels (Nav) are responsible for initiation, 
conduction and termination of the action potential in excitable 
cells. Sias alter Nav gating activity in an isoform-specific manner. 
The number and location of sialylated chains and their attached 
pore forming or auxiliary subunits change the activity of Nav 
(9,10). The comparison of N- and O- linked Sia contributions on 
channel gating is found to be similar (11) but, Sia and polySia 
have different effects on gating of the Nav (12). Slight changes 
in channel function may cause several cardiac disorders (13).

Voltage-gated potassium channels (Kv) are responsible for re-
polarization of excitable cells (14). They contain significant 
amounts of Sias (8,15). Negative charges of Sias on N- or O- 
glycans cause conformational changes in the voltage-sensing 
domains but their effects on the channel gating mechanism 
don’t appear the same (16). Cell surface expression of potassi-
um channel Kv1.3 was investigated in tissue culture conditions 
on CHO pro 5 cells. Preventing N-glycosylation of Kv1.3 caused 
a significant decrease in its surface protein level. Supplementa-
tion of GlcNAc, L-fucose and Sia to the culture medium promot-
ed Kv1.3 surface protein expression. Supplementation of GlcNAc 
lead to an increase in the degree of branching in the N-glycan 
core of Kv1.3. The increase in branching degree caused a de-
crease in internalization of Kv1.3 protein, but at the same time 
an increase in it’s half-life on the cell surface (17). It is known 
that congenitally reduced sialylation causes altered gating of 
voltage gated Na+ and K+ channels, but the impact of reduced 
sialylation on cardiac electrical signals is not well known (18).

G-protein-coupled and ligand-activated receptors are other 
examples of sialylated membrane glycoproteins. In G-pro-
tein-coupled receptors, N-glycosylation and Sia have a role in 
the stabilization of the receptor dimers participating with disul-
fide bonding (19). Among the GFRs, EGFR is the most studied 
receptor, tyrosine kinase (20). For downstream signaling, the 
first necessity is the binding of the ligand, EGF, to its receptor. 
EGF-binding causes conformational changes of EGFR and it 
forms dimers. Dimerization leads to intracellular tyrosine kinase 
activation and subsequently auto-phosphorylation (21). EGFR 
bears twelve N-linked glycosylation sites on the extracellular re-
gion (22) and is heavily glycosylated (23). Sialylation diminish-
es EGFR activity by preventing its dimerization (24). Inhibition 
of sialylation on N-glycosylation is made by removing the Asn 
420 and 579-linked glycans which causes ligand-independent 
dimerization (25). As well as, sialidase treatment promotes EGFR 
signaling (23). It is clear that sialylated N-linked glycans can af-
fect the conformational stability of the channel and receptor 
proteins.

The presence of N-glycans on these heavily sialylated glycopro-
teins is important in cell physiology. They dynamically change 
by specific glycosyltransferases and glycosidases. In this way, 
biological events are regulated by covering or uncovering cer-
tain glycan sequences for recognition of specific lectins (galec-
tins and siglecs) (26). Galectins with affinity for β-galactoside 
(Galβ1-4GlcNAc, LacNAc) form complexes with N-glycans on 
the cell surface of glycoproteins. They don’t require a specific 
receptor and can bind with any of the suitable oligosaccharides 
from the cell surface or extracellular matrix (27). Galectin lattice 
regulates diffusion, selection, activation, arrest of T-cells, recep-
tor kinase signaling and functionality of membrane receptors, 
glucose and amino acid transporters (28), and cell growth and 
differentiation (29).

Galectin-glycoprotein lattices control the organization of a plas-
ma membrane domain like lipid rafts (30-33). Galectin lattices 
regulate lateral mobility of integrins (34), junctional stability of 
N-cadherins (32), receptor distribution at the cell surface (35), 
turnover of endocytic receptors (33), and intracellular signaling 
pathways (31,36-38). Galectins exhibit a remarkable functional 
diversity that participates in developmental processes, such as 
cell differentiation and pathophysiology, (39) cell adhesion and 
motility, regulation of immune homeostasis, and recognition 
of glycans on pathogens (26,28,40). It has been proposed that 
Galectin-glycoprotein lattices at the cell surface function as an 
“on and off switch” that regulates cell proliferation, differentia-
tion, and survival (33). It appears that the cells may change cel-
lular growth, differentiation, function, and probably pathologic 
transformation by altering the galectin glycoprotein lattice (35). 

STRUCTURE, BIOSYNTHESIS AND FUNCTION OF SIALIC ACIDS

Sialic acids (Sias) are a large family of nine carbon monosaccha-
ride sugars. The most common Sia is N-acetylneuraminic acid 
(Neu5Ac). Neu5Ac is the biosynthetic precursor for all other 
members of the family. It is usually found in a six-membered 

Figure 1. Precursor and basic types of N-glycans. The common 
core structure is shaded
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ring configuration and the positions of carbon (C) 7-9 stay out-
side the ring as a glycerol side chain. C-1 has a carboxyl group, 
which is ionized at physiological pH to give a negative charge. 
C-5 determines the type of the four “core” Sia molecules. Pres-
ence of the N-acetyl group at the C-5 is known as Neu5Ac. Hy-
droxylation of the N-acetyl group at the C-5 produces N-gly-
colylneuraminic acid (Neu5Gc). De-acetylation of the N-acetyl 
group to an amino group forms neuraminic acid (Neu). The 
presence of a hydroxyl group at the C-5 produces 2-keto-3-de-
oxynonic acid (KDN) (41-44). Various substitutions (O-acetyl, 
O-methyl, O-sulfate and O-lactyl groups) of one or more of the 
hydroxyl groups at the 4-, 7-, 8- and 9- carbon positions of these 
“core” molecules form different modifications. Nearly fifty mod-
ifications exist in nature (42,45). 

The sialylation pattern of a cell is regulated by three group en-
zymes; Sia Synthase, Sialyltransferase, and Sialydase or Neur-
aminidase. Sia synthase localized in the nucleus is responsible 
for the synthesis and availability of the activated Sia substrate, 
CMP-Sia. Sialyltransferase adds Sia during sialo-oligosaccha-
ride biosynthesis using CMP-Sia as a donor, in trans-Golgi. The 
sialidase family separates from Sia during degradation of sialo-
glycoconjugates in lysosomes or endosomes (44). The specific 
sialylated pattern of a cell is produced by the activities of these 
three enzyme groups.

The C-2 on a Sia structure can form α glycosidic linkage with 
another sugar. The most common Neu5Ac can be found in four 
distinct linkage types to penultimate sugars. There are twenty 
known genes in mice and humans with encoding sialyltrans-
ferases for synthesizing these four major linkages. Some sial-
yltransferases (ST3GAL subfamily with six members) add Sia 
in an α2,3-linkage to Galactose (Gal), whereas others (ST6GAL 
subfamily with two members and ST6GALNAC subfamily with 
six members) add Sia α2,6-linkage to either Gal or GalNAc 
(N-acetyl-galactosamine). The fourth type of Sia linkage is di-
rected by the polysialyltransferase family (ST8SIA subfamily 
with six members) which adds an α2,8 linked Sia to another Sia 
(4,46,47). Sialidase or neuraminidase enzymes are classified in 
four different groups, according to their subcellular localization, 
in mammals. The NEU1, NEU2, NEU3 and NEU4 enzymes are lo-
cated in lysosomes, cytosol, plasma membranes, and lysosome/
mitochondria (48-50). Combinations of different glycosidic link-
ages with the various substitutions produce structural diversity 
in hundreds of Sia molecules (51). This wide structural diversity 
of Sia molecules contributes to the enormous diversity of car-
bohydrate parts of proteins and lipids in cell membranes and 
secreted molecules (45).

Bio synthesis of Sia begins with the epimerization and sub-
sequent phosphorylation of UDP-GlcNAc (Uridine Di Phos-
phate-N-Acetylglucosamine) to ManNAc-6-P (N-acetylman-
nosamine-six-phosphate), in cytosol. The bi-functional enzyme, 
UDP-N-acetylglucosamine 2-epimerase /N-acetylmannosamine 
kinase (GNE) catalyze these reactions. The enzyme Neu5Ac-9-P 
synthase combines with ManNAc-6-P and phosphoenol py-
ruvate to form Neu5Ac-9-P. Following dephosphorylation of 

Neu5Ac-9-P by Neu5Ac-9-P phosphatase, Neu5Ac is formed and 
transported into the nucleus. In the nucleus, Neu5Ac is changed 
to CMP-Neu5Ac by CMP-Neu5Ac synthetase and transported to 
the Golgi apparatus by the CMP-Sia transporter (16,52). Only 
the activated sugar is transported into the Golgi apparatus. In 
trans Golgi lumen, activated Sia serves as a substrate for sial-
yltransferases. Linkage-specific sialyltransferases add the Sia as 
a terminal unit to a selected glycan chain, depending on the 
availability of the preferred acceptor chain sequence (53,54). 

The terminal location of Sia on the glycan chain facilitates the 
cell surface interactions between the cells and the immediate 
environment. These acidic monosaccharides act directly as a bi-
ological target for many pathogenic microorganisms. For exam-
ple, human parainfluenza virus initiates an infection through Sia 
recognition and binding in a glycosidic linkage specific manner. 
α2,3- linked and α2,6- linked Sia residues are receptors for the 
type-1 and type-2 parainfluenza virus, respectively (55). In addi-
tion, Sias have a masking role, covering penultimate sugars. Sia 
covers penultimate galactose residue that is recognized by an 
asialoglycoprotein receptor. In a similar way, Sia covers penulti-
mate LacNAc (Galβ1-4GlcNAc) that is recognized by a β galacto-
side recognition lectin, it is known as galectin. These two main 
functions of Sia participates in the regulation of many import-
ant events during development, such as cell communication, 
differentiation, aging, adhesion, migration, self/non-self-dis-
crimination and many cell signaling events.

EMBRYONIC STEM CELL SIALYLATED N-GLYCANS

Stem cells are undifferentiated cells with a high capacity for 
self-renewal (proliferate indefinitely) and pluripotency (differ-
entiated into three germ layers) (56). Human embryonic stem 
cells (hESCs) and human induced pluripotent stem cells (hiPSCs) 
are valuable resources for cell replacement therapies. Determi-
nation of specific markers are required for effective utilization of 
stem cells and elimination of tumor initiating cells (57). For this 
purpose, cell surface glycan variations have been investigated 
to detect the most appropriate markers.

A study to determine the characteristic surface of glycosylation 
patterns was conducted with labeled lectin applications on gly-
cosidase digested or nondigested cells by microscopic meth-
ods (58-60). Useful impressions of mainly terminal and some 
internal monosaccharide residues of oligosaccharide chains 
were obtained from these studies. Advanced analytical tech-
niques including nuclear magnetic resonance (NMR) and mass 
spectrometry (61) and newly developed microarray technology 
(62,63) have provided additional structural information about 
stem cell glycosylation.

In human stem cells, the major pluripotency-specific N-glyco-
sylation is made up of a high mannose-type and a biantennary 
complex-type core structure as determined with MALDI-TOF 
mass spectrometry NMR spectroscopy (61), flow cytometry 
and immunohistochemistry, (58, 64,65) and fluorescein labeled 
lectin staining (59). Upon induction of pluripotency, the occur-
rence of a significant increase in the high mannose-type N-gly-
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cans (66,67) indicate that it is in an immature stage of N-gly-
coproteins (68,69). Biantennary complex-type core structures 
bear type 2 N-acetyl lactosamine (LacNAc, Galβ1-4GlcNAc) 
chains in hESCs (61). However, Type 1 LacNAc (Galβ1-3GlcNAc) 
is a characteristic feature of hiPSCs (62,68). The LacNAc chains 
are terminated with α2,6- and α2,3 linked Sias, but the α2,6- Sia 
linked higher in hESCs. In iPSCs, a linkage type of Sia changed 
from α2,3 to α2,6. However, large branched poly-LacNAc chains 
present in mouse ESCs suggest that it might participate in cell 
survival by increasing the interaction among membrane mole-
cules (70). Complex terminal fucosylation is also characteristic of 
the N-glycosylation structure of hESCs (61,62,68). One terminal 
bears an α1,2-linked fucose residue (Fucα1-2Galβ1-4GlcNAc) 
while the other terminal bears an α1,3- or 1,4-linked fucose res-
idue producing a Lex structure (Gal β1-4 (Fucα1-3) GlcNAc). In 
addition, the most abundant fucose linkage in hESCs N-glycans 
is a core α1,6- linked fucose residue which links to the asparag-
ine-linked GlcNAc residue.

MESENCHYMAL STEM CELL SIALYLATED N-GLYCANS

Mesenchymal stem cells (MSCs) are adult multipotent progenitor 
cells. They differentiate into mesenchymal cell lineages. Adipose 
tissue, bone marrow, and umbilical cord blood are harvested 
sources of MSCs (71,72). MSCs are considered very valuable cell 
sources for stem cell-based therapy because of the probability of 
teratoma formation in ESCs and iPSCS (73,74). The ability to ad-
here to plastic surfaces is one of the main characteristics of MSCs 
and it is also useful for glycoengineering studies (71). 

High mannose-type N-glycans are characteristic for undiffer-
entiated bone-marrow derived MSCs from humans (73,75) and 
equines (76). Biantennary N-glycans are detected in adipose tis-
sue-derived hMSCs (72). Hybrid type N-glycans are found to be 
the less abundant type of N-glycosylation in undifferentiated 
and adipogenically differentiated hMSCs (73,75). In mice, an ex-
traordinary branch is demonstrated by expression of GnT-V (the 
corresponding gene is Mgat5) in neural progenitor cells that 
have a self-renewal ability and multipotency (77). This is amaz-
ing because GnT-V is associated with oncogenic differentiation 
(78,79). Although a suggested function of GnT-V is related with 
cell growth and migration by regulating integrins (80) in cancer 
cells, expressed GnT-V in neural progenitor cells may perform 
a similar function during neural development and brain inju-
ry conditions (77). GnT-V and its reaction products appeared in 
proliferating cells. In differentiated cells, they were markedly 
reduced (77).

Linear poly-LacNAc chains terminated with Sia are the char-
acteristic structures in undifferentiated hMSCs (75,73). Using 
mass spectrometry-based quantitative techniques, different 
amounts of α2,3-linked Sia obtained from the hMSCs expanded 
on different surfaces were detected. These results reveal that 
α2,3- sialylation participates in controlling hMSC multipotency 
by regulating cell adhesion (81). It is known that MSCs change 
differentiation potentials depending on the stiffness or chemi-
cally modified substrates (82,83). In addition, bone marrow-de-

rived hMSCs, osteogenic precursors, and poly-LacNAc chains 
are terminated with α2,3- linked Sia (75). 

Comparisons of lectin binding intensity of early (with differ-
entiation ability) and late (without the ability to differentiate) 
passages of adipose derived hMSCs, using high density lectin 
microarray, demonstrated that early passage cells show stron-
ger binding to specific lectins for α2,6-linked Sia (74). Bone mar-
row-derived hMSCs and cartilage tissue-derived chondrocytes 
also showed this similar binding activity, but no binding activ-
ity is indicated between α2,6-linked Sia and its specific lectins 
in human dermal fibroblasts. Using HPLC analysis combined 
with MS spectrometry, α2,6-linked Sia on sialylated N-glycans 
is detected at a higher percentage (24-28 %) in early passage 
cells than late passage cells (13-15 %) in adipose tissue-derived 
hMSCs (72). These results suggest that α2,6-sialylation is a mark-
er associated with the differentiation potential in stem cells 
(74,72). The presence of α2,3- and α2,6 linked Sia on bone mar-
row derived macrophages and osteoclast precursors (MSCs) is 
demonstrated with lectin labeling in mouse (84). α2,3- linked 
Sia was detected throughout osteoclastogenesis, but α2,6-
linked Sia disappeared at the terminal stage of differentiation. 
Desialylated cells, particularly α2,6-linked Sia-deficient cells do 
not develop into multinuclear osteoclasts. This suggests that 
α2,6-linked Sia may be involved in osteoclast differentiation 
and regulating the cell fusion process (84).

Fucosylated N-glycans of human bone marrow MSCs bear at 
least two or more fucose residues, one of which is a core fucose 
that is α1,6-linked to the asparagine-linked GlcNAc residue of 
the N-glycans (73). Using a cell microarray procedure, a core 
fucose addition to α1,3 terminal fucose and complex terminal 
fucose were detected on N-glycans MSCs of canine and ovine 
species (76). Finally, according to a study performed on veter-
inary species in bone marrow derived MSCs, terminal Sia link-
age shows variability in a species-specific manner. For example, 
while the MSCs of canines contain more α2,3- linked Sia, equine 
MSCs have a higher density of α2,6- linked Sia (76).

DIFFERENTIATED CELL SIALYLATED N-GLYCANS

The dynamics of expression on cell surface glycans vary widely 
depending on cell types and stages of development. Charac-
teristic changes during healthy or pathologic differentiation 
processes have been reported (85-87). Some glycan structures 
on ESCs, iPSCs and MSCs disappear and a new glycan profile 
occurs on differentiated cells. Alterations appear mainly in core 
branching, in poly-LacNAc extension and in terminal units, such 
as in Sia and fucose content.

High mannose-type N-glycans represent immature forms of 
N-glycans (65). In differentiated cells, the quantity of high man-
nose-type N-glycans decreases and complex/hybrid types of 
N-glycans start to appear in abundance (61,66,88). N-acetylglu-
cosaminyltransferases (GlcNAcTs, GnTs) (as productions of Mgat 
genes) conduct the production of Tri and tetraantennary and 
more branched, complex N-glycans in Golgi apparatus. Sequen-
tial activity rules for the GnTs were established by Brockhausen 
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et al. (89). These enzymes are responsible for the branching of 
the core structure in vitro (90-94).

“GnT-1 acts before all other GnTs and is responsible for the con-
version from the high mannose-type to the hybrid and com-
plex-types of N-glycans (Figure 2) (91). It catalyzes the forma-
tion of β1-2 linkage by transferring GlcNAc sugar to the Man 
residue on the α1-3 arm of the core structure with 5 mannose 
(Man). α-mannosidase II removes two Man residues on the α1-6 
arm and a substrate for the GnT-II and GnT-III enzymes form. 
GnT-II controls the conversion of a hybrid type to complex type 
structures and catalyzes the β1-2 linkage by adding GlcNAc to 
the α1-6 arm on the core. Activity of GnT-II is a prerequisite for 
the GnT-IV, GnT-V and GnT-IX enzymes (95) that are responsible 
for cancer progression. GnT-III catalyzes the formation of β1-4 
glycosidic linkage by transferring GlcNAc to the first Man resi-
due on the core (Figure 2). The formation of a bisecting GlcNAc 
prevents subsequent processing and elongation of N-glycans 
(90) which inhibits the catalytic activity of the GnT-II, GnT-IV, 
GnT-V and FUT8 enzymes that are responsible for branching of 
the core structure in vitro (89,91). 

Differentiated healthy cells contain the most abundant 
2-branched complex structures on their N-glycoproteins. A few 
3- and 4- branched glycans are also present (3). The distribution 
of PHA.E lectin ligands (58,59) and N-glycan signals (61) indicate 
the presence of bisecting GlcNAc on the N-glycan core of differ-
entiated cells. During neural differentiation of murine iPSCs and 
ESCs, the bisecting N-glycan is upregulated and suggested as 
a differentiation marker (96). In caco-2 cell differentiation, the 
levels of bisecting N-glycan increase (88). Similarly, human in-
duced pluripotent stem cell-derived cardiomyocytes also con-
tain bisecting GlcNAc in relative abundance (97).

During primary human hepatocyte differentiation from hESCs, 
the first bi and triantennary complex N-glycans were found in 
hepatocyte-like cells (98). They were asialylated, monosialylat-
ed or fully galactosylated N-glycans. When they differentiated 
to primary human hepatocyte, bisialylated biantennary and 

trisialylated triantennary N-glycans were dominant. Similar 
changes observed during monocyte-derived macrophage dif-
ferentiation show an increase particularly in triantennary gly-
cans (99). One (Y101) of the mesenchymal stromal cell clones 
showed an abundant amount of complex N-glycan, during 
differentiation into osteoblasts (100). In addition, another mes-
enchymal stromal cell clone (Y202), which cannot differentiate 
into osteoblasts, showed a similar reduction in oligomannose 
glycan content when incubated in an osteogenic medium. 
Based on these observations, it suggests that expressed N-gly-
cans, upon induction of differentiation, may be important for 
self-renewal rather than for cell fate determination (100). 

Several N-glycans that have bisecting GlcNAc carry LacNAc re-
peats and a core fucose sugar in their glycomic profiles (101). 
The presence of the bisecting GlcNAc on the cell surface gly-
coproteins affects their interaction with galectins and siglecs, 
probably altering N-glycan conformation (92). 

Characteristic changes occur on terminal sialylation and fuco-
sylation of branched N-glycans during differentiation. Hybrid 
type N-glycan branches in a transition embryoid body bear 
both α2,6- and α2,3- linked Sia in humans (61). Differentiated 
chondrocytes have α2,6- linked Sias. The expression ratio of 
α2,6- to α2,3- linked Sias determines the differentiation status 
of chondrocytes (102). α2,6- sialylation decreases in adipogene-
sis (103) and osteoclastogenesis (84) in mouse but desialylated 
cells do not differentiate into osteoclasts despite the normal ex-
pression of an osteoclast marker.

During brain development, completely differentiated cells bear 
mostly α2,3- linked Sia as compared with α2,6- linked Sia, in 
rats (104). This development is explained with a linkage shift 
from α2,6- linked Sia to α2,3- linked during mouse brain devel-
opment (105). This linkage shift may affect the biological func-
tions of endogenous lectins, such as galectins and siglecs. The 
binding activity of galectins is greatly diminished when LacNAc 
chains are capped with α2,6- linked Sia (106,107).

N-GLYCAN-GALECTIN LATTICES

Galectins are soluble proteins and found within the cell, cell sur-
face, and ECM as well as, in biological fluids. (108). They recognize 
and bind to β galactoside (Galβ1-4GlcNAc, LacNAc) sequences. 
LacNAc sequences are seen on poly-LacNAc extensions of tri- and 
tetraantennary N-glycan chains on cell membrane glycoproteins. 
In general, affinity of galectins to poly-LacNAc sequences is high-
er when compared with the affinity of LacNAc alone. However, 
galectin types (Gal-1, Gal-2, and Gal-3) display some differences 
in glycan binding properties. For example, only Gal-3 is bound to 
proximal LacNAc of poly-LacNAc extensions (109).

Galectin binding is influenced by N-glycan branching, LacNAc 
content and the balance of α2,3- and α2,6- linked terminal Sia 
(38). While Gal-1 is connected to only α2,3- sialylated poly-Lac-
NAc, Gal-3 is connected to both α2,3- and α2,6- sialylated gly-
cans (109). α2,6- sialylation alters binding of specific galectins, 
being consistent with biological function differences (35).

Figure 2. Two- three- and four branched N-glycan core structures, 
modified from Taniguci and Korekane (2011) with permission
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A detailed study on oligosaccharide binding specificity of 
galectins was performed using frontal affinity chromatography 
(106). Three (OH) groups on LacNAc, i.e. 4-OH and 6-OH of Gal, 
and 3-OH of GlcNAc are required for binding of galectins. In 
complex type N-glycans, no galectin could bind if 6-OH of Gal 
linked to a Sia. However, it did show that modified glycans such 
as α1-2 Fuc, α1-3- Gal, α1-3- GalNAc and α2,3- Sia have a prefer-
ence for galectins (106).

Galectins released from cells are concentrated on the cell sur-
face and generate galectin-glycan complexes. Gal-3, existing 
as a monomer in solution, produces a pentameric structure 
through self-associated intermolecular interactions and me-
diates crosslinking of proteins, forming a lattice organization 
(108, 110,111).

IMPACTS OF SIALIC ACID DEFICIENCY AT CELL SURFACES

Disorders at any stage of Sia biosynthesis, inactivation of the 
functional enzymes, such as GNE and activity of endogene si-
alydases cause Sia deficiency on cell surfaces. GNE (UDP-Glc-
NAc2-epimerase/ManNAc kinase) catalyzes the first two steps 
of Sia biosynthesis. Inactivation of GNE causes early embryonic 
lethality in mice (112-114). The GNE-deficient ESCs are not suc-
cessful in the formation of embryoid bodies in the first day of 
culture. However, following the addition of a Sia, GNE-deficient 
ESCs form normal embryoid bodies (115). Proliferation of ESCs 
is correlated with GNE-expression and the cellular Sia concen-
tration (113).

Comparison of the developmental profiles of wild type and GNE 
knockout mice indicates that GNE plays an important role in the 
development of excitable tissues (114). Genetic defects of the 
GNE cause GNE myopathy, a disease related with progressive 
muscle atrophy and weakness. Hyposialylation and production 
of reactive oxygen species, ROS, are correlated with muscle at-
rophy but an increase in sialylation causes a reduction in ROS. 
Depending on this relation, it suggests that Sia has a role as 
a ROS scavenger in skeletal muscles (116). In GNE myopathy, 
lectin binding and MS analysis show that GNE-deficient cells 
contain low levels of sialylation and distinct N-glycans, differ-
entiated in branching of core structure and in poly-LacNAc ex-
tensions. These N-glycan chains display a binding affinity with 
galectin 1 (117). 

The effect of desialylation was first described during a clearance of 
serum glycoproteins (118,119). At the same time, a hepatic galac-
tose specific receptor (asialoglycoprotein receptor) from a rabbit 
liver was characterized (120) and a similar clearance mechanism 
for the desialylated cells, for erythrocytes in the rabbit was report-
ed for the first time (121,122). According to a postulated hypoth-
esis; a time-dependent loss of Sia residues uncovers the penulti-
mate galactose residues. An asialoglycoprotein receptor, a lectin 
(123-125), in rat liver and peritoneal macrophages, recognizes and 
captures these galactose residues.

This receptor, a C-type lectin, is involved in the recognition and 
binding of terminal galactose on the glycan chains and is re-

sponsible for the clearance of asialoglycoproteins, and redeter-
mined as an Ashwell-Morell Receptor (126). In a similar way, Sia 
residues of membrane glycoconjugates control the lifespan of 
erythrocyte. Desialylation of glycophorin (127) is responsible 
for the clearance of aged erythrocytes (128). Enzymatically desi-
alylated erythrocytes in vitro show that the desialylation rate of 
aged cells is low but sufficient to lead to their capture by mac-
rophages (124). Comparisons of quantified Sia on young and 
old cells claim that the decrease in Sia with cell aging may act 
as a senescent cell marker, capable of triggering their selective 
removal (129). Insufficient sialylation can causes rapid clearance 
of the cells. On the contrary, a long half-life is related to high 
level terminal Sia on the cell surfaces. This point is extremely im-
portant to the development of therapeutic glycoproteins (130).

In vitro desialylated platelets are also cleared rapidly from circu-
lation similar to erythrocyte clearance (131,132). Platelets that 
lost the Sias during circulation are cleared by the hepatic endo-
cytic Ashwell-Morell Receptor (133-136). 

Sia depletion in aged cells is displayed in the human diploid fi-
broblastic cell line, TIG3. The young cells grow at a higher rate 
than aged cells in vitro conditions (137). The results obtained 
from lectin blot analysis of membrane glycoproteins show 
that the α2,6- sialylation, but not α2,3- sialylation, of N-gly-
cans decreases markedly in the aged cells when compared to 
the young cells. The gene expression of the α2,6- sialyltrans-
ferase I (ST6GalI), which transfers Sia to the galactose residue 
of N-glycans, decreases in the aged cells which supports the 
results mentioned above. Some valuable information was ob-
tained using lectin microarray. Human skin samples that taken 
from different age groups were tested for the glycan changes 
on diploid fibroblasts. α2,6- sialylated glycans, in particular, 
were found to differ between elderly and fetus derived cells 
at the early passage. In addition, both cell types exhibited se-
quentially decreasing α2,3- sialylated O-glycan structures (138). 
Comparisons of early and late passage cells by fluorescence ac-
tivated cell sorting analysis using lectins, show that a decrease 
in sialylation and an increase in sialidase NEU1 occurs, in aged 
cells. Myofibroblast differentiation was inhibited by the reduc-
tion of sialylation. Using a sialidase inhibitor, a demonstration 
of restored myofibroblast differentiation in late passage fibro-
blasts provides evidence that Sias decrease in aging cells (139).

Additional evidence for the masking role and decreased capac-
ity in aged cells of Sia were obtained from insect tissue, protho-
racic glands, in Galleria mellonella (Lepidoptera). Prothoracic 
glands secreting ecdysone hormone in larval instars, are larval 
structures that disintegrate gradually by hemocytic autolysis in 
the pupal period and then disappear completely in the adult life 
of the insect. The presence of Sia on prothoracic glands was de-
termined by electronic ionization mass spectroscopy, electron 
microscopy, and spectrophotometry (140). For investigation of 
the role of Sia during the degeneration process of prothorac-
ic glands, neuraminidase digested larval glands (young cells) 
were incubated within the hemolymph collected from the 
same age larvae. Light and electron microscopic observations 
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showed an incomplete capsule formation by the accumulation 
of hemocytes around desialylated gland cells but not in the 
control group (141). Desialylated larval cells were recognized as 
a foreign structure by hemocytes. According to the tested idea, 
a progressive loss of Sia at distinct developmental stages un-
covers the penultimate sugar in glycan chains, allowing for the 
adhesion of hemocytes during the degeneration period of the 
glands. The encapsulation and degeneration of experimentally 
created desialylated larval cells, like the behavior observed in 
pupal cells, constitute the evidence for the masking role of Sia 
in the larval period (141). Observation of similar results around 
experimentally created desialylated larval surfaces in nervous 
tissue (142), in corpus cardiacum-corpus allatum complex (143) 
and in testis (144) indicates that Sia acts as a mask for hemocyt-
ic receptors during the larval period under normal conditions. 
These studies provide an explanation for the functionality of Sia 
in insects, confirming that Sia is a universal molecule.

CONCLUSION

N-glycan patterns of the plasma membrane glycoproteins con-
tribute a large amount to the glycosylation of the glycocalyx. 
Like a tag, the total N-glycan pattern on the cell surface produc-
es specific markers for the types of embryonic differentiation 
and aging stages and physiological and pathological state of 
the cells. The determination of cell surface markers is essential 
for basic studies and clinical applications. For the effective use 
of stem cells in cell therapy, it is necessary to know the plurip-
otency and multipotency associated glycans, for discrimination 
from other differentiated cells (145-147).

An important function of N-glycan-galectin lattices is to regu-
late the differentiation mechanism. Lattice structures forming 
between LacNAc repeats on N-glycan branches, and galectins 
determine plasma membrane glycoprotein residency time by 
inhibiting endocytosis of them (31,34). It has been suggested 
that galectin mediated glycoprotein assemblies are responsible 
for the signaling, adhesion, migration, and proliferation in many 
cell types. N-glycan-galectin lattices that affect the activities of 
membrane glycoprotein can control the decision between cell 
growth and arrested growth by regulating receptor turnover 
(26,28,29,39). Since dysregulation of the N-glycan-galectin lat-
tices is responsible for many chronic diseases, it should be tar-
geted for development of new strategies in medical treatment.
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