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Abstract: Binding energies of Ar2 and H2 dimers have been investigated 
using correlation consistent cc-pVXZ and aug-cc-pVXZ basis sets together 
with Coupled Cluster with Singles and Doubles with Perturbative Triples 
(CCSD(T)) method. Two point extrapolations to complete basis set limit has 
been applied to reduce basis set incompleteness (BSIE) error. Discrepancy 
of our theoretical binding energy values from current experimental binding 
energy values in literature both for Ar2 and H2 dimers observed to be less 
than 1kcal/mol. 

  
  

Bağlanma Enerjilerinin Doğru Tanımlanması için Uygun Bir Baz Setinin Seçilmesi: Bir 
İlk-İlkeler Yöntemi Çalışması 

 
 

Anahtar Kelimeler 
Bağlanma enerjisi,  
Korelasyon-Uyumlu baz setleri, 
Elektronik yapı metodları,  
İkili ve üçlü pertürbatif 
çiftlenimli küme yöntemi 

Özet: Ar2 and H2 dimerlerinin bağlanma enerjileri korelasyon- uyumlu cc-
pVXZ ve aug-cc-pVXZ baz setleri kullanılarak ikili ve üçlü pertürbatif 
çiftlenimli küme yöntemi ile incelendi. Baz seti noksanlık hatalarını 
azaltmak için tam baz limitine iki noktalı ekstrapolasyon tekniği uygulandı. 
Elde edilen teorik bağlanma enerjilerinin literatürdeki mevcut deneysel 
bağlanma enerjilerinden farkının hem Ar2 hem de H2 dimerleri için 
1kcal/mol’den daha az olduğu gözlendi. 

  
 
1. Introduction 
 
Over the years there has been significant 
improvements in computer technology which has 
boosted up theoretical calculations carried out in 
physics, chemistry and material science and 
engineering [1-5]. Electronic structure calculations 
which try to understand the characteristics of system 
by solving Schrödinger equation comprehend most of 
the theoretical calculations in physics and chemistry 
[6-12]. However, exact solution of Schrödinger 
equation is only possible for a limited number of 
problems like particle in a box, hydrogen atom and 
harmonic oscillator. If the system of interest is 
composed of two and more electrons, we need to take 
into account electron correlations in the system 
which increase computation time by N3 where N is 
the number of electrons. Schrödinger equation can 
only be solved approximately. Density Functional 
Theory which is one of the distinguished electronic 
structure theory is implemented under different 
softwares like VASP, Quantum Espresso, Orca, 
Gaussian, Siesta i.e., [13-16]. These different 
softwares use different basis sets. For instance VASP 

and Quantum Espresso use plane-wave based basis 
sets [17-22], ORCA and Gaussian softwares use 
gaussian basis sets [23-26]. Siesta uses numeric-atom 
centered orbital basis sets [27-28]. 
 
In all electronic structure methods accuracy of 
Schrödinger equation is determined by the exhange 
correlation method and basis set. So we can say that 
there are two types of errors in electronic structure 
calculations. One is due to exchange correlation 
method and other is due to basis set. If the exchange 
correlation method selected for calculations is from 
Hartree Fock (HF) to CCSD(T) computation time 
increases significantly with respect to number of 
basis functions. So we have to find a balance between 
computation time and accuracy. However we should 
keep in mind that there are many basis sets in the 
literature. Among the most common basis sets are 
Dunning's and Huzinaga's correlation consistent 
basis sets [29-36], John A. Pople's basis sets [37-43], 
Peterson's basis sets [44-46] and Jan Erik Almlöf's 
basis sets [47-49]. In this paper we have used 
Dunning's correlation consistent basis sets together 
with CCSD(T) method. Since CCSD(T) is an advanced 
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correlated method which reduces the error to less 
than 1 kcal/mol, it is accepted as gold standart 
method among all advanced methods. So, using this 
method we observed the effect of cc-pVDZ, cc-pVTZ, 
cc-pVQZ, cc-pV5Z, aug-cc-pVDZ, aug-cc-pVTZ and 
aug-cc-pVQZ basis sets on binding energies of Ar2 
and H2 dimers. Due to the fact that Ar and H are one 
of the most abundant elements in nature, we have 
made CCSD(T) calculations to reveal the effects of 
different correlation consistent basis sets on binding 
energies of these dimers. Accurate description of 
binding energies of dimers is a challenging case due 
to overlapping between basis function of one atom 
with the basis function of the other atom which 
causes a basis set superposition error [50, 51]. 
 
Binding energies of dimers and molecules have been 
intensively studied both experimentally and 
theoretically [52-68]. To mention some of these 
studies, Deible et al. studied the binding energy of the 
beryllium dimer using Quantum Monte Carlo method 
[64], Ian S.O Pimienta studied Ionic Dimers [52], E. 
Miliordos et al. carried out a benchmark study of the 
pi-pi binding energy in the benzene dimer [53], A.A 
Zadoroshnaya et al. studied ionization-induced 
structural changes in uracil dimers and their 
spectroscopic signatures [57], P. A Pieniazek et al. 
studied Electronic Structure of the benzene dimer 
cation [60], Lee T.S studied accurate ab initio binding 
energies of alkaline earth metal clusters [61]. 
 
So we have investigated the effect of different basis 
sets on binding energies and reported our results at 
CCSD(T) level. CCSD(T) is the gold standard method 
that gives the most accurate results so by doing this 
we tried to choose the best performing basis set that 
will have a low computation cost. Although 
computation time for dimers is not a big problem if 
we go beyond dimers and use more complex 
molecules computation time increases drastically. 
Thus selection of an appropriate basis set for 
calculations that will enable the desired accuracy can 
reduce computation time significantly.  
 
2. Material and Method 
 
For all calculations we used ORCA software [16]. As 
in all electronic structure methods, the first task is to 
solve electronic Schrödinger equation exactly. Time-
independent Schrödinger equation is given as; 
 

 �−ℏ
2

2𝑚𝑚
𝛻𝛻2𝑖𝑖 + 𝑉𝑉(𝑟𝑟)�𝛹𝛹 = 𝐸𝐸𝐸𝐸 (1) 

 
To have detailed information about the system 
wavefunction should be exactly known. Wave 
function in Schrödinger equation can be written as a 
linear combination of basis functions; 
 
 𝛹𝛹𝑖𝑖 = ∑ 𝑐𝑐𝜇𝜇𝜇𝜇𝑏𝑏

𝜇𝜇 𝛷𝛷𝜇𝜇 (2) 
 

here Ψ is wavefunction, c is a constant and ø is basis 
function. Wavefunction can be obtained self-
consistently from Equation 2. However to obtain 
exact value of wavefunction ''b'' in Equation 2 should 
go to infinity (∞) which means that we should 
include infinitely many basis functions in our basis 
set. Unfortunately this is computationaly impractical 
because computation time scale as N3 where N is 
number of basis functions. Since we can not have 
infinitely basis functions in our basis set we always 
encounter a basis set incompleteness error (BSIE). 
One popular way to alleviate this BSIE is to use 
complete basis set extrapolation techniques. In this 
paper we used Halkier's two point extrapolation 
technique [70]. Two point extrapolation scheme is 
given as; 
 
 𝐸𝐸[𝑋𝑋] = 𝐸𝐸[∞] + 𝐴𝐴

𝑋𝑋3
 (3) 

 
 𝐸𝐸[𝑌𝑌] = 𝐸𝐸[∞] + 𝐴𝐴

𝑌𝑌3
 (4) 

 
using Equations 3 and 4 real equation of CBS can be 
derived as; 
 
 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸𝑋𝑋𝑋𝑋[∞] = 𝐸𝐸[𝑋𝑋]𝑋𝑋3−𝐸𝐸[𝑌𝑌]𝑌𝑌3

𝑋𝑋3−𝑌𝑌3
 (5) 

 
where X and Y are maximum angular momentum 
numbers in basis set. For example if we do 
extrapolations from DZ to TZ, we take X as 3 and Y as 
2. 
 
The most important term in electronic Schrödinger 
equation is exchange correlation term since it can not 
be determined analytically for systems having two 
and more electrons. So, one has to apply an 
approximation method. In this paper, we have 
choosen Coupled Cluster Singles and Doubles with 
Perturbative Triples method which is a post-Hartee-
Fock method. When applying this method to medium 
sized molecules results are satisfying. After obtaining 
CCSD(T) total energies for the system we have 
obtained binding energies of H2 and Ar2 dimers using 
conventional binding energy fomula; 
 
 ΔEbinding=Emolecule-2Eatom (6) 
 
where E is the total energy )[69]. 
 
3. Results  
 
Figure 1 (a)-(e) shows the absolute binding energy 
values with respect to cc-pVXZ (X=D, T, Q and 5) and 
aug-cc-pVXZ (X= D, T and Q) basis sets for Ar2 dimer. 
All electronic structure calculations are carried out at 
CCSD(T) level. Extrapolated binding energies for 
Figures 1(a)-(e) are 0.0049, 0.0054, 0.005, 0.0067 
and 0.0064 eV respectively.  
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Figure 1. Absolute binding energy (eV) of Ar2 dimer with 
respect to cc-pVDZ and cc-pVTZ in Figure 1(a), cc-pVTZ and 
cc-pVQZ in Figure 1(b), cc-pVQZ and cc-pV5Z in Figure 1(c), 
aug-cc-pVDZ and aug-cc-pVTZ in Figure 1(d), aug-cc-pVTZ 
and aug-cc-pVQZ in Figure 1(e). Extrapolation to CBS limit 
is from DZ to TZ, TZ to QZ, QZ to 5Z for 1(a)-(c) and from DZ 
to 3Z and 3Z to QZ for aug-cc-pVTZ and aug-cc-pVQZ for 
1(d)-(e). 

Figure 2 shows the binding energies of Ar2 with 
respect to correlation consistent cc-pVDZ, cc-pVTZ, 
cc-pVQZ, cc-pV5Z, aug-cc-pVDZ, aug-cc-pVTZ and 
aug-cc-pVQZ basis sets. Binding energies obtained 
with these basis sets are 0.0024, 0.003.5, 0.0043, 
0.0047, 0.0072, 0.0069 and 0.006. 6 eV respectively. 
From these observations the best available basis sets 
for description of binding energy of Ar2 are cc-pVTZ 
and cc-pVQZ since energy discrepancy from aug-cc-
pVQZ is less than 2 meV. Computationaly the most 
demanding basis set is aug-cc-pVQZ. If cc-pVTZ and 
cc-pVQZ basis sets are used, and 3Z to QZ two point 
extrapolation is applied, computation time decreases 
significantly compared to basis sets used in figures 1 
(c)-(d). Results obtained with this basis sets are in 
chemical accuracy limit (1kcal/mol or 43 meV) since 
experimental binding energy of Ar2 dimer is 12 meV 
[65,71]. 
 

 
Figure 2. Absolute binding energy (eV) of Ar2 dimer with 
respect to cc-pVXZ (X=D, T, Q, 5) and aug-cc-pVXZ (X=D, T, 
Q) basis sets. 
 
Figures 3 (a)-(e) show the absolute binding energy 
values of H2 dimer with respect to different 
correlation consistent basis sets of Dunning [29]. 
From Figures 3 (a) to (e) CBS extrapolated values are 
obtained by applying DZ to 3Z, 3Z to QZ, QZ to 5Z two 
point extrapolations for cc-pVXZ (X=D, T, Q, 5) and 
DZ, TZ and QZ extrapolations for aug-cc-pVXZ(X=D, T, 
Q) basis sets. Extrapolated binding energy values 
shown by CBS in Figures 3 (a)-(e) are 4. 39, 4. 01, 3. 
41, 3. 29 and 3. 26 eV respectively. 
 
Figure 4 shows binding energy of H2 dimer for cc-
pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, aug-cc-pVDZ, aug-
cc-pVTZ and aug-cc-pVQZ basis sets at CCSD(T) level. 
Binding energies calculated are 6. 09, 4. 89, 4. 38, 3. 
91, 3. 17 eV for cc-pVXZ (X=D, T, Q, 5) basis sets and 
3. 25 eV for aug-cc-pVXZ(X=D, T, Q) basis sets. 
Experimental binding energy of H2 dimer is 4. 40 
eV[71] so if we choose cc-pVDZ and cc-pVTZ basis 
sets and make extrapolations to complete basis set 
limit (CBS) from DZ to TZ we obtain a binding energy 
of 4,39 eV for H2. So theoretical value we obtained at 
CCSD(T) level is 0,01 eV less than experimental value. 
And we can also use cc-pVTZ basis sets which has a 
binding energy of 4,38 eV. If we use this basis set we 
do not need to make extrapolations. 
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Figure 3. Absolute binding energy (eV) of H2 dimer with 
respect to cc-pVDZ and cc-pVTZ in Figure 3(a), cc-pVTZ and 
cc-pVQZ in Figure 3(b), cc-pVQZ and cc-pV5Z in Figure 
3(c), aug-cc-pVDZ and aug-cc-pVTZ in Figure 3(d), aug-cc-
pVTZ and aug-cc-pVQZ in Figure 3(e). Extrapolation to CBS 
limit is from DZ to TZ, TZ to QZ, QZ to 5Z for 3(a)-(c) and 
from DZ to 3Z and 3Z to QZ for aug-cc-pVTZ and aug-cc-
pVQZ for 3(d)-(e). 

 
Figure 4. Absolute binding energy (eV) of H2 dimer with 
respect to cc-pVXZ (X=D, T, Q, 5) and aug-cc-pVXZ (X=D, T, 
Q). 
 
4. Discussion and Conclusion 
 
In summary, we have investigated the effect of 
different basis sets on binding energies and tried to 
find the best basis set for each dimer in terms of 
computation time and accuracy. In principle what we 
expect for a specific calculation is that the larger is 
the basis set we use the higher the accurate results 
we have. But, especially for large molecules, not for 
dimers computation time is also very important, 
because when deciding to use a basis set, 
computation time is an important constraint, so 
selection of a basis set of modest size that would give 
the desired accuracy for calculation is the main 
objective in electronic structure calculations. The 
need for these types of studies is indispensable since 
there is a huge number of basis sets in literature and 
they are growing exponentially. So, it is always a need 
to compare the performance of existing basis sets for 
a system and find the best performing basis set in 
terms of computation time and accuracy. And we 
believe that this paper will initiate more studies 
about different molecules and dimers that will shed 
light to computational chemists and computational 
physicists. The investigation of large molecules with 
different basis sets will be carried out in the future. 
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