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Abstract 

In this study, the capacity estimation of the lithium-ion battery was successfully proposed using the genetic algorithm-Kalman filter 
method. During the design phase of electrical devices, lithium-based batteries have begun to be preferred instead of wired electricity 
transmission due to flexibility, freedom of movement, and portability problems. In addition, from an environmental perspective, the 
use of electric vehicles has become more important than the use of internal combustion engine vehicles. In this study, the capacity 
estimation of the 18650 lithium-ion battery, which is the most preferred in electric vehicles, was made quickly and accurately. The 
performances of the Standard Kalman Filter and the Kalman Filter, whose parameters are determined by the Genetic Algorithm, were 
compared by estimating the battery capacity. By giving the results obtained by the Genetic Algorithm during the parameter search 
process, the most appropriate values and the important parameters of the Kalman Filter have been determined. The success of the 
proposed method is given by the experimental results. In the performance comparison, the success of the proposed method is given 
using RMSE, MSE, and R2 metrics. When the average of all experiments was calculated using the R2 metric, the Genetic Algorithm-
Kalman Filter approach achieved the best results in estimating the capacity of the 18650 lithium-ion battery, with a value of 0.999874. 

Keywords: Lithium-ion Battery, Genetic Algoithm, Kalman Filter, Capacity Estimation, Electric Vehicle  

 

Öz 

Bu çalışmada Lityum iyon bataryanın kapasite tahmini genetik algoritma-kalman filtre yöntemiyle başarılı bir şekilde yapılarak 
önerilmiştir. Elektrikli cihazların tasarım aşamasında esneklik, hareket özgürlüğü ve taşınabilirlik sorunlarından ötürü elektriği 
kablolu aktarım yerine lityum tabanlı bataryalar tercih edilmeye başlanmıştır. Ayrıca çevresel açıdan içten yanmalı motorlu araçların 
kullanımında ziyade elektrikli araçların kullanımı önem kazanmıştır. Bu çalışmada elektrikli araçlarda en çok tercih edilen18650 
lityum iyon bataryanın kapasite tahmini hızlı, sağlıklı bir şekilde yapılmıştır. Standart Kalman Filtre ve parametrelerinin Genetik 
Algoritma tarafından belirlendiği Kalman Filtre  ile batarya kapasite tahmini yaparak performansları karşılaştırılmıştır. Genetik 
algoritmanın parametre arama sürecinde elde ettiği sonuçlar verilerek en uygun değerler ile Kalman Filtrenin önemli 
parametrelerinin belirlenmiştir. Önerilen yöntemin başarısı deney sonuçlarıyla verilmiştir. Performans karşılaştırmasında RMSE, 
MSE, R2 metrikleri kullanılarak önerilen yöntemin başarısı verilmiştir. Tüm deneylerin ortalaması R2 metriği kullanılarak 
hesaplandığında, 18650 Lityum-iyon bataryanın kapasitesini tahmin etmede en iyi sonucu 0.999874 değeriyle Genetik Algoritma-
Kalman Filtresi yaklaşımı elde etmiştir. 
Anahtar Kelimeler: Lityum-iyon Batarya, Genetik Algoritma, Kalman Filtre, Kapasite Tahmini, Elektrikli Araç 

 

1. Introduction 

The long lifespan, high power density, and low maintenance costs 
of rechargeable lithium-ion batteries (LIBs) have brought them 
into the spotlight as a leading technology in the transportation, 
aerospace, and stationary energy storage industries. The 
shortage of super batteries has been felt due to transportation 
fuels and their environmental damage, which has recently caused 
a significant growth in the LIB market, thanks to great interest 
and high demand. Calculating the global market rate of LIBs [1], 
[2], [3], [4], [5] is difficult due to the nature of LIB values for two 
different markets, such as consumer electronics and electric 
vehicles. The combined market is expected to exceed 69 billion 
by 2022, growing at a compound annual growth rate of over 16%. 
Currently, the market is not yet fully developed and is still in its 
infancy. However, the high demand for electric vehicles provides 
more room for the LIB market to grow [6]. High LIB demand in 
the EV market will lead to 1 million LIB packages in 2030 and 1.9 

million in 2040. The total number of EOL LIB packages created 
between 2015 and 2040 will reach 21 million. End-of-life options 
need to be considered now, although LIBs in these vehicles are 
expected to last at least ten to twelve years, to ensure that the 
infrastructure is ready when recycling needs reach larger 
volumes [7]. The application of LIB storage systems in EVs 
inherently limits their full usability. Research has shown that LIB 
storage systems are particularly prone to excessive cost, 
uniformity, safety and durability issues. LIBs need to operate in a 
healthy and safe environment to ensure functional success. 
However, external factors can affect this, especially those 
involving largely undesirable temperature and voltage windows. 
This is a major issue, leading to critical vulnerabilities in batteries 
and degradation in battery performance [8].  

As the energy crisis and environmental problems increase, so 
does the increasing demand for energy. The development of the 
energy and power industry, such as lithium-ion batteries and 
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supercapacitors, is actively promoted by various industries to 
reduce carbon emissions and fossil energy consumption. 
Lithium-ion batteries are the preferred battery type in electric 
vehicles, mobile phones, power grids and other applications due 
to their high energy density, high output voltage, low self-
discharge rate, no memory effect and long service life. However, 
aging of Li-ion batteries is inevitable and is caused by a complex 
combination of internal reactions and external conditions. 
Battery capacity degradation is the most important process for 
external performance [9]. In actuality, batteries have shorter 
usage lifetimes due to performance deterioration, which includes 
capacity fading, an increase in internal resistance, and a drop in 
power capability. In addition, operating circumstances have a 
significant impact on battery aging [10]. In addition, accurate, fast 
and effective capacity estimation is critical for the efficient and 
high-performance use of the lithium-ion battery [11]. Because 
fast, accurate, reliable and healthy estimation of the capacity of 
electrical appliances and electric vehicles is of critical importance 
both in terms of environmental aspects and business profit. 

For these reasons, a solution is presented in this study to improve 
energy management in electrical devices where these batteries 
are used, thanks to the accurate and reliable determination of the 
capacity of 18650-type lithium-ion batteries. In this study, it was 
aimed to use the energy correctly by successfully estimating the 
capacity of four different batteries. In addition, the problem of 
determining the parameters of the Kalman filter, which is used to 
estimate the capacity and health status of the lithium-ion battery, 
has been solved using the Genetic Algorithm. With these results, 
it has been shown that 18650 lithium-ion batteries can be used in 
battery management systems by successfully estimating the 
capacity of 18650 lithium-ion batteries using the Genetic 
Algorithm-Kalman Filter method. 

2. Related Work 

Estimation of situations such as SOH, SOE, SOC, SOP, and Capacity 
is critical for reasons such as using the energy of the lithium 
battery efficiently and being able to predict the use of vehicles 
and devices. There are many methods for estimating these 
parameters such as Machine Learning, Coulomb Counting, Deep 
Learning [12], OCV, and Kalman filter. In one study, SOH and SOC 
estimation of a lithium-ion battery with a capacity of 1.3ah was 
performed. With the findings obtained from the experiments, the 
LSTM method achieved the lowest average error value of 0.58% 
in SOH estimation. In addition, the MNN method was proposed 
with the lowest average error value of 0.973% [13]. In another 
study, the SOH of a lithium-ion battery with a capacity of 
3000mah was estimated through experiments at different 
temperatures. Back Propagation Algorithm was used in the 
incremental capacity curve-based SOC prediction model. The 
proposed method achieved an average error of 1.16% [14]. In 
another study, SOH was estimated using the NASA data set. In the 
study, the prediction made by using double bi-directional long 
short-term memory (DBiLSTM) was recommended by achieving 
success with an error of RMSE 0.0084 [15]. In another study, SOH 
and RUL were estimated using the NASA and CALCE datasets. 
GBLS Booster, GBLS, BiLSTM, and CNN methods were used as 
estimation methods. According to the results obtained, the GBLS 
Booster method was recommended, achieving success with 
minimum error in SOH estimation of 0.3348% according to the 
Mean Absolute Percentage Error (MAPE) metric and Relative 
Error (RE) of 0.01% according to the RUL estimation [16]. In 
another study, SOH was estimated using the NASA dataset. For 
model training, the XGboost model is selected as the SOH 
prediction model and the B0005 features extracted by the 
specified method are used as input. The trained model then 

predicts the SOHs of B0006 and B0007. Experimental results are 
given by recommending the use of the LAOS-XGboost model to 
estimate the SOH. According to these results, according to 
prediction experiments, Xgboost models have achieved success 
levels higher than 97% according to the R2 metric [17]. 

3. Materials and Methods 

In this study, capacity estimation was made using the MATLAB 
programming language. Additionally, it was studied on a personal 
computer and a publicly accessible dataset.  

3.1. Experimental Data 

In this study, capacity estimation was made using a publicly 
available dataset known as the NASA dataset [18]. The relevant 
dataset has been edited separately for B0005, B0006, B0007 and 
B0018 batteries. Voltage, Current, Temperature, and Capacity 
columns have been arranged for each battery. Studies have been 
carried out on the method to estimate capacity by normalizing 
the data obtained and reducing the mathematical calculation 
burden. Since capacity estimation will be made on the NASA 
dataset using the MATLAB programming language, the dataset 
has been brought to the appropriate form. The battery was 
charged at 1.5A in the CC mode until the voltage hit 4,2V. For 
batteries 5, 6, and 7, the discharge was done at a CC level of 2A 
until the battery voltage dropped to 2.7V, 2.5V, and 2.2V, 
respectively. When the batteries hit a 30% decline in rated 
capacity, the trials were terminated [19]. The battery 
characteristics in this dataset are given in Table 1 [20]. 

Table 1. Characteristic features of the data set. 

Battery B005 B0006 B007 B0018 

Discharge Current (A) 2 2 2 2 

Rated Capacity (mAh) 2000 2000 2000 2000 

Cut-of Voltage 4.2/2.7 4.2/2.5 4.2/2.3 4.2/2.5 

Cycles 168 168 168 132 

3.2. Genetic Algorithm 

Natural selection serves as the inspiration for the Genetic 
Algorithm (GA), an optimization technique. This search algorithm 
is population-based and makes use of the idea of survival of the 
fittest. By using genetic operators on members of the population 
iteratively, new populations are created. The main components 
of GA are chromosomal representation, selection, crossover, 
mutation, and fitness function calculation. The GA process works 
like this. Random initialization is performed on a population (Y) 
with n chromosomes. Every chromosome in Y has its fitness 
calculated. A pair of chromosomes, designated as C1 and C2, are 
chosen from population Y based on their fitness value. To create 
an offspring, let's say O, a single-point crossover operator with 
crossover probability (Cp) is applied to C1 and C2. The created 
offspring (O) with mutation probability (Mp) is then subjected to 
a uniform mutation operator, producing O′. The new progeny O′ 
is assigned to a new population. Until the new population is 
complete, the current population will undergo selection, 
crossover, and mutation processes again. GA reaches the 
optimum solution by constantly changing the search process with 
mutation and crossover probabilities. Encoded genes can be 
modified by GA. GA can evaluate a large number of individuals 
and offer the best solutions. As a result, GA has international 
calling capability. Offspring created by crossing parental  
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Figure 1. Genetic Algorithm crossover process. 

chromosomes are likely to eliminate parental chromosomes 
containing fascinating genetic schemes. The crossover formula is 
given in Equation 1 [21]. 

𝑅 = (𝐺 + 2√𝑔)/3𝐺 (1) 

where G is the total number of evolutionary generations 
determined by population and g is the number of generations. By 
transferring genes between the parents, a crossover operator can 
produce new children and enhance the genetic makeup of 
individuals. The crossover is executed using a variety of methods 
[22]. Genetic data after the swap are given i. Both parents 
swapped tail sequence bits to breed their new offspring . 

3.3. Kalman Filter 

The Kalman Filter (KF), sometimes called Linear Quadratic 
Prediction, predicts the future state of a system based on its past 
and current states. Although KF is expressed as an equation, it is 
divided into two stages: update and prediction. In the forecasting 
phase, a forecast for the current state is obtained using a series of 
state forecasts from previous periods. This expected forecast is 
considered preliminary since it is based on previous forecasts 
and is not an observation for the current state of the system. In 
the update phase, previous predictions are combined with 
existing data to provide a prediction of the current and future 
states of the system.  

KF is a useful tool for system parameter estimation; under certain 
circumstances, it aims to decrease error covariance by 
minimizing noise in the estimate process.  It may be applied to 
the estimate of state changes in a variety of time-varying systems. 
It laid the groundwork for the advancement of modern control 
theory and real-time signal processing. KF has evolved beyond 
optimum state estimation to many other technical fields, 
including robotics, monitoring of targets, location, connection, 
data processing, computational imaging, voice signal processing, 
and earthquake forecasting. As a result, it has become one of the 
most widely used instruments in process optimization, control, 
and data [23].  

𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝑊𝑘−1 
(2) 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑉𝑘 

When studying time series, KF is an optimum estimator that 
offers a recursive answer. These unidentified states use a 
collection of zi process measurements to compute a set of xi. 
where W and V are specified as white noise with covariance QK 
and RK, respectively, and F is the state transition and the H is 
observation model. KF guesses the xk state based on a noisy 
measurement of zk, using the Equations  (2). The estimation of the 
prior state may be found in the equation 𝑥𝑘  𝑧𝑘  =  𝐻𝑘  𝑥𝑘  + 𝑣𝑘 . 
When all measurements are available until k − 1, the prior 
estimation (also known as prediction in KF) in time k, xk is state  

 

 

estimation. The prior state and error covariance are given in 
Equation 3. 

𝑥𝑘
− = 𝐹𝑘−1𝑥𝑘−1 

(3) 
𝑃𝑘

− = 𝐹𝑘−1𝑃𝑘−1
+ 𝐹𝑘−1

𝑇 + 𝑄𝑘 

Next state and error covariance are given in Equation 4. 

x̂𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘𝑥𝑘

−) 
(4) 

P̂𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) + 𝑃𝑘
− 

Equation 5 calculates the Kalman optimum result after 
forecasting the state and covariance using the results of earlier 
predictions. 

𝐾𝑘 = 𝑃𝑘
−𝐻𝐾

𝑇(𝐻𝑘  𝑃𝑘
−𝐻𝐾

𝑇 + 𝑅𝑘)−1 (5) 

The Kalman optimum result is subsequently given in Equation 6 
to utilized for updating the state estimate. 

x̂𝑘 = x̂𝑘 + 𝑘𝑘(𝑧𝑘 − 𝐻𝑘x̂𝑘) (6) 

Lastly, the covariance matrix is updated as shown in Equation 7, 
and I is the identity matrix. 

P𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)P𝑘 (7) 

Figure 2 shows the evaluation stages of the signal processing 
process of the Kalman filter. 

4. Results and Dicussion 

In this study, the dataset was edited and rearranged according to 
columns. The resulting edited data set consists of four columns. 
Additionally, a separate dataset file was created for all battery 
types. There are approximately 40.000 lines of data for each. In 
Table 2, the search range and values of covariance matrices, 
which have a significant place in the Kalman Filter of the Genetic 
Algorithm in this study, are given. Additionally, Kalman filter 
values obtained through trial and error are given. 

Table 2. Parameter values of both KF and GA-KF methods. 

Method Q R 

Standard KF 0.1 150 

Genetic Algorithm 

Search Find Search Find 

0-1 1 50-200 50 

The values obtained from the Kalman Filter using the Genetic 
Algorithm and the parameters obtained through normal trial and 
error were applied to the Kalman filter and their prediction 
performances were evaluated separately. The experimental 
results obtained are given in Table 3. While the value of 0.1 was
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Figure 2. Kalman filter signal processing operations. 

 

Figure 3. Specifications of batteries a-B005, b-B0006, c-B0007, B0018. 
 

determined by trial and error for the covariance matrix Q with 
the KF method, the prediction result obtained by applying this 
value to the Kalman filter is given in Table 3. When the KF method 
was applied to the B0005 battery data, a prediction error of  
3.807x10-5 was obtained according to the mean squared error 
(MSE) metric. In the B0006 battery, the error in estimation 

reached a value of 5.088x10-5 according to the MSE metric. When 
the B0007 battery was evaluated using the KF method, the 
estimated result was MSE 4.177x10-5 according to the MSE 
metric. When the B0018 battery was used, the error value in MSE 
estimation was 1.4931x10-4. The GA-KF method was obtained by 
finding the values of the Q and R matrices by the GA and applying 
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these values to the Kalman Filter. Successful results were 
obtained by successfully applying the GA-KF method to the edited 
B005, B0006, B0007, and B0018 battery data. 

Table 3. Estimation results of both KF and GA-KF methods 

  Metric 

Method Battery MSE RMSE R2 

GA-KF 

B0005 0.00000618 0.00248530 0.99993963 

B0006 0.00000825 0.00287315 0.99988473 

B0007 0.00000678 0.00260343 0.99993002 

B0018 0.00002426 0.00492530 0.99973969 

KF 

B0005 0.00003807 0.00617037 0.99962790 

B0006 0.00005088 0.00713289 0.99928957 

B0007 0.00004177 0.00646268 0.99956879 

B0018 0.00014931 0.01221937 0.99839777 

When the capacity estimation was made by applying the GA-KF 
method to the B0005 battery, an estimation error value of 
6.18x10-6 was reached according to the MSE metric. This value 
gave a more successful result than the value when the KF method 
was applied to the B0005 battery. When B0006 battery data was 
applied to the GA-KF method, it was more successful than the 
standard KF method, reaching a prediction error value of 
8.25x10-6 according to the MSE metric. When capacity estimation 
was made with the GA-KF method using B0007 battery data, it 
made a 6.78x10-6 error in estimation according to the MSE metric 
and achieved a more successful result than the KF method. When 
estimating the capacity of the lithium-ion battery using B0018 
battery data, the GA-KF method made a 2.426x10-5 prediction 
error based on the MSE metric, while the KF method made a 
1.4931x10-4 prediction error. It was observed that the GA-KF 
method made 1.2505x10-4 less estimation error than the KF 
method in estimating the capacity using the B0018 battery data 
according to the MSE metric. 

  

Figure 4. Result of Genetic Algorithm search. 

Figure 4 shows the search result when the Genetic Algorithm 
determines the appropriate parameters for the Kalman Filter. 
According to the results obtained, image b is the histogram image, 
while image a is the image of the fitness value. In Figure 4, graph 
b gives the number of individuals in each generation in the 
Genetic Algorithm, each expressing the appropriate solution, 

while graph a represents a situation that shows how close the 
individual is to the solution of the problem. While the x-axis of 
image A represents the completion of a cycle, this process is the 
process of the formation of new individuals and processes such 
as mutation. The mean fitness value expresses the average of the 
values offered by all individuals to the solution of the problem.  

Figure 5. Estimation of capacity of B0005 battery by GA-KF. 

Figure 5 shows the capacity estimation result of the B0005 
battery using the GA-KF method. The first graph shows the actual 
capacity value and the estimated value made by the GA-KF 
method, while the second graph shows the prediction graph of a 
specific zoomed-in region. As can be seen from the graph, the GA-
KF method achieved a prediction success rate of 99.993963% 
according to the R2 metric in the B0005 battery data. 

 

Figure 6. Estimation of capacity of B0006 battery by GA-KF. 

In Figure 6, capacity estimation was made with the GA-KF 
method using B0006 battery data. The prediction result obtained 
and the prediction result of the GA-KF method are given. GA-KF 
method achieved a prediction success rate of 99.988473% 
according to the R2 metric compared to real values. In addition, 
according to the RMSE metric, the GA-KF method achieved 
success by making a prediction error of 0.00287315. Due to the 
large amount of data, the second graph gives the zoomed 
prediction result of a certain region. 

 

 

a 

b 



DEU FMD 27(80) (2025) 313-320  

 318 

 

Figure 7. Estimation of capacity of B0007 battery by GA-KF. 

Figure 7 shows the prediction result obtained by using B0007 
battery data as prediction data for the GA-KF method. In addition, 
an attempt was made to make the difference more 
understandable by presenting a zoomed regional graph in the 
second line of the graph. According to the RMSE metric, the GA-
KF method made a prediction error of 0.00260343 compared to 
the actual capacity data. In addition, according to the R2 metric, 
the GA-KF method achieved a prediction success rate of 
99.993002% in capacity estimation in B0007 battery data. 

 

Figure 8. Estimation of capacity of B0018 battery by GA-KF. 

In Figure 8, capacity estimation is given by the GA-KF method 
using B0018 battery data. An attempt has been made to 
understand the difference between the prediction results of the 
GA-KF method and the actual capacity values. Additionally, a 
zoomed-in graph is given in the second line to better understand 
this difference. According to the RMSE metric, a prediction error 
of 0.00492530 was reached between the actual measured 
capacity values and the predicted values made by the GA-KF 
method. In addition, according to the R2 metric, a prediction 
success rate of 99.973969% was achieved between the actual 
value and the predicted value. 

 

 

Figure 9 shows the prediction result graph of the actual capacity 
value of the B0005 battery using the KF method. According to the 
results obtained, the prediction error reached 0.00617037 
according to the RMSE metric. 

Figure 9. Estimation of capacity of B0005 battery by -KF. 

In Figure 10, the capacity estimate made by the KF method using 
the B0006 battery data is given. A zoomed-in graphic is given in 
the bottom line to better understand the difference between the 
estimate and the real value. According to the RMSE metric, the KF 
method reached a prediction error of 0.00713289. In addition, 
according to the R2 metric, the KF method was successful in 
predicting the B0006 battery capacity with a value of 
99.928957%. 

 

Figure 10. Estimation of capacity of B0006 battery by -KF. 

Figure 11 shows the prediction result of the KF method using 
B0007 battery data. An attempt was made to better notice the 
difference by presenting a zoomed-in graph of the actual value 
and the prediction result. According to the RMSE metric, the KF 
method reached a prediction error of 0.00646268 when 
estimating the B0007 battery capacity value. Moreover, 
according to the R2 metric, it reached a prediction success value 
of 0.99956879. 
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Figure 11. Estimation of capacity of B0007 battery by -KF. 

Figure 12 shows the result of capacity estimation using the KF 
method using B0018 battery data. According to the results 
obtained, the difference between the predicted value and the 
actual value is presented in the graph in the second line. 
According to the RMSE metric, there was a prediction error of 
0.01221937 between the actual value and the predicted value. In 
addition, according to the R2 metric, the B0018 battery was 
successful between the actual value and the prediction result 
with a value of 0.99839777.  

 

Figure 12. Estimation of capacity of B0018 battery by -KF. 

While the GA-KF method's estimated result and real data are 
plotted in Figure 5, Figure 6, Figure 7, Figure 8, the KF method's 
estimated result and real values are plotted in Figure 9, Figure 10, 
Figure 11, and Figure 12. When the same battery data is 
compared, Figure 5 and Figure 9 should be compared. The same 
situation should be compared between Figure 6-Figure 10 and 
Figure 7-Figure 11 and Figure 8-Figure 12. For this reason, it is 
seen that the GA-KF method's estimate for the B0005 battery data 
in Figure 5 is more successful than the KF method's estimate in 
Figure 9 and has a graph closer to the real data. The graphs in the 
second row of the graphs give the zoomed-in version of a certain 
region of the graph in column 1. When the B0006 battery data is 
used, it is seen that the estimation result of the GA-KF method in 
Figure 6 is more successful than the estimation result of the KF 
method given in Figure 10. When the B0007 battery data is used, 
the estimation result of the GA-KF method is given in Figure 7. 

According to this result, a more successful result is achieved than 
the estimation made by the KF method in Figure 11. When the 
capacity estimation is made using the B0018 battery data, it is 
seen from the graph that the estimation result of the GA-KF 
method in Figure 8 is closer to the real value than the estimation 
result of the KF method in Figure 12. 

5. Conclusions 

The importance of lithium-ion batteries has increased with the 
decrease in the use of wired electricity in electric vehicles and 
electrical devices. Lithium-ion batteries are of critical importance 
in battery management systems when used in such devices and 
vehicles. Accurate capacity estimation is critical due to the 
features of this battery type such as protection from overcharge 
and discharge, efficient energy use, and healthy charging. In this 
study, Genetic Algorithm was used to determine the parameters 
of the Kalman Filter, which is frequently used in determining 
parameters such as SOH and SOE in lithium-ion batteries, in a 
convenient and fast way. The performances of the Kalman Filter 
parameters determined by trial and error and the Kalman Filter 
parameter values determined by the Genetic Algorithm were 
compared separately. Using four different battery data 
separately, their performances were compared according to MSE, 
RMSE, and R2 metrics. According to the average of all Kalman 
filter experiments, the GA-KF method achieved a prediction 
success of 0.999874 according to the R2 metric. When the average 
of all experiments was taken according to the R2 metric, there was 
a success difference of 0.065251% between the GA-KF method 
and the KF method. In another study using the CALCE battery 
dataset, A123 battery data was used for SOC estimation. The 
study estimated SOC using a temporal convolutional network 
(TCN) with a gated recurrent unit (GRU) that incorporated a 
multi-head self-attention mechanism (MHA) method based on 
the Robust Adaptive Kalman Filter (RAKF). According to the 
RMSE metric, the proposed method made less than 1% 
estimation error [24]. In this study, when the average of all 
experiments was taken for capacity estimation, an error value of 
0.003221 was obtained with the GA-KF method according to the 
RMSE metric. The success of the proposed method is presented 
with different battery types and different metrics. In future 
studies, the author plans to work on estimating battery power 
status using the deep learning method. 
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