Cilt / Volume 59 | Sayi / Issue 1] 115-132 VERIMLILIK DERGiSI

Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal
Reservation Systems

Ugur Eliiyi’

ABSTRACT

Purpose: In this study, efficient solution algorithms are proposed for a problem which simultaneously
optimizes capacity planning and scheduling decisions in reservation systems. The problem is especially
important for systems involving appointments/reservations, such as hotel or seat reservations in tourism,
operation and treatment reservations in healthcare systems, or port logistics operations.

Methodology: The optimization problem studied involves concurrent decisions of scheduling and dynamic
capacity determination, with an objective of maximizing the net return gained from the served appointments.
A randomized constructive heuristic exploiting problem’s structural characteristics is proposed together with
effective improvement procedures. Extensive computational experimentation is conducted in order to test
algorithm performance.

Findings: The developed approach performs excellently in both solution quality and time. With up to 200
reservations, the heuristic technique outperforms CPLEX in terms of solution time and quality. The
algorithm's performance remains unchanged as the size of the problem increases.

Originality: This study presents the first heuristic approach to solving this significant problem. Through
optimization of resource utilization and scheduling, substantial positive social and economic impact on a
number of business sectors can be obtained. The efficient problem-solving techniques developed will pave
the way for future research.

Keywords: Scheduling with Time Windows, Capacity Planning, Reservation Systems, Optimization.

JEL Codes: C44, C54, C61.

Mevsimsel Rezervasyon Sistemlerinde Kaynak Planlama ve Gizelgeleme igin Etkin
Cozium Algoritmalari

OZET

Amag: Bu galismada, rezervasyon sistemlerinde es zamanl kapasite planlama ve gizelgeleme kararlarini
optimize eden bir problem icin etkin ¢ézim algoritmalari énerilmektedir. Problem 6zellikle turizmde otel
veya Kkoltuk rezervasyonlari, saglik sistemlerinde operasyon ve tedavi rezervasyonlari ya da liman lojistik
operasyonlari gibi randevu/rezervasyon ile galisan sistemler i¢in dnemlidir.

Yéntem: incelenen optimizasyon problemi, isleme alinan rezervasyonlara ait net getirinin maksimize
edilmesi amaciyla, gizelgeleme ve dinamik kapasite belirleme kararlarinin es zamanh olarak verilmesini
icermektedir. Problemin yapisal 6zelliklerini kullanan rastgele bir insa edici sezgisel yontem ile etkili
ivilestirme algoritmalari onerilmistir. Algoritma performansini test etmek amaciyla kapsamli hesaplamali
deneyler gergeklestirilmistir.

Bulgular: Geligtirilen yaklasim hem ¢ézim kalitesi hem de zaman agisindan mikemmel performans
gOstermektedir. Sezgisel yontem 200 rezervasyona kadar CPLEX'e gbre ¢6zim siresi ve kalitesi agisindan
Ustinddr. Algoritmanin performansi, problemin blyukliga ile degismemektedir.

Ozgiinliik: Bu ¢alisma, bu énemli problem icin sezgisel géziimler éneren ilk galismadir. Kaynak kullanimi
ve ¢gizelgelemenin optimizasyonu yoluyla birgok sektérde 6nemli sosyal ve ekonomik katkilar elde edilebilir.
Geligtirilen hizh ve etkili problem ¢ézme teknikleri ileri arastirmalarin dnind agacaktir.

Anahtar Kelimeler: Zaman Pencereli Cizelgeleme, Kapasite Planlama, Rezervasyon Sistemleri,
Optimizasyon.

JEL Kodlari: C44, C54, C61.

T Izmir Bakircay University, Faculty of Economics and Administrative Sciences, Department of Business, Izmir, Tiirkiye

Corresponding Author. Ugur Eliiyi, ugur.eliiyi@bakircay.edu.tr

DOI: 10.51551/verimlilik.1521438

Research Article | Submitted: 24.07.2024 | Accepted: 01.11.2024

Cite: Eliiyi, U. (2025). “Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems”,
Verimlilik Dergisi, 59(1), 115-132.

Verimlilik Dergisi / Journal of Productivity | 115


https://orcid.org/0000-0002-5584-891X

Ugur Eliiyi
1. INTRODUCTION

Scheduling optimization problems, which lie in the field of management science, include several
characteristics of tasks to be processed (priority relationships, setup times etc.), and features of resources
to be used for processing these tasks (identical or different resources), in addition to a variety of objective
functions (minimizing resources’ remaining idle times, minimizing waiting times of tasks, maximizing total
return etc.). Because of its wide range of applications and practical significance, this area of optimization
has received extensive research. In conventional scheduling, the decision maker is free to choose the start
times of tasks; however, in interval scheduling (IS), these start times are set as parameters. Reservation
systems are used to manage and allocate limited resources by handling and processing booking requests.
These systems are employed in various sectors, including airline ticketing and gate assignment, healthcare
systems, classroom scheduling, port operations, and hotel accommodations. Such systems require
periodic/seasonal reservations. Hence, the IS problem has significant practical applications in these fields,
as well as manufacturing operations such as maintenance and shift scheduling.

In this study, an optimization problem for simultaneously optimizing capacity determination and reservation
scheduling decisions is considered. The problem is critical and necessary for optimizing the use of
resources in order to deliver efficient services to a larger customer base. The problem is applicable to all
reservation systems aiming to maximize the net "return" obtained from reservations handled. The concept
of "return" can be defined as a material "operating profit" for some systems, whereas it can represent a
physical "benefit", "weight" or "priority" for others. Defining the problem in such a flexible manner allows the
decision makers to be able to adapt the problem for different contexts. The problem was introduced to the
literature under the name of Combined Reservation Scheduling (CRS) problem by Eliiyi (2021). An integer
programming model was developed for the optimal solution of the problem. The model was implemented
in IBM ILOG CPLEX environment, and its computational performance was assessed under different
scenarios through extensive numerical experiments. The results of the experiments were analyzed and the
managerial implications were discussed in depth. The complex nature of the and the NP-Hardness of the
problem were proven theoretically. It was not possible to solve the problem optimally as problem size
increased, and the need for effective and efficient heuristic solutions for large problem instances were
stated.

In this respect, this study is unique and practically significant, as it is the first in literature to tackle efficient
solutions for this practically important problem. We propose fast, high-quality and easy-to-implement
solutions in a problem environment where appointment requests and cancellations can occur. In such a
dynamic environment, repetitive quick and effective solutions are mandatory. Therefore, fast and high-
quality solutions will benefit the decision makers from a practical point of view. We develop heuristic solution
approaches with inherent characteristics specific to the nature of the problem, which can produce effective
solutions quickly. The effectiveness and efficiency of the developed algorithms are measured through
extensive numerical experiments. For assessing the performance of the developed algorithms, the obtained
solutions are compared with the existing optimal solutions in literature, whereas lower and upper bounds
are proposed and used for measurement purposes for larger instances of the problem.

The remainder of this paper is structured as follows: Section 2 provides a comprehensive review of existing
research on scheduling with time windows. In Section 3, we introduce our proposed solution approach,
including three improvement algorithms. Section 4 presents a detailed analysis of the computational
experiments conducted to assess algorithm performance. Finally, Section 5 offers concluding remarks and
outlines potential opportunities for future research.

2. LITERATURE REVIEW

The IS problem entails two key decisions: Determining whether to accept or reject an incoming request or
task/job/reservation, and if accepted, assigning the most suitable resource or machine to process the task.
A typical IS setting includes n tasks that are available to be processed on m parallel resources, where the
time window of task j is specified by a ready time (r;) and a deadline (dj). Tactical and operational IS
problems differ in their objectives and scope. Tactical IS problems associate a fixed cost (cx) with each
resource k, and focus on minimizing total costs or resource utilization while processing all tasks.
Conversely, operational IS problems operate within a fixed resource constraint, aiming to maximize the
total value or quantity of processed jobs. In operational IS, each job (j) is assigned a weight (w;) representing
its priority or value (e.g. profit). The number of resources m is a predetermined parameter in operational IS,
while it serves as an upper limit in the tactical problem.

When a job's processing time equals its deadline minus its ready time (p; = d; - r; for every j), resulting in no
flexibility in scheduling, the problem is classified as a Fixed Job Scheduling (FJS) problem. In this study,
we focus on scheduling n non-preemptive jobs, each with a given processing time (p;) and an interval for
the start time as [r}, bj], where b; = r; for every j. The problem involves time windows that are larger than the

16 | Cilt/ Volume 59 | Sayi / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

processing times, i.e., each reservation request entering the system at its r; should start its processing latest
on its standby limit b;, otherwise it will be wasted in terms of return. This variant called as Variable Job
Scheduling (VJS), also known as parallel machine scheduling with time windows (Gabrel, 1995), is a
generalization of Fixed Job Scheduling (FJS). The start and end of the reservation, the standby limit, and
the anticipated profit are all immediately established and specified upon receipt of a request. A request may
be considered a fresh one if it is canceled or modified before to processing. Therefore, the problem's
parameters can be treated as deterministic and updated as needed. The goal of a Tactical VJS (TVJS)
problem is to minimize the total cost of resources required to process all jobs. On the other hand, an
Operational VJS (OVJS) problem aims to maximize the total weight of a job subset that can be processed
using a fixed number of machines.

Numerous studies have noted the wide range of applications for IS in manufacturing and service operations.
Kolen and Kroon (1992) used tactical and operational FJS to study applications related to allocating aircraft
to gates and capacity planning for maintenance staff. Wolfe and Sorensen (2000) examined the scheduling
of satellites using operational FJS, whereas Fischetti et al. (1987, 1989, 1992) studied bus driver scheduling
as an application of the tactical FJS. Additional application areas mentioned are printed circuit board
production (Spieksma, 1999), data transmission (Faigle et al., 1999), and class scheduling (Kolen and
Kroon, 1991). Some variations include limitations on eligibility (Eliiyi and Azizoglu, 2009), availability (Kolen
and Kroon, 1993), machine running time restrictions (Fischetti et al., 1992; Eliiyi and Azizoglu, 2011), or
differing machine speeds (Azizoglu and Bekki, 2008). In addition to theory and complexity results, reviews
of possible applications of FJS were given by Kovalyov et al. (2007) and Kolen et al. (2007).

Although IS problems have been widely acknowledged as FJS in the literature, VJS has not received the
attention it deserves, with just a small humber of academics concentrating on it following the landmark
study by Gertsbakh and Stern (1978). Using identical machines, these authors stated the fundamental
TVJS problem and gave an approximate solution. In the context of data transmission for low-orbit satellites,
Gabrel (1995) employed the operational FJS model and claimed that the suggested model and algorithms
can be modified to address OVJS. The operational FJS problem with identical weights and eligibility
limitations was handled. The problem's lower and upper bounds are established, and the computational
results were shown.

There is not much research on OVJS in the literature. A greedy randomized adaptive search strategy
(GRASP) and a heuristic based on dynamic programming were presented by Rojanasoonthon et al. (2003)
and Rojanasoonthon and Bard (2005). Bard and Rojanasoonthon (2006) created a branch and price
algorithm for a similar problem. The computational results showed that the suggested method could solve
fairly big instances to optimality. Garcia and Lozano (2005) investigated the two-stage OVJS problem in
the context of manufacturing ready-mix concrete. Each task had an ideal start time, and the goal was to
maximize the total weight of the processed jobs while minimizing the overall weighted deviation from ideal
start times. To solve the problem, they suggested using the tabu search heuristic, and the outcomes
showed good performance in terms of both time and solution quality.

Eliiyi et al. (2009) addressed berth allocation in a container port by using a nested eligibility structure to
solve the OVJS problem. Two resource types corresponded to small and large berths for allocating vessels,
and two job classes represented two different vessel sizes. The authors developed an integer programming
model and showed that the problem is NP-hard. To produce near-optimal solutions, a construction heuristic
based on constraint graphs was developed. The solutions were boosted using improvement algorithms
including the genetic algorithm. They showed that the problem-specific improvement heuristic outperformed
the genetic algorithm.

An alternative methodology involves handling each reservation request independently and in real-time. This
dynamic approach captures snapshots of the reservation system's current state for each incoming request,
allowing for immediate decision-making. The approach is commonly suggested in the literature for
managing fluctuating demand and reservations, particularly in the context of communications networks,
where changes happen often and planning horizons are generally shorter (Barshan et al., 2016; Steiger et
al., 2004). Unlike adversarial online interval scheduling, which makes no assumptions about task
parameters, stochastic variations of this problem assume that task parameters follow a specific distribution
(Yu and Jacobson, 2020).

The most crucial element in calculating potential profit in a reservation system is the number of resources
as it establishes the array of requests that can be served. A reservation system's capacity needs to be
carefully considered in this regard. While prior research has employed TVJS for capacity planning, the
tactical problem ignores potential cancellations or new requests during the planning period and
necessitates a long-term projection of reservations, which may not be accessible. Additionally, capacity

Verimlilik Dergisi / Journal of Productivity = 117



Ugur Eliiyi

modification requirements are disregarded by TVJS, which is a serious problem for systems exhibiting
seasonal demand as in hotel and vehicle rental reservations (Eliiyi, 2021).

The problem considered in this study offers versatility in capacity planning. It can determine optimal
capacity expansion for existing systems or establish initial capacity and scheduling for new ones. By
addressing the number and assignment of additional resources, it also allows to manage seasonal demand
fluctuations. This approach can be applied dynamically across various timeframes, from seasons to days
or even hours, assuming reservations within a specific period remain fixed.

3. SOLUTION ALGORITHMS FOR THE CRS PROBLEM

To ensure clarity and completeness, the mathematical model proposed by Eliiyi (2021) is presented before
detailing the newly developed construction and improvement algorithms for the CRS problem.

3.1. The CRS Model

The problem defined by Eliiyi (2021) includes n reservations/tasks to be served on at most m available
resources. Each resource incurs a fixed usage cost c,, while each incoming reservation has a specified
ready time (arrival time) r; and a standby limit b]-(> r]-), representing the maximum allowable waiting period
before the reservation is considered lost. The fixed usage cost of each resource could be considered as
the total cost or rental fee for the whole planning period, which is to be paid in full regardless of the duration
of usage. The standby limit enables customers to set a flexible window of days for their booking in [r;, b;).

The service time (reservation duration) and the return are denoted in the model by p; and w;, respectively.
These problem parameters are nonnegative integers and deterministic. If a reservation request is cancelled
or changed before it is processed, it is considered a new one, and the parameters are updated as
necessary. The planning horizon is divided into T time intervals of equal length to facilitate mathematical
modeling; namely {t, ..., tr}. P, is the set of tasks ready to be processed in time interval [t,, t,,1), where
a=1,...T—1 (P, ={jlry < ty,bj+p; — 1= t,}).

Set S; is defined as the set of intervals of task j (S; = {1}, ..., b; + p; — 1}).

The decision variables are:

_ _{1, if task j is served on resource k in time interval a
Jka* |0, otherwise

. _{1, if task j is served on resource k
Yik'10, otherwise

_{1, if resource k is used
k* 10, otherwise

As defined by Eliiyi (2021), decision variable x;,, equals 1 if task j is served by resource k during time
interval [t,, t,+1). This definition allows for a task to be served by multiple resources across different time
intervals. To prevent preemption, the second decision variable, y;,, is introduced. This variable equals 1 if
all intervals of task j are served by resource k. The third decision variable, z,, is used to calculate resource
fixed costs. If a resource is utilized for any task, its corresponding variable becomes 1, activating its fixed
cost in the objective function.

The CRS model determines the number and cost of resources will be used in total, in addition to the subset
of served reservation requests:

CRS:

Maximize i, Ji=1 WjYji — k=1 CkZi (1)
S.t.

ZaeS]- Xjika = PjYjk> j=1,..mk=1,..,m (2)
Yk=1Yjk <1, j=1,..,n (3)
Yjery Xjka = 1, a=1,..,.T-1,k=1,..,m (4)
PiXjka — PjXjka+1 T Z?iz’;lxjkt <p j=1.,mk=1,.,ma¢€s; (5)
Vi = Zg, j=1,..mk=1,..,m (6)
Xjkas Yjier Zx € 10,1}, j=1.,ma=1.,T-Lk=1.,m 7)

118 | Cilt/ Volume 59 | Sayi / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

The objective function in Equation 1 maximizes the net total return from the served reservations. The
constraints in Equation 2 and Equation 3 together force all intervals of a task to be assigned to a single
resource, while the constraints in Equation 4 dictates each resource to process at most one task in an
interval. If a reservation is served, each time interval of it should be served in order by the same resource,
as ensured by constraint set Equation 5. Constraint set in Equation 6 binds the two decision variables in
the model whereas constraints in Equation 7 defines the sign constraints.

Eliiyi (2021) also proposed an upper bound on the number of resources as m = Max,{|P,|}, and proved
that the problem is NP-hard. Through computational experimentation, the author concluded that the
assumption of deterministic parameters provides tractability and ease-of-use. However, repetitive solutions
of the problem, which are necessary in a dynamic environment including cancellations and changes, call
for fast and high-quality heuristics.

3.2. A Randomized Heuristic for the CRS Problem

Eliiyi et al. (2009) have shown that a problem-specific heuristic designed for the OVJS problem with general
weights generates better solutions in less CPU times than a genetic algorithm. Although their study is on
the operational variant of VJS, our heuristic approach for the combined problem uses similar ideas for
generating near-optimal solutions at its inner loop, as will be explained shortly. First, we provide some
definitions that are employed in our heuristic algorithm.

Let sj (1 < s; < b;, Vj) denote the realized start time at which reservation j is processed, if it is processed at
all. We define the concepts of overlap and overlap amount via the following definitions.

Definition 1: Two reservations i and j such that s; < s; overlap in time if s; = s;j or s; < s; < si+p;. In this case,
reservations i and j are defined as overlapping reservations.

Definition 2: The overlap amount(i,j) between two overlapping reservations i and j such that s; < s; is
computed as in Equation 8.

5i+pi_5j' ifSi+pi SS]+p]
p;j, otherwise

(8)

overlap amount(i,j) = {

The solution procedure proposed below has a nested structure, which will be explained in detail. The outer
(main) loop is used for trying out different capacity levels for determining a near-optimal capacity:

The CRS Algorithm:

(S0) Zo = 0. The resources are sorted in ascending order of their fixed costs, i.e. c1<c2< ... < cp.

(S1) For all possible capacity levels (k= 1,..., m):
Run AlgorithmCRS (k) for capacity level k. Let the resulting objective function value be Z.
If Zx < Zx1 then go to (S2),
Else, proceed with the next capacity level.

(S2) Output Zi1 as the best solution obtained.

This primary algorithm progressively introduces resources into the solution, starting with those having the
lowest fixed costs. The main loop (S1) repeatedly calls AlgorithmCRS(k), which constitutes the inner loop,
to solve the CRS problem with n jobs and k machines. The algorithm terminates adding resources (at a
capacity level of k-1) when introducing a new one results in a decreased net marginal return (Zx < Zx-1). To
ensure capacity expansion even at the breakeven point (Zx = Zx.1), the stopping condition explicitly excludes
equality. In other words, among the solutions having the same objective function, the algorithm favors
solutions having a higher capacity and processing a larger number of incoming reservation requests. This
characteristic of the algorithm allows for serving more reservations, which is in line with practice and
expedites customer satisfaction.

Next, we describe AlgorithmCRS(k). This inner loop involves randomized decisions for the start times and
the assignment of the reservations to the resources.

AlgorithmCRS(k):
(S0) Zzx=0,i=0.
(S1) i<« i+1.

Verimlilik Dergisi / Journal of Productivity | 119



Ugur Eliiyi
For each reservation j (j=1,..., n):

Compute overlap index(j) as follows:

1. Assume all n reservations start processing at their ready times (s;=r;, i = 1,..., n). Compute
overlap amount(i,j) between reservation j and every other reservation i under this assumption. Let
0,; = X;overlap amount(i, j).

2. Assume all nreservations start processing at their standby limits (s;=b;, i=1,..., n). Compute
overlap amount(i,j) between reservation j and every other reservation i under this assumption. Let
0, = X; overlap amount(i, j).

3. Generate a random start time s; (such that r; < s; < b;) for each reservation i, i = 1,..., n.
Compute overlap amount(i,j) between reservation j and every other reservation i under this
assumption. Let o5; = ¥,; overlap amount(i, j).

4. overlap index(j) = (01 + 0y; + 03;)/w;.
Re-index the reservations in ascending order of their overlap index values.
For each reservation (with new index) j (j = 1,..., n) do:

Chose one of the below methods randomly to assign reservation j to the next resource (among k
resources). Continue until all reservations are assigned or no resources are available:

1. Search forward between [r;, b] to assign the reservation at the earliest available time.
2. Search backward between [r;, bj] to assign the reservation at the latest available time.

3. Search forward between [t, b] to assign the reservation at the earliest available time, where
tis a random number between [r;, bj].

4. Search backward between [r;, ] to assign the reservation at the latest available time, where
tis a random number between [r;, bj].

(S2) Compute the objective function of the solution at iteration i as z;.

(S3) Sequentially execute Improvement1, Improvement2 and Improvement3 to the solution in this order.
Update z; and the assignments as necessary.

(S4) If zi > Zx, then set Zx = z;. Store the corresponding solution as the best solution.
(S5) If i < Numilter, go to (S1). Else, output Zx as the best solution.

In (S1) of AlgorithmCRS(k), three different representative sets of reservation start times are generated to
compute possible overlap amounts. The overlap index of a reservation is then computed as sum of the
overlap amounts from these scenarios divided by the original return of the reservation. A low overlap index
corresponds to a low average overlap amount, a high return, or both. Hence, by assigning the reservations
to the resources in nondecreasing order of their overlap indices, the algorithm favors low-overlap and/or
high-return reservations for processing, which is in line with the objective function of the CRS problem.

To introduce randomness, the algorithm selects an assignment method for each reservation randomly and
determines the reservation's start time based on this choice. The process is repeated multiple times, and
the best solution found across these iterations is retained. The value of the iteration limit Numiter is
determined via preliminary experimentation.

In (S3) of each iteration, AlgorithmCRS (k) calls three basic improvement algorithms in a sequential manner
to further enhance the quality of the produced solution. These algorithms are described below. The first
one involves an insertion mechanism that tries to assign an unscheduled reservation to one of the used
resources without disturbing its current schedule.

Improvement1 (Insert):

(S0) zimp1 = zj, A: set of assigned reservations, B: set of unassigned reservations.
Index the reservation in set B in descending order of their w; values.
(S1) For each reservationjinsetB (j = 1,...,|B|) do:
For each resource / in use, do:

Check if reservation j can be inserted into the schedule on resource / without changing the
scheduled times of any existing reservations.

120 | Cilt/ Volume 59 | Say1 / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

If yes, assign reservation j to resource /, remove j from B and add it to A. Set Zimp1 = Zimp1 + W
(S2) Output zimp1 and the corresponding schedule as the improved solution.

Following the completion of insertion-based improvements by Improvement1, the algorithm below attempts
to optimize the schedule by swapping reservations between different resources. The swap is executed only
if it allows for the scheduling of a previously unallocated reservation, leading to an overall improvement in
the objective function value.

Improvement2 (Swap&lnsert):

(S0) zimp2 = zZimp1, Ax: set of assigned reservations on resource k, B: set of unassigned reservations.
Index the reservations in set B in descending order of their w; values.
(S1) For each pair of resources in use (/ and p) do:
For each reservation j in set A; and each reservation i in set A, do:

Check if it is possible to move reservation j to resource p and reservation i to resource /, without
changing the remaining schedule (assigned reservations and start times) on either of the
resources. If yes, make the swap.

For each reservation s in set B (s = 1,...,|B|) do:

Check if reservation s can be inserted into the schedule on resource / or resource p without
changing the scheduled time of any assigned reservations on the resource.

If yes, assign reservation s to resource / or resource p, remove s from B and add it to A, or Ay,
accordingly. Set Zimp2 = Zimp2 + Ws.

If no reservation in set B could be inserted into the schedule, reverse the swap and continue.
(S2) Output zimp2 and the corresponding schedule as the improved solution.

The algorithm prioritizes swap and insert operations based on the decreasing order of reservation weights
(wj) within set B. This approach helps to maximize the potential improvement from each swap. It continues
until there are no possible moves. The execution of Improvement2 is illustrated in Figure 1, which shows
four reservations assigned on two resources on the timeline where each row represents a resource.
Currently, reservation 5 with rs = 2, bs =5 and ps = 8 cannot be processed on either of the two resources,
since it either overlaps with reservation 2 or reservation 3 on the first resource, and reservation 1 on the
second resource. While Improvement2 tries to swap reservations between the resources, reservation 1 and
reservation 3 can be swapped without disturbing current schedules. The insertion of reservation 5 to the
second resource is then possible, as shown in Figure1(b). The objective function is thereby increased by
Ws.

[ Job2 ] mcs | Job2 | Job1 ] m/c1

[ Job1 | | Jobd | [ Jobs | Job3 | Job4 |mrc2

(a) Before Improvement2 (b) After Improvement2
Figure 1. Execution mechanism of Improvement2.
Once all possible swap&insert combinations are explored by Improvement2, the last improvement algorithm
tries to insert an unscheduled reservation to a used resource as in Improvement1. But unlike

Improvement1, the following algorithm shifts the scheduled reservations on the resource forward and
backward temporally in search of an available time gap for a feasible insertion.

Improvement3 (Shift&Insert):

(S0) zimps = zimp2, A: set of assigned reservations, B: set of unassigned reservations.
Index the reservations in set B in descending order of their w; values.
(S1) For each reservation sin set B (s =1,...,|B|) do:

For each resource / in use do:

Verimlilik Dergisi / Journal of Productivity | 121



Ugur Eliiyi

Consider interval [rs, rstps] on resource /. Let left_j be the first reservation on resource / that starts
within this interval. Let right_j be the first reservation on resource / that starts after left j.

Shift left_j and all reservations before it backward in time as much as possible without causing
any overlap. Similarly, shift right_j and all reservations after it forward in time as much as possible
without causing any overlap.

Check if reservation s can be inserted into the schedule on resource / between left_j and right j
without causing any overlap. If yes, reservation job s to resource /, remove s from B and add it to
A. Set Zimp3 = Zimp3 + Ws.

(S3) Output zimps and the corresponding schedule as the improved solution.

The algorithm iteratively performs shift and insert operations on reservations in set B, prioritized by their
descending weight values (wj). This process continues until no feasible insertions can be made, indicating
a local optimum. Our algorithm is different than the Shift & Insert algorithm described in Eliiyi et al. (2009)
in the following manner. In their approach, each resource is considered separately, and for each pair (left_j
and right_j in our notation), a gap between them is tried to be created by moving left j and all before that
exactly to their ready times while moving right_j and all after that exactly to their standby limits. No time
intervals in-between the ready times and the standby limits are investigated for possible shifts, and their
algorithm does not perform a shift even if only one task could not be moved to its ready time or standby
limit. Improvement3 has a superior search procedure that checks for all possible shift combinations
(including all possible time intervals for each reservation) by considering each unscheduled reservation
separately.

The execution of Improvement3 is illustrated through Figure 2. Consider resource 1 in Figure 2(a),
processing reservation 2 and 4. Assume that reservation 2 has r1 = 2 and reservation 4 has bs = 15.
Reservation 5, having parameters rs = 7, bs = 10 and ps = 6, is currently out of schedule as it overlaps with
reservation 3 on resource 2, and reservation 2 or reservation 4 on resource 1. While trying to insert
reservation 5 into the schedule of resource 1, Improvement3 shifts reservation 2 (left_j) two units backward,
and reservation 4 (right_j) two units forward in time. These shifts create an opportunity to insert reservation
5 attime 9, as illustrated in Figure 2(b), improving the objective function value by ws.

[ Job2 Joba, ] m/c1 [ Job 2 I Job5 Jobd Jmrc1

[ Job 1 ] | Job3 ] m/c2 [ Job1 | [ Job3 m/c2

1} 2l 3= AI 5{ G} 7} 8} 9“ 10I 11I 12“ 13} 14} 15“ 15I 17I 13= 19} ZD} 21} 1} 2} 3" A= 5= SI 7= S‘v 9} 101 11} 12“ 13€ 14I 15I 16I 17" 181 19} 20} 21}
(a) Before Improvement3 (b) After Improvement3

Figure 2. Execution mechanism of Improvement3.

The solution approach described in this section is explained under the assumption that all resources are
eligible to process all incoming reservation requests, i.e. there is no eligibility constraint in the problem and
wik = w;, Vk. However, the adaptation to the problem with eligibility constraints is rather straightforward.
Namely, only the eligible resources should be considered when making the assignment of an incoming
reservation or the swaps between any two reservations. In other words, resource should be replaced by
eligible resource wherever necessary in the proposed algorithms.

The CRS problem can be framed as a multi-objective optimization problem, balancing return maximization
and cost minimization. Interestingly, AlgorithmCRS generates a set of Pareto-optimal solutions across
different capacity levels as a byproduct, offering valuable insights into the trade-offs between these
competing objectives. The algorithm can be easily modified to store and output optimal solutions for every
capacity level without increasing computational complexity. This enhancement transforms the algorithm
into a tool for solving the associated multi-objective optimization problem.

4. COMPUTATIONAL EXPERIMENTATION

A computational experiment was conducted to assess the performance of the developed algorithms. The
algorithms were implemented using C# and C++ on MS Visual Studio 2008 and executed on a Core 2 Duo
2.8 GHz PC with 4 GB of memory. The experimental setting is identical to that of Eliiyi's (2021) to allow
direct comparison with optimal solutions. Therefore, the reader is referred to that study for details of the
experiment design, in which 10 test problems were generated for the CRS problem with n = 20, 50, 100,
200 reservations and 36 combinations of parameters, corresponding to 1440 instances. We include all
these instances in our study as well as additional 360 new test instances for very large problems with n =
500. Hence, a total of 1800 problem instances are used for performance evaluation purposes.

122 | Cilt/ Volume 59 | Say1 / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

As stated by Eliiyi (2021), a majority of problem instances with n = 50 or more tasks/reservations could not
be solved optimally by the commercial solver within the allotted 1200-second time limit, which is a clear
display for the difficulty of the problem. Only the best feasible solutions were reported for these instances.
In this section, we discuss the performance of CRS Algorithm as compared to IBM ILOG CPLEX 12.8
solutions. Our algorithm is executed for 100 iterations for all instances, and a 1200-second time limit is
imposed for CPLEX solutions, as in Eliiyi (2021). For instances where an optimal solution could not be
determined within the time limit, the algorithm's solution is compared to the best feasible solution found by
CPLEX. Tables 1 through 3 present the result of the experimental runs at three different resource cost
levels for n = 20, 50, 100, and 200.

The column Avg. UB gives the upper bound on the number of available resources as Max,{|P,|} for each
problem instance (Eliiyi, 2021). The results are averaged over 10 problem instances. The other columns
compare the average number of the used resources, average percentage of resource utilizations, average
percentage of the processed reservations (over all incoming), average percentage of the processed return
(over all incoming), the solution times of the CRS Algorithm and CPLEX, and the percent gaps between
the CPLEX solutions and the lower bound solutions obtained by the algorithm. The last column, CPLEX
ZERO lists the number of instances (out of 10) for which a feasible solution could not be obtained by CPLEX
within the time limit. As no feasible solution could be obtained for any problem instance with n = 500 by
CPLEX, the solutions could not be compared, therefore not reported.

The average number of used resources over 10 problem instances is given in Avg. # used column. For
example, in Table 1, for n = 100, b-r =1, w = 1 and p = 1, while all requests could be processed with 12
resources, the CRS Algorithm obtained solutions with an average of 4 machines while CPLEX used 1
machines on the average. The Avg. % util. (resource load / planning horizon length) illustrates the
percentage of resource usage during the planning horizon [0, 200]. For the same example, our algorithm
generated solutions with an average resource utilization of 68% for the 4 resources used, whereas CPLEX
solutions used only 28% of the 1 resource used. Note that CPLEX could not attain optimality for this set of
instances within the time limit. The next two columns list the average percentage of processed reservations
(% processed reservations) calculated by (Z’}:l xjk)/n for the algorithm, and the average percentage of
processed return (% processed return) computed as (X7, w;x;, )/ (X7-, w;) for CPLEX. The percentage of
processed reservations can be used to assess the solution's effectiveness in capturing potential gains. For
instance, the solution by the CRS Algorithm that processes 86% of reservations generates 85% of the total
potential return for the above example, whereas both ratios are 16% for CPLEX. In scenarios where the
return of each reservation varies, the percentage of processed return could exceed the percentage of
processed reservations.

The tables reveal that while several problem instances with n = 50 or more reservations could not be solved
to optimality by CPLEX within the allotted time limit, the CRS Algorithm produces very fast solutions; the
longest solution time being around 1 minute. The percent gap (% Diff) between CPLEX and the lower bound
obtained by the algorithm, calculated as 100 * (Zcprex — Zagoritnmers)/ZcpLex, C@Me out to be negative for
many instances. This result indicates that the algorithm obtained better solutions than CPLEX in much
shorter times. The gap is not computed for instances where CPLEX could not find a feasible solution, as
indicated in the last column (CPLEX ZERO). CPLEX could not obtain any feasible solution for 910 of the
1800 instances within the time limit. The algorithm's efficiency is influenced by several factors. High
resource costs generally lead to faster computation times as fewer reservations are processed. Conversely,
longer standby durations, increased processing times, and a larger number of reservations tend to extend
solution times. While the number of reservations directly impacts performance, changes in reservation
returns appear to have minimal effect.

For n = 20, CPLEX found the optimal solutions for all instances. The average CPU time over Tables 1, 2
and 3 is approximately 1 minute. Our algorithm obtained instant solutions for these instances, while the
average % Diff is around 2.7% for uniformly distributed resource costs, 1.8% for low resource costs and
3.0% for resource costs. The algorithm found optimal solutions in 274 out of 360 instances for n = 20. For
larger ones, it obtained much better solutions than CPLEX. As an example, examine in Table 1 the row for
n =100, b-r=2, w=1 and p = 2, and note that the % Diff value is 51100.0. The CPLEX ZERO indicates
that no feasible solutions could be obtained for 9 of the 10 instances of this setting. For the remaining one
instance, CPLEX obtained an objective function value of 1, while the algorithm found 511, and hence the
corresponding % Diff value. On average, the algorithm provides solutions with higher reservation
processing, return processing and resource utilization percentages than CPLEX.

Verimlilik Dergisi / Journal of Productivity | 123



Table 1. Results for cx ~ U{80, 100, 120, 140, 160}, Vk

Ugur Eliiyi

% processed % processed Solution time

Avg. #used  Avg. % util.  reservations return (seconds) CPLEX
n b-r w pAvg. UB Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX % Diff ZERO
201 1 1 4 1 1 44 45 75 75 76 76 01 44 28
2 5 1 1 60 60 60 61 64 65 0.1 159.0 4.2
2 1 4 1 1 43 43 74 74 77 77 0.1 1.7 0.0
2 5 1 1 25 27 31 31 32 32 0.1 1041 26
3 1 4 1 1 43 43 75 75 80 80 0.1 3.3 0.2
2 5 1 1 51 52 62 62 68 69 0.1 315 3.5
2 11 5 1 1 52 53 89 89 89 89 0.1 6.9 1.0
2 5 1 1 65 65 67 68 69 70 0.1 2731 3.0
2 1 4 1 1 52 52 91 91 92 92 00 22 0.8
2 5 1 1 51 52 56 55 58 59 0.1 1442 11.0
3 1 5 1 1 49 50 86 86 89 90 0.1 3.5 1.3
2 5 1 1 63 63 69 69 76 76 0.1 503 22
5 1 1 1 8 2 2 70 66 69 75 69 75 04 12001 -041
2 9 3 2 69 47 81 41 80 42 0.8 1200.1 -937.2 2
21 8 2 2 62 66 79 69 82 73 0.6 12001 -1.4
2 9 2 1 71 31 52 19 55 20 0.3 1164.2 -764.0 5
3 1 7 2 2 59 61 85 83 89 88 0.6 1200.1 0.5
2 10 2 2 65 55 69 42 76 46 0.6 1200.1 -404.9
2 11 10 2 2 64 67 89 67 89 68 0.7 1200.1 -32.9
2 10 3 1 71 33 87 18 86 18 1.1 1200.1 -1356.6 3
2 1 9 2 1 71 66 79 65 82 69 0.6 1200.1 -26.2
2 10 2 1 76 31 65 22 69 24 0.5 1200.1 -320.9 5
3 1 9 2 2 65 62 91 78 93 83 0.8 1200.1 -13.8
2 M1 2 1 72 34 73 26 77 29 0.8 1200.1 -998.5 2
100 1 1 1 12 4 1 68 28 86 16 85 16 3.2 1200.1 -20159 4
2 15 6 0 71 0 86 0 85 0 5.2 1200.3 10
2 1 12 3 1 69 29 82 19 86 21 29 1200.1 -968.4 4
2 15 3 1 74 3 52 1 56 1 1.9 1200.3 10
3 1 13 4 2 66 33 89 29 93 31 4.0 12001 -277.7 2
2 14 5 0 71 10 74 2 80 2 4.0 1200.3 -343.8 9
2 11 15 4 1 71 39 93 21 93 22 4.7 1200.2 -628.9 2
2 19 6 0 75 4 89 1 88 1 7.1 1200.1 - 9
2 1 16 3 1 76 50 85 26 87 28 3.4 1200.1 -560.5
2 19 4 1 79 5 66 4 70 4 3.7 1201.2 10
3 1 14 4 2 71 40 93 36 96 39 5.0 1200.1 -538.9
2 16 5 1 76 5 82 3 87 3 6.4 1200.1 -487.0 9
2001 1 1 21 7 0 71 0 90 0 89 0 24.1 1200.2 10
2 21 11 0 75 0 89 0 87 0 39.9 1200.2 10
2 1 22 6 0 74 2 82 1 86 1 20.2 1201.8 10
2 22 6 0 78 0 61 0 65 0 21.2 12022 10
3 1 19 7 3 72 10 90 7 94 7 271 1200.3 -3851.2 9
2 18 9 0 75 0 78 0 84 0 36.0 1200.2 10
2 11 26 7 0 76 16 93 3 92 3 33.1 1202.5 -29771 7
2 28 12 0 75 0 93 0 92 0 60.8 1206.9 10
2 1 26 6 1 77 4 88 1 91 1 31.5 1205.6 -8837.5 9
2 28 6 1 82 4 62 1 67 2 29.6 1204.2 10
3 1 26 7 1 75 11 93 3 96 4 37.3 1200.3 -1599.1 7
2 26 9 0 79 0 81 0 87 0 51.5 1200.5 10
124 | Cilt/ Volume 59 | Say1 / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

Table 2. Results for cxk = 80, Vk

% processed

% processed Solution time

Avg. #used  Avg. % util.  reservations return (s.) CPLEX
n br w pAvg.UB Alg. CPLEX| Alg. CPLEX| Alg. CPLEX| Alg. CPLEX|Alg. CPLEX % Diff ZERO
20 1 11 4 1 1 49 49 79 79 79 79 01 31 11
2 5 1 1 57 57 68 67 68 69 01 2196 1.6
2 1 4 1 1 44 44 80 81 83 8 01 21 13
2 5 1 1 5 5 65 65 69 70 01 115 80
31 4 1 1 45 45 80 80 8 8 01 36 0.1
2 4 1 1 53 54 63 63 68 68 01 713 0.1
2 11 5 1 1 51 5 9 91 9 91 01 30 37
2 5 1 1 69 69 74 75 74 75 041 3770 07
21 5 1 1 50 51 8 9 91 92 00 43 18
2 5 1 1 62 63 71 71 75 75 01 916 12
31 5 1 1 51 52 90 9 92 92 00 45 07
2 6 1 1 61 62 70 71 76 76 01 3350 07
50 1 11 8 2 2 62 61 8 84 8 84 06 12001 -3.2
2 9 3 3 65 58 8 66 83 67 10 12001 -58.3
2.1 7 2 2 60 61 8 8 8 84 06 12001 -4.1
2 9 2 1 68 60 66 46 69 50 0.5 12001 -248 1
31 8 2 2 59 58 8 83 8 89 07 12001 -0.6
2 10 3 3 62 54 78 62 83 68 10 12001 -39.2
2 11 9 2 2 65 66 91 73 90 74 0.7 12001 -29.4
2 10 3 1 68 47 91 26 91 27 12 12001 -1816 3
2 1 8 2 2 65 64 91 72 93 76 07 12001 -20.6
2 1M 2 1 77 3 62 22 65 24 05 12001 -166.1 4
31 8 2 2 67 63 91 8 94 90 07 12001 -82
2 10 3 1 71 42 8 33 89 37 1.1 12002 -2238 2
100 1 1 1 12 4 3 66 52 90 61 90 61 39 12002 -73.8 1
2 15 7 1 68 17 92 7 o 8 69 12003 -1662.8 6
2 1 12 4 3 69 59 8 59 89 62 33 12001 -81.7
2 15 4 O 74 17 6 5 70 6 30 12002 -17451 7
31 12 4 4 64 49 91 64 94 68 44 12001 -291.7
2 15 6 3 69 39 8 22 8 26 63 12003 -587.3 1
2 1.1 16 4 1 71 37 95 26 94 25 49 11991 -3656 3
2 19 7 1 70 13 94 7 93 8 83 12003 -18539 7
2 1 15 3 2 75 49 8 43 90 46 3.8 12002 -162.2
2 18 3 0O 79 9 63 4 67 4 33 12004 -1646.4 8
31 15 4 3 68 42 95 47 97 52 53 12002 2885 1
2 18 6 2 74 28 8 16 91 19 72 12002 -12062 2
2001 1 1 21 8 1 67 35 94 11 94 12 296 12002 -4359.8 2
2 27 13 0 T 0 9 0 95 0 550 12003 10
2 1 19 7 3 73 49 90 32 92 35 262 1200.3 -1176.0
2 27 7 1 76 2 67 1 71 1 256 1200.3 10
31 21 8 2 68 37 94 18 96 21 316 12002 -896.5 1
2 28 11 0O 72 0 8 0 9 0 505 1200.3 10
2 11 27 7 0O 75 0 93 0 93 0 344 12018 10
2 3 13 0 73 0 9% 0 95 0 685 12005 10
2 1 28 7 o 76 6 93 1 95 1 386 12012 - 8
2 31 7 0 81 2 70 1 74 1 385 12004 10
31 27 8 0o 73 0 9% 0 98 0 422 12003 10
2 32 10 0 78 0 8 0 91 0  62.8 1200.5 10

Verimlilik Dergisi / Journal of Productivity

125



Table 3. Results for ck = 160, Vk

Ugur Eliiyi

% processed % processed Solution time

Avg. #used  Avg. % util.  reservations return (seconds) CPLEX
n br w pAvg.UB Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX % Diff ZERO
20 1 1 1 4 0 0 0 0 0 0 0 0 0.1 0.1 0.0
2 5 0 0 0 7 0 7 0 6 02 50 10.0
21 4 0 0 0 0 0 0 0 0 0.1 0.1 0.0
2 4 0 0 0 0 0 0 0 0 0.2 041 0.0
3 1 4 1 1 44 44 78 78 81 81 0.1 2.8 5.8
2 5 0 0 15 16 19 19 20 20 02 80 4.0
2 11 5 0 0 0 0 0 0 0 0 0.1 0.1 0.0
2 6 1 1 58 58 55 55 55 56 0.1 1612 9.5
2 1 4 0 0 0 0 0 0 0 0 0.1 0.1 0.0
2 6 0 0 0 0 0 0 0 0 02 0.2 0.0
3 1 4 1 1 54 54 92 92 95 95 0.0 33 0.4
2 6 1 1 50 50 58 57 61 62 01 717 6.0
5 1 1 1 7 1 1 77 78 53 52 53 54 0.2 12001 5.6
2 9 1 1 79 81 46 33 43 32 0.3 1200.1 -20.9
2 1 7 1 1 70 72 55 55 59 60 0.2 1200.0 0.5
2 9 0 0 22 8 13 5 14 5 23 1116.3 348 9
3 1 7 2 2 61 64 78 69 84 76 0.6 1200.1 0.1
2 9 1 1 72 69 45 42 52 48 0.3 1200.1 -47.6
2 11 9 1 1 82 41 57 28 56 28 0.3 1200.1 -13.5 5
2 10 2 0 79 0 65 0 64 0 0.5 1200.1 10
2 1 10 1 1 79 75 59 56 64 62 0.3 1200.1 -36.8
2 M1 1 0 39 0 23 0 25 0 1.6 1200.1 10
3 1 8 2 1 72 68 75 67 82 75 0.5 1200.1 -10.6
2 M1 2 1 79 46 58 25 65 29 0.4 1200.1 -116.1 3
100 1 1 1 13 2 1 80 49 56 17 55 17 1.2 1200.1 -96.7 4
2 15 4 0 80 8 59 5 56 4 21 1200.2 -50.7 9
2 1 12 2 1 75 53 59 23 65 26 1.2 1200.1 -377.2 2
2 15 1 0 79 0 26 0 28 0 0.4 1200.3 10
3 1 12 3 2 71 57 78 55 84 62 2.3 1200.1 -36.5 1
2 15 3 1 75 10 56 7 63 8 2.0 1200.3 -396.8 8
2 11 15 3 0 81 0 73 0 71 0 2.2 1200.2 10
2 18 5 0 81 0 75 0 72 0 3.8 1200.2 10
2 1 16 2 1 81 40 62 17 67 19 1.6 1200.2 -693.7 4
2 19 1 0 84 0 28 0 32 0 0.7 1200.3 10
3 1 14 3 2 77 49 84 36 89 42 3.1 1200.2 -100.4 2
2 18 3 0 80 4 59 2 66 2 2.5 1200.3 -9850.0 9
2001 1 1 21 5 0 80 7 69 1 67 1 10.9 1200.2 -1316.7 9
2 27 8 0 81 0 69 0 65 0 21.7 1200.3 10
2 1 20 4 1 79 25 59 11 64 13 8.4 1200.3 -374.1 6
2 26 2 1 81 4 24 2 26 2 22 12013 10
3 1 20 6 2 75 36 81 24 87 27 19.0 1200.3 -917.3 3
2 26 5 0 78 0 55 0 62 0 15.1 1200.3 10
2 11 26 6 0 82 0 79 0 78 0 20.1 1200.2 10
2 31 9 0 83 0 80 0 76 0 37.7 12004 10
2 1 26 4 0 83 0 66 0 71 0 14.8 1200.3 10
2 32 2 0 87 0 30 0 33 0 4.2 1200.4 10
3 1 26 6 0 79 0 86 0 91 0 272 1201.2 10
2 33 6 0 83 0 59 0 67 0 22.7 1200.5 10
126 | Cilt/ Volume 59 | Sayi / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

Increasing resource costs discourage capacity expansion. This is evident in higher resource utilization rates
observed for larger problem instances in Tables 2 and 3. As problem size grows, more overlapping
reservations occur, allowing for denser resource scheduling, and consequently, higher reservation and
return processing levels. However, this increased efficiency comes at the cost of higher resource utilization,
which is directly linked to increased resource costs. In summary, the developed algorithm including all
improvement heuristics produces exceptionally high-quality solutions under one second for small problems
(n = 20). It significantly outperforms CPLEX in terms of both solution speed and quality when handling
larger problem instances. Moreover, the algorithm demonstrates consistent performance across various
parameter settings, including return and cost values.

4.1. Effect of Improvement Algorithms and the Number of Iterations

To observe individual performances of the improvement algorithms, the CRS Algorithm is executed for 100
iterations including all improvement algorithms, for 600 instances with ¢ = 1 including the largest instances
(n =500). Table 4 presents the results of these experiments. The columns labeled as Best0 through Best3
in the table illustrate in how many of the instances the resulting solution is determined by the corresponding
improvement algorithm. Best0 indicates the case of no improvement. As an example, the first row of the
table indicates that for 1 of the 10 instances in this setting, the best solution is obtained without applying
any improvement. For another problem instance in this setting, the best solution is achieved after
Improvement1. For the remaining 8 instances, the best solution is output by Improvement3. These columns
clearly reveal the effectiveness of the improvement heuristics. The best solution is obtained without using
any improvement in only 19 of the 600 test instances. For most (546 instances in total), the best solution is
found after applying Improvement3. While Improvement3 seems to be the most effective in this regard, it
should be noted that improvements are applied sequentially to the solution, i.e. Improvement3 is applied
after Improvement2. This result will be investigated further below.

The columns Imp1% through Imp3% indicate the percentage increase in the objective function by each
improvement algorithm. For example, in the last row of the table, we can observe that Improvement1 was
futile, yielding no increase in the objective function value. In contrast, a substantial improvement of 9.1%
was achieved after Improvement2. After Improvement3, an additional 0.4% was obtained. The results in
the table reveal that the best improvements can be obtained by Improvement2. On average, Improvement2
(Swap&Insert) brings 12.4% enhancement to the objective, followed by Improvement3 (Shift&Insert) with
7.1% and Improvement1 (Insert) with 1.3%.

The columns CPU71% through CPU3% present average solution times of improvement algorithms as a
percentage of the overall solution time of the CRS Algorithm, whereas CPU0% indicate the time consumed
by the remaining parts of the algorithm. As an example, the last row of the table shows that Improvement2
took 92.6% of the overall solution time on average for n = 500, b-r = 2, w = 3 and p = 2. The whole 100
iterations of the algorithm with no improvement took only 0.7% of the 1302.8 seconds, whereas
Improvement3 used up 6.5% of total solution time. It can be concluded that the best improvements come
with a cost of solution time. Averaging over all test instances, Improvement2 consumes 84.5% of the overall
solution time whereas Improvement3 spends only 10.0%, the iterations take 3.3%, and Improvement1 only
1.0%. For the largest instances, the percentages of Improvement2 are amplified, reaching to approximately
93% of the total solution time. The CPU (sec.) column presents the average solution times of the algorithms.
Only one of the largest set of solution instances have taken more than 1200 seconds on the average,
namely the setting with n =500, b-r=2, w=3 and p = 2.

Due to time-consuming nature of Improvement2, we further investigate if it is possible to obtain better
solutions with different improvement schemes and iteration limits. For this purpose, new runs are carried
out for the same instances in Table 4 with 100 and 500 iterations. The results are summarized in Table 5.
The CPU (sec.) column is identical to the one in Table 4, presenting average solution times with all
improvements at each iteration and a total of 100 iterations, which constitute the base setting for the
algorithm.

The next two columns exhibit performance when the CRS Algorithm is executed for 100 iterations only with
Improvement1 and Improvement3. The column Nolmp2% lists the average percentage decline in the
objective function value as compared to the base setting, and Nolmp2 CPU (sec.) present the average
solution times for this case. It is observed that the individual effect of Improvement2 is up to 5% for large
problems, while it brings an average 2% improvement over all instances, which are both quite significant.
However, this reward comes at a substantial cost of solution time; there is a dramatic reduction in solution
times when Improvement2 is not applied (from ~150 to ~14 seconds, averaged over all instances).

Verimlilik Dergisi / Journal of Productivity | 127



128

Table 4. Performance of the improvement algorithms

Ugur Eliiyi

Imp1 Imp2 Imp3 CPUO CPUT1 CPU2 CPU3 CPU
n_b-r w p BestOBest1 Best2 Best3 % % % % % % % (sec.)
20 1 1 1 1 1 0 8 62 00 81 120 00 697 183 0.1
2 1 0 0 9 05 18 742 08 00 827 165 0.1
2 1 3 0 0 7 15 00 212 132 0.0 645 123 0.1
2 7 0 0 3 00 00 529 116 50 764 7.0 0.1
3 1 1 1 0 8 00 00 05 95 25 593 187 0.1
2 3 1 1 5 00 31 02 73 00 927 00 0.1
2 1 1 0 0 0 10 35 00 180 13 39 576 273 01
2 0 0 0 10 08 03 117 00 53 823 123 01
2 1 0 0 0 10 89 00 85 83 00 467 250 0.0
2 2 0 0 8 400 00 818 115 08 714 163 041
3 1 0 0 0 10 14 00 34 83 25 525 16.7 0.1
2 0 1 0 9 38 00 70 85 00 685 230 0.1
50 1 1 1 0 0 1 9 1.3 104 109 19 0.0 833 149 04
2 0 0 2 8 00 144 34 53 20 869 58 0.8
2 1 0 0 0 10 10 138 68 18 06 87.0 106 06
2 1 0 1 8 19 120 135 83 32 712 173 03
3 1 0 0 3 7 00 91 33 25 04 89.0 8.1 0.6
2 0 0 2 8 00 88 32 43 14 879 63 0.6
2 1 1 0 0 0 10 08 311 59 33 06 844 117 07
2 0 0 0 10 03 192 68 43 25 869 64 1.1
2 1 0 0 1 9 01 130 72 40 24 788 149 0.6
2 0 0 0 10 20 126 96 42 25 803 129 05
3 1 0 0 0 10 00 92 20 31 04 862 103 038
2 0 0 1 9 04 100 32 66 29 819 386 0.8
100 1 1 1 0 0 0 10 01 286 39 27 08 878 86 3.2
2 0 0 0 10 03 181 37 26 1.0 899 65 5.2
2 1 0 0 0 10 00 140 29 21 07 889 83 2.9
2 0 0 0 10 01 149 52 40 23 851 86 1.9
3 1 0 0 2 8 02 95 14 20 05 916 59 4.0
2 0 0 0 10 00 109 18 28 13 887 72 4.0
2 1 1 0 0 0 10 00 273 38 19 12 886 84 47
2 0 0 0 10 01 237 33 34 13 879 74 7.1
2 1 0 0 0 10 05 169 35 24 06 869 100 34
2 0 0 0 10 01 266 34 42 24 836 938 3.7
3 1 0 0 1 9 00 90 11 18 07 907 6.8 5.0
2 0 0 1 9 00 119 20 24 07 897 72 6.4
200 1 1 1 0 0 0 10 02 235 20 13 04 901 82 241
2 0 0 0 10 02 169 11 17 04 908 71 39.9
2 1 0 0 0 10 00 162 14 12 04 908 7.7 20.2
2 0 0 1 9 01 196 28 13 07 9.5 75 212
3 1 0 0 0 10 00 87 07 10 04 925 6.1 271
2 0 0 2 8 00 97 09 17 05 916 6.2 36.0
2 1 1 0 0 0 10 01 260 25 11 04 905 8.0 331
2 0 0 0 10 00 207 19 18 05 904 72 608
2 1 0 0 0 10 00 141 18 12 04 904 81 31.5
2 0 0 2 8 01 224 15 17 07 892 84 296
3 1 0 0 0 10 00 78 07 11 03 917 69 373
2 0 0 0 10 00 97 11 15 05 917 64 515
500 1 1 1 0 0 0 10 00 214 11 06 02 901 9.1 4085
2 0 0 0 10 00 121 11 10 03 883 104 786.2
2 1 0 0 1 9 00 144 06 05 02 915 7.8 41438
2 0 0 0 10 00 179 10 07 03 902 88 3594
3 1 0 0 0 10 00 71 03 06 02 919 74 4622
2 0 0 6 4 00 92 01 07 02 912 79 7751
2 1 1 0 0 0 10 00 218 13 06 02 916 7.7 6875
2 0 0 0 10 00 166 12 10 02 897 9.1 114338
2 1 0 0 0 10 00 138 09 05 01 917 7.6 6957
2 0 0 2 8 00 178 08 07 02 920 7.1 7298
3 1 0 0 0 10 00 60 04 05 01 925 6.9 803.1
2 0 0 1 9 00 91 04 07 02 926 6.5 13028
Cilt/ Volume 59 | Sayi / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

Table 5. Effect of improvements and number of iterations on algorithm performance

Nolmp2 500 500 500

CPU Nolmp2 CPU 500 500 Nolmp2 Nolmp 500 Nolmp Onelmp  Onelmp

n _b-rw p (sec.) % (sec.) Nolmp2 % CPU (sec.) % CPU (sec.) % CPU (sec.)
20111 041 0.0 0.0 0.0 0.1 1.3 0.1 1.3 0.1
2 01 0.0 0.0 -0.5 0.1 6.0 0.1 55 0.1
21 01 0.0 0.0 0.0 0.2 2.0 0.1 20 0.1
2 01 0.0 0.0 0.0 0.3 0.0 0.1 0.0 0.1
31 041 0.0 0.0 -0.2 0.1 0.1 0.1 -0.2 0.1
2 01 0.0 0.0 -2.2 0.2 -1.5 0.1 -2.0 0.1
211 01 0.0 0.0 -0.9 0.1 4.4 0.1 22 0.1
2 01 -0.7 0.0 -0.9 0.3 5.5 0.1 4.8 0.1
21 00 0.0 0.0 -0.2 0.2 10.5 0.1 6.0 0.1
2 01 0.0 0.0 -13.1 0.3 10.2 0.1 10.2 0.1
31 041 0.0 0.0 -0.4 0.2 1.7 0.1 1.4 0.1
2 01 0.0 0.0 -0.7 0.2 4.9 0.1 3.1 0.1
50111 04 2.0 0.1 -0.2 0.6 15.2 0.2 8.3 0.2
2 08 1.6 0.2 -0.5 0.9 12.1 0.5 53 0.5
21 06 0.1 0.1 -1.1 0.5 11.2 0.3 6.4 0.3
2 03 1.8 0.1 -1.5 0.6 12.0 0.2 11.2 0.3
31 06 0.3 0.1 -0.1 0.6 8.8 0.3 3.1 0.4
2 06 22 0.2 0.5 0.7 8.2 0.3 28 0.4
211 07 1.1 0.2 -2.3 0.8 17.6 0.3 55 0.4
2 11 1.6 0.3 -2.5 1.1 17.2 0.6 8.2 0.9
21 06 2.0 0.2 0.9 0.8 13.8 0.2 7.9 0.3
2 05 1.6 0.2 -1.1 0.7 12.5 0.3 6.9 0.6
31 08 0.8 0.2 0.0 0.7 8.9 0.3 28 0.4
2 08 0.2 0.2 -1.8 0.9 9.6 0.4 54 0.7
1001 11 3.2 1.3 0.6 -1.5 2.7 20.6 0.7 4.6 0.9
2 52 3.0 0.8 0.9 4.1 14.9 1.3 6.0 1.6
21 29 24 0.5 1.0 23 13.1 0.7 4.0 0.9
2 19 3.0 0.4 -0.2 1.8 13.8 0.7 44 0.8
31 40 1.5 0.6 0.7 25 8.8 0.9 3.1 1.1
2 40 3.0 0.7 2.0 2.9 10.0 1.1 25 1.4
2 11 47 3.3 0.7 1.9 3.6 21.8 0.9 5.4 1.1
2 71 2.1 1.2 0.7 5.6 18.5 1.7 71 2.0
21 34 2.0 0.6 1.0 3.0 15.6 0.8 4.1 1.0
2 37 4.0 0.7 0.9 3.3 18.1 0.9 7.0 1.2
31 50 1.3 0.7 0.6 3.5 8.1 1.0 3.7 1.2
2 64 2.0 0.9 0.2 43 10.7 1.5 5.0 1.8
2001 1 1 241 25 3.2 1.9 16.7 18.5 3.1 26 3.5
2 399 2.0 5.0 1.8 24.8 13.4 5.6 28 6.5
21 20.2 2.0 26 1.3 13.2 13.6 26 1.9 3.1
2 212 47 2.2 3.0 11.8 15.6 29 4.9 3.4
31 271 1.6 29 1.4 14.9 7.6 3.3 1.9 3.9
2 36.0 2.7 4.3 1.8 19.5 8.8 4.7 2.2 5.6
2 11 331 4.1 4.1 2.4 21.4 20.1 4.0 4.2 4.3
2 60.8 3.1 7.4 1.5 39.2 16.6 8.2 3.2 8.9
21 315 23 3.8 1.3 19.1 12.5 3.5 22 3.9
2 296 25 3.5 1.1 18.4 16.2 3.6 3.6 4.4
31 373 0.8 4.0 0.4 20.4 6.8 4.0 1.5 4.5
2 515 2.2 5.4 1.3 28.0 9.3 6.0 1.9 7.2
500 1 1 1 4085 4.8 48.8 4.2 248.3 17.1 241 29 27.9
2 786.2 5.0 94.2 3.9 486.5 11.8 52.7 3.9 62.5
2 14148 36 41.7 3.0 203.2 12.1 21.8 23 26.2
2 3594 55 31.9 43 157.0 14.6 19.9 3.5 24.0
314622 15 443 1.5 226.5 6.1 25.4 1.3 30.8
2 7751 31 72.0 2.6 355.5 8.0 41.7 1.5 49.6
2 116875 44 63.9 3.7 328.5 17.8 30.5 3.4 37.0
211438 2.7 134.2 1.9 667.0 14.7 68.4 3.5 80.8
2 16957 25 56.4 2.0 284.5 12.0 26.8 1.6 32.6
2 7298 4.2 55.5 3.3 292.9 14.7 30.0 4.2 35.9
318031 0.9 60.4 0.8 311.2 5.3 32.6 1.2 39.8
21302.8 1.9 98.9 1.5 4911 8.4 52.8 2.2 62.9

Verimlilik Dergisi / Journal of Productivity

129



Ugur Eliiyi

The columns 500 Nolmp2 % and 500 Nolmp2 CPU present the results when the CRS Algorithm is executed
for 500 iterations only with Improvement1 and Improvement3 at each iteration, in an attempt to improve the
quality of solutions without the burden of the extra time by Improvement2. It can be seen that the solution
times in this case are approximately half of the base setting with Improvement2 and 100 iterations. Hence,
the second improvement algorithm has a higher contribution to the solution time than the number of
iterations. The negative percentages for small problems in the 500 Nolmp2 % column imply that better
solutions can be obtained with this version as compared to the base setting, meaning that the randomization
in the algorithm pays off over a larger number of iterations. On the other hand, although the number of
iterations is fewer in the base setting, Improvement?2 still brings up to 4.3% increase in the objective for
large problem instances.

The effect of the other two improvement algorithms on solution quality and time are also tested. For this
purpose, the next two columns of Table 5 present the results when the CRS Algorithm is run for 500
iterations with no improvement. It can be seen that solution times are all less than 1 minute, even for the
largest problem instances. However, the decline in the quality of solutions as compared to the base setting
is considerable; up to 22% for some problem instances and 11% on the average. The solutions are
significantly worse when compared to the previous setting, as well. Although these improvement algorithms
take a considerable amount of time, they are quite effective in improving the solutions.

Finally, in an attempt to benefit from the effects of all improvement algorithms while reducing the solution
time, the CRS Algorithm is run for 500 iterations, and all improvement algorithms are applied only once to
the best solution at the end of all iterations. The results are listed in the 500 Onelmp % and 500 Onelmp
CPU (sec.) columns. The percentages represent the average decline in the objective value as compared
to the base setting. An average 4% decline is observed over all instances while the solution time is
drastically reduced. This setting of the algorithm provides the closest solution quality to the base setting
with much shorter run times for the largest problems with n = 500, although there is an average decline in
solution quality of 2.6% for this instance set.

Due to the dynamic characteristic of the problem environment, short solution times might be preferable.
Therefore, if small computation times are desired, the CRS Algorithm should be executed with 500 iterations
(or more) without Improvement2, or with a single post-iterations execution of all improvement algorithms
(the last setting). Since the solution times are ignorable for any combination for small problem instances (n
= 20 and 50), running all combinations and selecting the best solution may also be an option. For larger
problem instances, the solution quality improves with Improvement2, and therefore the base setting of the
algorithm seems to be most appropriate, as the trade-off between solution quality and computation time is
evident especially for these instances. The algorithm's improved solution quality justifies the increased
processing time. Additionally, the algorithm demonstrates efficiency in handling large-scale problems,
providing quick and effective results. The decision to increase the number of iterations for further refinement
remains at the discretion of the decision-maker.

6. CONCLUSION

In this study, we consider the Combined Reservation Scheduling (CRS) problem for deciding the capacity
and determining the schedule in systems where the incoming reservation requests have time windows for
processing. The resources have varying fixed costs of usage. Many application areas are reviewed for the
problem, as well as related literature. Our research contributes to literature and practice by introducing a
novel heuristic approach to address this critical problem.

A randomized constructive heuristic is proposed for obtaining near-optimal solutions, employing effective
improvement algorithms. We evaluate the performance of the developed algorithms through extensive
computational experiments, testing different iteration limits and improvement schemes. The heuristic
approach significantly outperforms CPLEX for problem instances up to 200 reservations. While
computational time grows with problem size, primarily due to improvement algorithms, the algorithm's
overall performance remains robust, meaning that this practical and effective approach can be directly
implemented by industry practitioners and decision-makers.

As to the best of our knowledge, ours is the first study to propose heuristic algorithms for simultaneous
capacity and scheduling decisions for the CRS problem. Our findings can provide significant positive social
and economic benefits across various industries through optimization of resource use and scheduling. It is
expected that the fast and effective solution approaches developed for this unique, important and novel
problem will shed light on subsequent studies by laying the groundwork for future research. Effective
solutions for large instances hold significant value for industries such as tourism, healthcare, transportation,
logistics, and manufacturing. For example, our proposed approach can optimize gate assignments at
airports by simultaneously determining the optimal number of gates to use and their corresponding
schedules, considering varying gate costs.

130 | Cilt/ Volume 59 | Say1 / Issue 1



Efficient Solution Algorithms for Resource Planning and Scheduling in Seasonal Reservation Systems

The modular structure of the randomized algorithm can be easily adjusted by inclusion or exclusion of
improvement algorithms and modification of the iteration limit. The proposed heuristic effectively addresses
the problem, demonstrating superior performance compared to CPLEX for large problem instances. Its
efficiency and adaptability make it a valuable tool for practitioners. While the current approach yields
excellent results, future research could explore optimization with machine learning, or the potential of
metaheuristics like genetic algorithms, tabu search, or particle swarm optimization. Comparative studies
with the proposed heuristic could provide valuable insights. Additionally, incorporating factors such as
resource shifts, availability constraints and time-dependent operating costs could enhance the model's
applicability to a wider range of real-world scenarios. These additional features may be worth investigating
in environments where the resources/servers are outsourced in a daily manner instead of long-term
contracts.

Conflict of Interest
No potential conflict of interest was declared by the author.

Funding
Any specific grant has not been received from funding agencies in the public, commercial, or not-for-profit
sectors.

Compliance with Ethical Standards
It was declared by the author that the tools and methods used in the study do not require the permission of
the Ethics Committee.

Ethical Statement
It was declared by the author that scientific and ethical principles have been followed in this study and all
the sources used have been properly cited.

@ @ @ The authors own the copyright of their works published in Journal of Productivity and
their works are published under the CC BY-NC 4.0 license.

Verimlilik Dergisi / Journal of Productivity | 131



Ugur Eliiyi
REFERENCES

Azizoglu, M. and Bekki, B. (2008). “Operational Fixed Interval Scheduling Problem on Uniform Parallel Machines”,
International Journal of Production Economics, 112(2), 756-768. https://doi.org/10.1016/j.ijpe.2007.06.004

Bard, J.F. and Rojanasoonthon, S. (2006). “A Branch-and-Price Algorithm for Parallel Machine Scheduling with Time
Windows and Job Priorities”, Naval Research Logistics, 53(1), 24-44. https://doi.org/10.1002/nav.20118

Barshan, M., Moens, H., Famaey, J. and De Turck, F. (2016). “Deadline-Aware Advance Reservation Scheduling
Algorithms for Media Production Networks”, Computer Communications, 77(1), 26—40.

Eliiyi, D.T. and Azizoglu, M. (2009). “A Fixed Job Scheduling Problem with Machine-Dependent Job Weights”,
International Journal of Production Research, 47(9), 2231-2256. https://doi.org/10.1080/00207540701499499

Eliiyi, D.T. and Azizoglu, M. (2011). “Heuristics for Operational Fixed Job Scheduling Problems with Working and
Spread Time Constraints”, International Journal of Production Economics, 132(1), 107-121.
https://doi.org/10.1016/j.ijpe.2011.03.018

Eliiyi, D.T., Korkmaz, A.G. and Cigek, A.E. (2009). “Operational Variable Job Scheduling with Eligibility Constraints: A
Randomized Constraint-Graph-Based Approach”, Technological and Economic Development of Economy, 15(2),
245-266. https://doi.org/10.3846/1392-8619.2009.15.245-266

Eliiyi, U. (2021). “Seasonal Reservation Scheduling with Resource Costs: A Mathematical Modeling Approach”, izmir
iktisat Dergisi, 36(2), 409-422. https://doi.org/10.24988/ije.202136211

Faigle, U., Kern, W. and Nawijn, W.M. (1999). “A Greedy Online Algorithm for the k-track Assignment Problem”, Journal
of Algorithms, 31(1), 196-210. https://doi.org/10.1006/jagm.1998.1001

Fischetti, M., Martello, S. and Toth, P. (1987). “The Fixed Job Schedule Problem with Spread-Time Constraints”,
Operations Research, 35(6), 849-858. https://doi.org/10.1287/opre.35.6.849

Fischetti, M., Martello, S. and Toth, P. (1989). “The Fixed Job Schedule Problem with Working-Time Constraints”,
Operations Research, 37(3), 395-403. https://doi.org/10.1287/opre.37.3.395

Fischetti, M., Martello, S. and Toth, P. (1992). “Approximation Algorithms for Fixed Job Schedule Problems”, Operations
Research, 40(S1), 96-108. https://doi.org/10.1287/opre.40.1.S96

Gabrel, V. (1995). “Scheduling Jobs within Time Windows on Identical Parallel Machines”, European Journal of
Operational Research, 83(2), 320-329. https://doi.org/10.1016/0377-2217(95)00010-N

Garcia, J.M. and Lozano, S. (2005). “Production and Delivery Scheduling Problem with Time Windows”, Computers &
Industrial Engineering, 48(4), 733-742. https://doi.org/10.1016/j.cie.2004.12.004

Gertsbakh, I. and Stern, H.I. (1978). “Minimal Resources for Fixed and Variable Job Schedules”, Operations Research,
26(1), 68-85. https://doi.org/10.1287/opre.26.1.68

Kolen, A.J.W. and Kroon, L.G. (1991). “On the Computational Complexity of (Maximum) Class Scheduling”, European
Journal of Operational Research, 54(1), 23-38. https://doi.org/10.1016/0377-2217(91)90320-U

Kolen, A.J.W. and Kroon, L.G. (1992). “License Class Design: Complexity and Algorithms”, European Journal of
Operational Research, 63(3), 432-444. https://doi.org/10.1016/0377-2217(92)90160-B

Kolen, A.J.W. and Kroon, L.G. (1993). “On the Computational Complexity of (Maximum) Shift Class Scheduling”,
European Journal of Operational Research, 64(1), 138-151. https://doi.org/10.1016/0377-2217(93)90014-E

Kolen, A.J.W., Lenstra, J.K., Papadimitriou, C.H. and Spieksma, F.C.R. (2007). “Interval Scheduling: A Survey”, Naval
Research Logistics, 54(5), 530-543. https://doi.org/10.1002/nav.20231

Kovalyov, M.Y., Ng, C.T. and Cheng, T.C.E. (2007). “Fixed Interval Scheduling: Models, Applications, Computational
Complexity and Algorithms”, European Journal of Operational Research, 178(2), 331-342.

Rojanasoonthon, S., Bard, J.F. and Reddy S.D. (2003). “Algorithms for Parallel Machine Scheduling: A Case Study of
the Tracking and Data Relay Satellite System”, Journal of the Operational Research Society, 54(8), 806-821.

Rojanasoonthon, S. and Bard, J.F. (2005). “A GRASP for Parallel Machine Scheduling with Time Windows”, INFORMS
Journal on Computing, 17(1), 32-51. https://doi.org/10.1287/ijoc.1030.0048

Spieksma, F.C.R. (1999). “On the Approximability of An Interval Scheduling Problem”, Journal of Scheduling, 2(5), 215-
227. https://doi.org/10.1002/(SICI1)1099-1425(199909/10)2:5%3C215::AID-JOS27%3E3.0.CO;2-Y

Steiger, C., Walder, H. and Platzner, M. (2004). “Operating Systems for Reconfigurable Embedded Platforms: Online
Scheduling of Real-Time Tasks”, [|EEE Transactions on Computers, 53(11), 1393-1407.
https://doi.org/10.1109/TC.2004.99

Wolfe, W.J. and Sorensen, S.E. (2000). “Three Scheduling Algorithms Applied to the Earth Observing Systems
Domain”, Management Science, 46(1), 148-168. https://doi.org/10.1287/mnsc.46.1.148.15134

Yu, G. and Jacobson, S.H. (2020). “Primal-Dual Analysis for Online Interval Scheduling Problems”, Journal of Global
Optimization, 77, 575-602. https://doi.org/10.1007/s10898-020-00880-5

132 | Cilt/ Volume 59 | Sayi / Issue 1


https://doi.org/10.1016/j.ijpe.2007.06.004
https://doi.org/10.1002/nav.20118
https://doi.org/10.1080/00207540701499499
https://doi.org/10.1016/j.ijpe.2011.03.018
https://doi.org/10.3846/1392-8619.2009.15.245-266
https://doi.org/10.24988/ije.202136211
https://doi.org/10.1006/jagm.1998.1001
https://doi.org/10.1287/opre.35.6.849
https://doi.org/10.1287/opre.37.3.395
https://doi.org/10.1287/opre.40.1.S96
https://doi.org/10.1016/0377-2217(95)00010-N
https://doi.org/10.1016/j.cie.2004.12.004
https://doi.org/10.1287/opre.26.1.68
https://doi.org/10.1016/0377-2217(91)90320-U
https://doi.org/10.1016/0377-2217(92)90160-B
https://doi.org/10.1016/0377-2217(93)90014-E
https://doi.org/10.1002/nav.20231
https://doi.org/10.1287/ijoc.1030.0048
https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5%3C215::AID-JOS27%3E3.0.CO;2-Y
https://doi.org/10.1109/TC.2004.99
https://doi.org/10.1287/mnsc.46.1.148.15134
https://doi.org/10.1007/s10898-020-00880-5

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. SOLUTION ALGORITHMS FOR THE CRS PROBLEM
	3.1. The CRS Model
	3.2. A Randomized Heuristic for the CRS Problem
	4. COMPUTATIONAL EXPERIMENTATION
	4.1. Effect of Improvement Algorithms and the Number of Iterations
	6. CONCLUSION
	REFERENCES

