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Abstract : Learning and memory formation in living things is a subject under investigation. It is thought
that the memory formed in the brain’s neural network structure is closely related to the connections between
neurons. Connections called "motifs" have been identified, usually consisting of three or four neurons and
repeating within the neural network. The basic structure of biological memory is thought to be related to
such repetitive neural connections. In this study; the effect of the structures of motifs on short- and long-term
memory was examined for all triple-neuronal network motifs. We used the Hodgkin-Huxley model of neurons.
Using graph theory, we generated all triple-neuron motifs. In the created motifs; the effects of synaptic inputs
between neurons, types of synaptic inputs of neurons, and chemical synapse duration on short- and long-term
memory were examined. From the data obtained in all triple-neural network motif models; from the structure
of the motif and the type of synaptic input, we determined the status of long- and short-term memory. We
classified all triple-neural network motifs for situations in which they exhibit short- and long-term memory
behaviour. We show that short-term memory varies with synaptic connection duration

Keywords : Brain neural network motifs, intercellular synaptic type, short-term memory, synaptic
conductivity time, long-term memory

1 Introduction
How learning occurs in living things is investigated by biological experiments and computational methods. In order to elucidate
this issue, studies on neuronal connections are beingmade [1] Intercellular synaptic inputs are being studied [2]. The connections
formed between neurons are considered to be an important factor in memory formation. In order to support these studies, studies
describing neural network structures have been carried out [3]. In fact, brain neuron network connection maps of some living
things have been obtained [4]–[10]. These network maps, which are also the graphical representation of dynamic systems, are
used to analyse the complex structures of biological systems [5]. The behaviour of neurons forming the networks in the learning
process has been followed by biological studies and important data have been obtained [11]. It has been observed in biological
experimental studies that while living things are learning, new connections are established between neurons, some of which
are temporary and some are permanent [12]–[18]. Changes related to the learning process have been observed in the dendrites
of neurons [19]. In these studies, it was also observed that some interneuron connections detected in neuronal networks were
frequently repeated within the network. These special-function subnet links are named “Network motif”. [4], [6]–[8], [13], [20]–
[23]. Here the term “Network motif” refers to directed subgraphs. Motifs containing such triple-neurons are common in many
biological environments [1]. These network motifs are modelled by computational neuroscience studies and their roles in their
environments are investigated [24], [25]. Computational neuroscience uses computational techniques to model neural networks
[26]–[28]. Thus, the functions of network motifs are investigated by means of computational models [7], [19]. It is thought that
biological memory systems where learning takes place include such network motifs with memory capability [15]. Neurons in
triple neural network motifs are usually; are named as input, output and driver neurons [7], [29]. It is thought that especially
interneuron connections are effective in the formation of long and short-term memory [30]. Short-term memory, where thinking
and information processing takes place, is considered to be the most functioning part of memory [26]. It is considered that
the type of synaptic input between neuron groups is effective in the functioning of short-term memory, which is one of the
important parts of memory. It is thought that storing information in long-term memory is possible with permanent, functional,
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biochemical and structural changes that occur in neural connections in the brain [16], [31]–[33]. Experimental studies have
shown that neurons are electrically active and usually communicate via chemical synapses. Chemical synaptic communication
between neurons has also been modelled mathematically [34]. In some modelling studies, the responses of motifs to stimuli
have been interpreted as short- and long-term memory behaviour. In these studies; some special network motif constructs and
simpler neuron models (such as the Integrate and Fire Neuron Model) are used. For the synaptic input between neurons, a
noise signal was applied to the postsynaptic cell, representing signals from other neurons. In some models, the synaptic weight
parameter was used to express the total synaptic input to the dendrites [7]. All these studies have not yet fully revealed how
learning takes place. How long- and short-term memory formation, learning, remembering, and forgetting occur in neurons
is being investigated [35]. During learning, synaptic input changes were observed between neurons. Although this suggests
that connectivity is effective in learning, the occurrence of this change has not been fully explained [36]. While Biological
studies investigate the adaptive changes of the brain during learning, on the other hand, computational neuroscience studies try
to model the learning process. The parameters that are effective in the retention of information during and after the learning
process have not been fully explained. Understanding the learning functions of the brain will benefit the diagnosis and treatment
of many diseases [37]. When the motif behaviours are learned, the properties of the network environments to be obtained by
motif multiplexing can also be learned [38]. Although the behaviour of some neural network motifs has been investigated,
especially in connectivity studies, there is no comprehensive motif model study. In addition, in learning research; no detailed
studies on motif structure, intercellular synaptic entry type and synapse duration have been performed. The findings of our
study will reveal the analysis of all triple neural network motifs on the effect of connectivity in learning. Our work; it is based
on the thesis that learning is directly related to the type of synaptic input and motif structures between neurons. To this end, we
examined some factors that affect the short- and long-term memory behaviour of all three-neuron motifs. Using graph theory,
we systematically constructed all three-neuron motifs. First, we studied the basic motif connections, which are used in many
studies in the literature. In these studies, the effect of synaptic input types of neurons was revealed. Considering the findings
obtained here, the memory behaviour of triple neural network motifs was studied. Motifs were evaluated considering neuron
roles. In the studied motifs, after the learning information was given to the input neuron in the form of electrical signals, the
electrical effect on the output neuron was examined. The persistence of the output signal (action potentials) was interpreted as
long-term memory behaviour, and its temporality (ending after a while) was interpreted as short-term memory behaviour. With
this approach, we examined short- and long-term memory behaviour in motifs, across all possibilities of neurons’ synaptic input
types. We also studied the effect of time constant variation in the interneuron chemical synapse model on short-term memory
duration. The prolongation of the synapse duration was made by increasing the time constant of the model. This means that
one neuron continues to excite the other.In these studies, how learning happens is evaluated in terms of connectivity. Thus, it
is aimed to contribute to the solution of neurological diseases such as learning problems, forgetting, memory loss, dementia,
Alzheimer’s, etc. From the findings of the study, it has been shown that memory formation is highly related to the following
factors:

• With the interneuron connections that form the neural network motifs,
• With synaptic input types between neurons,
• With the duration of synapse between neurons.

2 Materials and Methods
The deterministic Hodgkin-Huxley neuron modelling method used in our study is one of the most basic and successful models.
Modelling was performed in the MATLAB software environment.

2.1 Modelling of Neuron and Neural Network Motifs
In our study, we used Hodgkin-Huxley’s neuron model, which is frequently used in many studies, to model the neurons forming
the motifs. While the neuron was modelled as a single compartment of the soma and deterministic, signal transmission between
neurons was modelled as a chemical synapse [39]–[43]. Synaptic inputs between neurons; were added to the electrical model
with excitatory (E) or inhibitory (I) potential values [34], [40], [44]. In triple neural network motifs, in addition to external
current input to neurons, synaptic input is made from one or two neurons depending on the motif structure. The electrical
models of neurons according to the inputs they receive are shown in Figure 1 [40]. Ion channels in the cell membrane of the
neuron are responsible for its electrical behaviour. These channels allow the neuron to generate an action potential. ENa, EK , EL
expressions are among the parameters in the electrical solution of the model, the equilibrium potentials of the ion channels. Vm is
neuron membrane voltage, Vr is neuron membrane voltage at rest, Cm is neuron membrane capacitance. GNa, GK conductivity
values of sodium Na+ and potassium K+ channels GNa, GK , maximum conductivity in the neuron membrane, GL is leakage
current conductivity equation (16-17). In the model, for the Na+ ion channel, three identical activationsm3 and one inactivation
gate (h) and the ion K+ is defined with four identical activations n4 gates equation (13-15). The voltage-dependent transition
rate constants between the open-and-close states of an ion channel are defined as: αVm and βVm equation (2-9). Steady-state
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activation of Na+ current is defined as m∞, inactivation as h∞ and steady-state activation of K+ current is defined as n∞
equation (10-12).The solution of the single-compartment neuron modelled with the electrical circuit shown in Fig.1-a is given
in equation 1.

Cm(dVm)/dt = −GL(Vm − EL)− GNa(Vm − ENa)− GK (Vm − EK ) + Iinj(t) (1)

αm = (
−0.1(Vm − Vr − 25)

exp(−(Vm − Vr − 25)/10)− 1
) whereas Vr − Vm > 24, 99 (2)

αm = (
−1

exp(−(Vm − Vr − 25)/10)
) whereas Vr − Vm <= 24.99 (3)

βm = 4(exp(−(Vm − Vr)/18)) (4)

αh = 0.07(exp(−(Vm − Vr)/20)) (5)

βh = (
1

1 + exp(−(Vm − Vr − 30)/10)
) (6)

αn = (
0.01(Vm − Vr − 10)

1 + exp(−(Vm − Vr − 10)/10)
) whereas Vr − Vm > 9.99 (7)

αn = (
0.1

exp(−(Vm − Vr − 10)/10)
) whereas Vr − V_m <= 9.99 (8)

βn = 0.125(exp(−(Vm − Vr)/80)) (9)

m∞(Vm) = αm(Vm)/(αm(Vm) + βm(Vm)) (10)

h∞(Vm) = αh(Vm)/(αh(Vm) + βh(Vm)) (11)

n∞(Vm) = αn(Vm)/(αn(Vm) + βn(Vm)) (12)

dm
dt

= αm(Vm)(1− m) + βm(Vm)m (13)

dh
dt

= αh(Vm)(1− h) + βh(Vm)h (14)

dn
dt

= αn(Vm)(1− n) + βn(Vm)n (15)

GNa = GNam3h (16)

GK = ḠKn4 (17)

Neurotransmitter-activated ion channels, which are electrically excited when synaptic input arrives in the interneuron
connection, are defined by time-dependent gsyn(t) conductivity, as seen in equation (18) [45]. The synaptic communication
current of the model we used is shown in equation (20), and the addition of the current to the electrical circuit is shown in Figure
1(d). Dynamics involving multiple synaptic inputs to a neuron, that is, multiple synapse inputs, are as shown in equation (20)
[40]. Neural network motifs are created with neurons communicating with this method.

gsyn(t) = gmax
t
τ
e(1−

t
τ ) (18)

56 ECJSE Volume 12, 2025



Investigation of Factors Affecting Motif-Based ... ...

Figure 1: (a) Neuron model with only external current input. (b) Neuron model with external current input and single
synaptic input. (c) Neuron model with only one synaptic input. (d) Neuron model with two synaptic inputs

Figure 2: (a) Directed motif comprising 3-neuron and 5 links. (b) Adjacency matrix Adj.

Isyn(t) = gsyn(t)(Vm − Esyn) (19)

Cm
dVm
dt

+ grestVm + gsyn(1)(t)(Vm − Esyn(1)) + gsyn(2)(t)(Vm − Esyn(2)) + ... = 0 (20)

The parameters obtained from the biological experimental studies of Hodgkin-Huxley were used in the motif models.
Commonly used model parameter values GNa = 120ms/cm2, GK = 36ms/cm2, GL = 0.3ms/cm2, ENa = 50mV ,
EK = −77mV , EL = −54.4mV , Cm = 1µF/cm2, Vr = −65mV . In synaptic input reversal potentials were used as:
Esyn = −70mV for inhibitor (I), Esyn = −10mV for excitatory (E), maximum synaptic conductivity gmax = 64nS, synaptic
conductivity time constant τ = 25ms [45]–[47]. For numerical solutions of Euler differential equations, the time step interval
was chosen as∆t = 10µs. To model neuron and neural network motifs, we created simulation software using these parameters
suitable for experimental studies. In our study, the Hodgkin-Huxley model, which contains more parameters and is closer to the
behaviour of the neuron, was preferred for neuron modelling. In experimental studies on neurons communicating with chemical
synapses; it has been observed that when the synaptic input type of the presynaptic neuron is Excitatory (E), action potentials
are formed in the postsynaptic neuron. It has been observed that when the synaptic entry type is blocker (I), it prevents the
formation of action potentials.

2.2 Generating All Triple-Neuron Brain Network Motifs Using Graph Theory
Graph theory is a mathematical method used to model complex biological systems. Graphs can be directed, undirected, and
mixed. Directed graphs are often used to model biological neural networks. The interconnections of neurons can be described
by the adjacency matrix (Adj). In this matrix, (1) shows a connection between neurons and (0) shows no connection [5], [29],
[48]. The analysis of complex networks and the concept of network motifs is a subject studied in many fields of study [49], [50].
Figure 2 shows a directed graph motif and its adjacency matrix for its synaptic input directions (arrowheads). It has been found
that the neuronal connectivity forming the motif is much stronger than the connections they make with other neurons. This
brings to mind the idea that the motif structure is specialised for a purpose. The network motifs probably protect the behaviour
they display alone when they are connected to other neurons. In all motifs, we consider (A) as the input neuron, (C) as the
output neuron and (B) as the generally drive neuron (C) [7]. In our study; recognizing the input (A), output (C) and driver (B)
roles of neurons, we systematically constructed all triple-neuron motifs using the adjacency matrix method of graph theory. In
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Figure 3: An example of systematically constructing the synaptic input probabilities of three neurons.

Figure 4: Adjacency matrix showing intercellular synaptic inputs for all triple neuron brain network motifs.

order to derive all triple neural network motifs by graph theory, we constructed an adjacency matrix in Figure 3 for an example
similar to that in Figure 2(b). Some of the connection possibilities of A, B, C neurons in the motif with each other are shown
in the example below with three matrices. When three adjacency matrices are combined, each row of the resulting matrix will
represent the connection of a different motif. Since a neuron will not make synaptic input to itself, the corresponding column
will be zero (0) (In neural networks, the neuron does not make a synaptic link with itself). For example, there is no motif since
all zeros are in the first line. The second line describes a motif that provides synaptic input of neurons (A→ C , B→ C ,C → B).
The adjacency matrix containing all triple neuron network motif connections was created in Figure 4. The matrix is constructed
as a six-input truth table. Since the neuron does not create synaptic input with itself, this column has been omitted from the
matrices. All of the synaptic input possibilities that each neuron can make with the others are built into these matrices. All
triple-neuron network motifs were obtained from synaptic input states of neurons in the adjacency matrix formed by combining
four columns. In the first matrix, the synaptic input probabilities of neuron A with neuron B and C were created. Others were
created in the same way. Synaptic input status of the neuron is indicated by (1) and not by (0). For example, case A

[
0 1

]
,

B
[
0 0

]
, C

[
1 1

]
; It describes a motif with synaptic inputs (A → C , C → A, C → B). In this way, taking into account

the table, all triple neuron network motifs were created. In the adjacency matrix created in the form of a 6-variable truth table,
26 = 64 motifs emerge. Some of these motifs are; since it does not carry neuron A input, neuron C output, neuron B driver
characteristics due to synaptic input directions, it was not evaluated. We have shown 38 different motifs suitable for the study
format in Fig. 5. To facilitate analysis, we named the motifs with short names (Motif1 = MTF1), indicating the synaptic input
directions with arrows. Repetitive links were combined and the rest were named sequentially (010000, 000100 etc.). Two major
intercellular synaptic inputs (Basic Motif1 = BMTF1 and Basic Motif2 = BMTF2) found within all motifs were also named.

2.3 Investigation of the Effects of Connection Structure and Synaptic Input Type in Motifs on Short- and Long-Term
Memory Behaviour.
The brain structures of living organisms are a complex network of connections between many neurons [17], [18], [51]. Learning
is thought to be related to motifs (triple, quadruple,) that are often seen in the extensive network of neurons [51]. The short-
58 ECJSE Volume 12, 2025
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Figure 5: All directed triple neuron brain network motifs were generated using graph topology.

Figure 6: (a) Uniformly distributed random current applied externally to the A neuron. (b) Action potentials generated in A
and B neurons when the neurons have synaptic input type (AB-EE).

and long-term memory behaviour of several triple- and quadruple-neuron network motifs has been investigated [52]. In studies
conducted in this area, models with fewer parameters have been preferred in terms of ease of processing to model neuron [7],
[53]. In previous studies, short- and long-term memory behaviour of some motifs comprising three neurons was investigated.
In these studies, it has been shown that neurons form short- or long-term memory depending on the type of synaptic input. In
the action potential graphs seen in the motif output cell, it is assumed that the motifs that continue to produce the output signal
after the external current stimulus to the input neuron is interrupted show long-term memory behaviour. Graphic images that
generate output signals for a while after the external current warning is interrupted are also considered as short-term memory
[7]. By modelling this behaviour in our study, we examined memory behaviours in all possibilities of excitatory-inhibitory states
of synaptic inputs of neurons, of all motifs obtained by graph theory. For this purpose, we examined the short- and long-term
memory formation states of all motifs in Table 1 for these possibilities. To better evaluate the effect of motifs on the memory
behaviour of the intercellular connection pattern and the type of synaptic input of the neurons (Excitatory-E, Esyn = −10mV
Inhibitor-I, Esyn = −70mV , we studied the basic motif (BMTF2) in Fig. 5. In BMTF2 basic connection; neuron A is modelled
with the circuit in Figure 1(b) and neuron B is modelled with the circuit in Figure 1(c). Neuron A receives both external
stimulation current and synaptic input from neuron B. B neuron only receives synaptic input from A neuron. In the experiments,
the uniformly distributed random current form, which is shown in Fig.6.(a) and represents the total excitation from the dendrites
to the soma, can be used as the external input current. When the synaptic input types of A and B neurons are selected as
excitatory (AB - EE), action potentials continue to occur in both A and B neurons, although the external current input is cut off.
A time shift (phase difference) occurs between the voltages Va and Vb seen in Fig. 6.(b). This is because neurons A and B have
reciprocal synaptic inputs and both types of synaptic input are excitatory. In the same structure; when the synaptic input type is
(AB -EI), (AB-IE) and (AB-II), action potential generation ends when the external current input is cut off. When only one of
ECJSE Volume 12, 2025 59
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Figure 7: In MTF1 motif, external current input (10µA- DC); (a) when applied to A neuron only, (A → C , E) action potentials
generated in C neuron (b) When applied to both A and B neurons, (AB, EE) action potentials generated in C neuron.

Figure 8: When the external current in Figure 3(a) is applied to the A neuron in the MTF8 motif; (a) raster plots of action
potentials generated in C neuron in each of 50 trials when synaptic input types (ABC-EEE), (b) raster plots of action

potentials generated in C neuron in each of 50 trials when synaptic input types (ABC-EEI) are present.

the A or B neurons is stimulated by an external direct current (DC) input (10µA - DC), an action potential occurs in the neuron.
These action potentials, which are formed in the A or B neuron under the influence of the external current, are transmitted to
the C neuron as synaptic input (AB-EE). Thus, a sequence of action potentials is observed in the C neuron at a frequency of
f=68Hz, shown in Figure 7(a). When both neurons A and B are stimulated by external direct current input, action potentials
are generated in both neurons. Thus, the action potentials of the two neurons are transmitted simultaneously to the C neuron
as synaptic input (AB-EE), and the action potential sequence is observed in the C neuron at a frequency of f=72Hz, shown in
Figure 7(b). The reason for the increase in frequency is that the neuron receives more than one synaptic input. When A and B
neurons have synaptic input type (AB-EI, etc.) to C neuron; as one of them is excitatory (E) and the other is inhibitor (I), the
inputs cancel each other’s effect. Thus, no action potential occurs in the C neuron. With these studies; we have examined the
effect of intercellular connection type and synaptic input type. This study was carried out for all motifs in Fig. 5. As an example,
we have shown the studies on the motif we named MTF8 in Fig. 5. First synaptic input type for all neurons in the motif were
selected as excitatory (E) (ABC-EEE). The current shown in Figure 6(a) is applied to neuron A as an external current. The
same application was repeated 50 times to show the difference in the action potential generation time in the C neuron. This
difference is due to the randomness of the external current applied to the input neuron. Fig. 8. (a) shows a raster graph showing
the action potential generation times in one line for each of the 50 trials. This graphical representation is the preferred method
for describing short- and long-term memory behaviour. When the stimulus current is random and uniformly distributed, the
time of the current magnitude that will generate the action potential is variable. Such a current application is for modelling that
the neuron has been excited externally by an electrical signal of random time and magnitude. Although the external current
application was cut off after 80ms, action potentials continued to occur in neuron C as seen in Fig. 8. (a). This is interpreted as
the motif exhibiting long-term memory behaviour. In the same motif, action potentials continued to be produced in the C neuron
for 60ms after the external current application, when the neurons stimulus types (ABC-EEI) were made. This, seen in Figure
8(b), is interpreted as the short-term memory behaviour of the motif. For other possibilities of warnings, these applications
were repeated. In these excitation states (ABC-III, IIE, IEI, IEE, EII, EIE) the motif did not show both memory behaviours. We
performed these applications for all motifs in Fig. 5. From the results obtained, the situations in which the motifs show memory
behaviour were determined and shown in Fig. 9. in the conclusion part.

2.4 Investigation of the Effect of Change in Chemical Synapse Conductivity Function Time Constant Parameter on
Short-term Memory Time
The time constant parameter of the synaptic conductivity function gsyn(t) (equation 18) in intercellular synaptic input, the
model is associated with the synaptic input duration. This function is defined with a time-dependent exponential function so
that the sum of the impulses coming to the dendrites creates an action potential in the neuron. Synaptic input current Isyn(t); is
the product of the conductivity value gsyn(t) and the difference Vm − Esyn of the cell membrane voltage Vm and the synaptic
excitation threshold voltage Esyn (equation 19). As can be seen here, as the time constant of the conductivity value increases,
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Figure 9: Of the motifs in Fig.5., those showing long-term memory behaviour; (numbers above motifs indicate synaptic
input, numbers in the figure indicate synaptic input type) representation of neurons with probabilities of synaptic input

types and frequency of action potential produced in neuron C

the exponential decay time of the conductivity gets longer. The larger the time constant of the function, the longer a synaptic
input state occurs between neurons. Time constant variation has been studied with simpler models in a few four-cell motifs
in the literature [7]. In these modelling studies; the synaptic conductivity time constant has been shown to affect short-term
memory duration in appropriate Motifs [53]. While chemical synapses are formed between neurons, physical changes occur
in dendritic spines [54]. In our study; we examined the effect of synaptic conductivity time constant variation on short-term
memory duration in triple-neuron motif models. For the appropriate motifs in Fig. 10., we show that the short-term memory
duration changes with the change of the neurons communication function time constant. In the experiments in the first chapters,
the time constant value of the interneuron synaptic conductivity function in the motifs was taken as τ = 25ms. In this part of our
study, we examined the short-term memory duration of the neuron at certain values by making the time constant (τ) variable.
Studies in this section were carried out on the MTF8 motif.

3 Results

3.1 Identification of Triple Neuron Network Motifs, which are Long-Term Memory

We studied the effect of all probabilities of the intercellular synaptic input types (E or I) on memory behaviour in all motifs seen
in Fig. 5. For all motifs, we repeated the work described in section 2.3. These motifs were simulated for all intercellular synaptic
input type possibilities, and their long-term memory status was shown in Fig. 9. . Fig. 9. also shows the frequency (f) of the
continuous action potential signal formed in the C output neuron. It is seen that the action potential frequency is close to each
other in different motives and situations. If the output neuron receives more than one synaptic input, due to the motif structure,
the output signal frequency is slightly increased. We have placed this in the table to express the continuity of the signal. With
the synaptic flexibility in the learning process, when such synaptic input types occur between neurons, it is considered that the
information is stored for the long-term. This study also revealed that intercellular connectivity and synaptic entry type play a
very important role in motif analysis. Findings from this part of the study revealed a common feature of triple-neuronal network
motifs displaying long-term memory behaviour. It has been determined that the intercellular connections of these motifs form
a closed loop (in the form of A-C or A-B-C) reaching the output neuron. In the case of appropriate intercellular synaptic input
type, such a loop-forming motif connection can retain information long-term even if the total synaptic input applied to the A
neuron is interrupted. Among the motifs in Fig. 5., those with long-termmemory are shown in Fig. 9. Examples of those listed in
Fig. 9. are MTF30; 4 synaptic entries in the order in the figure (EEEE, EIEE, IEEE, IIEE) become long-term memory, MTF13;
the 6 synaptic inputs, in the order in the figure (EEEEEE, EEEEEI, EEEEIE, EEEEII, EEEIEE, EEIEEE, EEIEEI), become
long-term memory. There is no special order for motifs in the figure.
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Figure 10: Of the motifs in Fig. 5., those showing short-term memory behaviour; (numbers above motifs indicate synaptic
input, numbers in the figure indicate synaptic input type) representation of neurons with probabilities of synaptic input

types and the number of Action Potentials (AP) produced in neuron C.

Table 1: Chemical synaptic conductivity model, effect of time constant variation on short-term memory time.
Synaptic conductivity time constant τ(ms) Short-term memory duration (ms) Number of action potentials

5 - -
10 - -
20 30 3
25 35 5
30 60 6
35 88 8
40 110 9
50 127 11

3.2 Identification of Triple Neuron Network Motifs, which are Short-Term Memory
All the motifs in Fig. 5. were analysed in terms of short-term memory behaviour by the methods described above. In some
motifs; we observed that depending on the synaptic type, the action potentials formed in the output neuron C continued for a
while, although the external current stimulus to the input neuron (A) was ended. This situation evaluates motifs as short-term
memory behaviour. It refers to the retention of information for a while after the warning. Fig. 10. shows motifs that create short-
term memory. Additionally, it shows the number of action potentials generated in neuron C to express the excitation situations
of the neuron s and the retention time of the information. This study revealed the effect of connection and stimulus type on
short-term memory formation in all three-neuron motifs.

3.3 The Effect of the Change in the Time Constant Parameter of the Conductivity Function of the Chemical Synaptic
Communication Model between Neurons on Short-Term Memory Behaviour
The duration and number of action potentials formed in the C neuron were examined for different time constant values from the
studies performed by changing the time constant of the chemical synaptic conductivity function. For this, the case study was
carried out on the MTF8 motif model in Fig. 5. For the different values of the synaptic conductivity time constant (τ) seen in
Table 1, the external current input in Fig. 6. (a) was applied to the neuron (A). The short-term memory time, as measured by the
action potentials that continue to be produced in the C neuron after the external current input is interrupted, is shown in Table
1. From these data; it is seen that with increasing values of synaptic conductivity time constant, the duration and number of
action potentials that occur at the output of the motif increase after external current input. This change prolongs the short-term
memory time.
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Figure 11: Raster plots of action potentials formed in the C neuron for (a) (τ = 25ms) (b) (τ = 35ms) (c) (τ = 50ms) as a
result of experiments repeated 50 times for each of the synaptic conductivity time constant ((τ)) values in the MTF8 motif.

In this section, the variation of short-term memory duration with time constant is graphically shown. From the studies done
in MTF8; the short-term memory times of neurons at different values of the synaptic communication time constant (stimulus
types IEEE) are shown in Fig. 11. This situation can also be evaluated as an increase in synapse strength during learning. It can
be seen from the figures that as the time constant increases, the information retention time also increases.

4 Discussion

This study is about how learning occurs in brain neuronal networks, which aremade up of complex connections. For this purpose,
we generated all tri-neuronal network motifs using graph topology. All created motifs were eliminated considering their ability
to form interneuron connections. In our study, we focused on the effect of the structure of motifs, the type of synaptic input
of neurons, and the time constant of synaptic conductivity on short- and long-term memory behaviour. From the studies on
motifs, all motifs showing long- and short-term memory behaviour were determined by considering the types of interneuron
synaptic input. In addition, the effect of synaptic conductivity time constant in the chemical synapse model between neurons
on short-term memory time was investigated. In the literature; there are studies on several motifs, of which the triple neuron
connection is specific. In our study, we methodically obtained all of the three-neural interconnection possibilities in neural
networks using graph topology. Some of the motifs obtained; it was removed from the work list because it did not contain
three neurons and did not create an input and output neuron state due to the synaptic input direction. Thus, we constructed all
the motif possibilities suitable for the neuronal network structure. In Fig. 5., 38 motif models suitable for these features are
shown. Triple neural network motif structures were determined, suitable for the studies to be carried out in neural networks.
We examined the short- and long-term memory status of the motifs obtained. In triple neural network motifs, one neuron
input, one neuron output, and one neuron drive are considered. In the experiments, an external current is applied to the input
neuron and the behaviour of the output neuron is examined. If the output neuron continues to generate signals even though
the external current input is interrupted, the motif is considered to be long-term memory. If the output neuron generates a
signal for some time after the external current input is interrupted, the motif is considered short-term memory. To conduct these
experiments, we created separate models for each motif in Fig. 5. with Matlab software. The neurons that make up the motif,
according to the interneuron connection structure; the software was modelled as a neuron with only external current input, only
one synaptic input, both external current input and one synaptic input, two synaptic inputs, or no input applied. We used the
Hodgkin-Huxley model for neurons. The synaptic input type probabilities (E,I) of the neurons were tested for each motif and
the action potential generation status of the output neuron (C) was observed in each case. In the results obtained, the states of
producing a continuous action potential were obtained and the states of being long-term memory were determined. All cases
are shown in Fig. 9. Likewise, after the input current is cut off, short-term memory states that produce action potentials in the
output neuron for a while were determined. All cases are shown in Fig. 10. During learning, changes occur in synaptic inputs
between neurons. In addition, physical changes occur in the dendritic spines, which are in the connection from the axon tip to
the dendrites, in the postsynaptic neuron section. These changes are thought to be significantly related to memory. These spines
undergo changes in the form of growth during the learning process. We modelled this growth state by changing the time constant
within the synaptic conductivity model. Thus, the memory time of the motif, which has short-term memory characteristics, is
extended depending on the time constant. We studied this study on a motif, which is short-term memory, at different values of
the time constant. The obtained results are shown in Table 1 and Fig. 11. During learning; the effects of connections between
neurons, direction and type of synaptic input (E,I) on memory formation were examined. In the studies conducted in this area,
a limited number of motifs have been studied. In most of the studies, neuron models with fewer parameters were preferred. In
our study, the Hodgkin-Huxley neuron model, which successfully represents neurons with more parameters, was preferred and
all tripartite neuronal network motifs were studied. In some studies, noise signals are generally used instead of synaptic inputs.
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In our study, if the cell membrane voltage exceeds a certain threshold value as a result of interneuron communication, synaptic
input to the neuron, an action potential is modelled. This is more realistic. Likewise, the effect of neurotransmitters emitted in
the space between neurons making chemical synapses on the postsynaptic neuron was modelled as excitatory or inhibitory. For
this, two different level voltage values of the equilibrium voltage Esyn, which constitutes of the synaptic input current, were
used (E → Esyn = 10V , I → Esyn = −70V ). All motifs and necessary conditions showing long-term memory behaviour are
shown in Fig. 9. All the motives and necessary conditions showing short-term memory behaviour are also presented in Fig.
10. Especially the significant effect on short-term memory behaviour; it has been shown that besides the type of connection,
the synaptic input types of neurons have suitable possibilities. In the studies, short-term memory duration was studied in quad
neuron network motifs. In our study, this time change was modelled with the synaptic input time constant. This situation was
evaluated as a prolongation of the learning process. The effect, which also expresses the physical change in the postsynaptic
region, extended the information retention time. We demonstrated this for various values on a motif. In the neuron model we
used, the deterministic model was preferred for the ion channels of neurons. The cell membrane is considered homogeneous.
However, evaluating the randomness of the ion channels and considering the heterogeneous structure of the cell membrane will
create a more realistic model. While the action potential is forming in the neuron, the arrival of new synaptic inputs can be
prevented (the refractory period). In the three-neuronal motif structure we created; larger network connections can be created
by multiplexing the input, output, driver neurons. Neural coding can be studied on these models.
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