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Slant Helices with Fermi-Walker Derivative of Equiform Timelike Curves 

 

Esra ÇİÇEK ÇETİN1*  

 

 
Abstract 

Fermi-Walker transformation plays an important role for geometry and physical applications. In this manuscript, we give 

basic geometric definitions and then we present timelike curve with equiform parameter in the equiform geometry. In 

addition, we have dealed with the properties of (k,m)-type slant helices in terms of curvature functions by using Fermi-

Walker transformation for timelike curves on equiform differential geometry in Minkowski spacetime.  

Keywords: Slant helices, Fermi-Walker derivative, Timelike curves. 

 

 

 

Equiform Timelike Eğrilerin Fermi-Walker Türevi ile Slant Helisler 

 

 

Öz 

Fermi-Walker türevi geometri ve fiziksel uygulamalar için önemli rol oynar. Bu makalede temel geometrik tanımları 

ifade ettik ve daha sonra equiform parametresine bağlı olarak timelike eğrileri elde ettik. Ayrıca Minkowki uzayında 

equiform timelike eğriler için Fermi-Walker türevi kullanarak (k,m)-tipinden slant helisleri hesapladık. 

Anahtar Kelimeler: Slant helisler, Fermi-Walker türevi, Timelike eğriler. 
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1. Introduction 

 

The theory of curves is a fundamental subject in geometry and shares a common area of study 

with many branches of science. From a mathematical standpoint, it plays a significant role in both 

functional analysis and applied mathematics. In other fields of science, the application of curves is 

also prominent. For example, in economics, numerical data are interpreted using curves, and income 

functions are represented by curves. In medicine, the behavior of curves derived from data provides 

valuable insights into various medical phenomena. 

 From a geometric perspective, the differential geometric properties of curves, their 

relationships with various mathematical structures, and their role in constructing geometric 

foundations are of great importance. In the field of differential geometry, which is a major area of 

study in geometry, numerous important works have been conducted—and continue to be conducted—

on the theory of curves in Euclidean space (Ali ve Lopez 2011; Ali ve Lopez 2012; Ali ve Turgut 

2010; Önder ve ark. 2008; Özdemir ve ark. 2015; Yılmaz ve Bektaş 2018; Yılmaz ve Bektaş 2020). 

Especially the characterizations of the theory of curves, involute-evolute curves, Bertrand curves, 

Mannheim curves, Adjoint curves, helical properties of curves, etc. The studies have been studied 

meticulously by geometers and continue to be studied (Abdel Aziz ve ark.; Çetin ve Bektaş 2020; 

Ferrandez ve ark. 2002; Kula ve Yaylı 2005; Körpınar 2015) 

 General helices and slant helices have an important place in the fields of geometry, physics 

and engineering.  General helices is defined as its tangent vector fields creates a constant angle with 

a fixed direction of curves. Additionally, slant helices subject are also presented in different 

dimensional space. Besides, they studied them for partially and pseudo null curves in spacetime. 

In this manuscript, we use Fermi-Walker derivative to calculate slant helices for equiform 

timelike curves.  

 

2. Materials and Methods 

 

Minkowski 4-space 𝐸1
4 is the 4-dimensional Euclidean space equipped with the flat metric 

〈, 〉 = −𝑑𝑥1
2 + 𝑑𝑥2

2 + 𝑑𝑥3
2 + 𝑑𝑥4

2 

where (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝐸4. 

Let 𝜑: 𝐼 → 𝐸1
4 be a curve in Minkowski space-time. We say that timelike, spacelike, lightlike 

curve if the velocity vector of curve 〈𝑧′, 𝑧′〉 is negative, positive, zero, respectively.  

[

∇𝑡𝑡
∇𝑡𝑛
∇𝑡𝑏1

∇𝑡𝑏2

] = [

0 𝑘1 0 0
𝜇1𝑘1 0 𝜇2𝑘2 0

0
0

𝜇3𝑘2

0

0
𝜇5𝑘3

𝜇4𝑘3

0

] [

𝑡
𝑛
𝑏1

𝑏2

] 
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𝑘1, 𝑘2, 𝑘3 are curvatures of arbitrary curve z. 

𝑘1 = ‖𝑧′′(𝑠)‖ 

𝑛 =
𝑧′′(𝑠)

𝑘1(𝑠)
 

𝑏1 =
𝑛′(𝑠) + 𝜇1𝑘1(𝑠)𝑡(𝑠)

‖𝑛′(𝑠) + 𝜇1𝑘1(𝑠)𝑡(𝑠)‖
 

 

2.1 Timelike Curves on Equiform Geometry  

 

Let 𝜑: 𝐼 → 𝐸1
4 be a spacelike curve. We defined the equiform parameter of 𝑧(𝑠) by  

𝜎 = ∫
𝑑𝑠

𝜌
= ∫ 𝑘1 𝑑𝑠 

where, 𝜌 =
1

𝑘1
 is the radius of the curvature. 

Let’s indicate by {𝑈1, 𝑈2, 𝑈3, 𝑈4}  moving Frenet frame along the curve 𝑧(𝑠)in the space 

𝐸1
4and thus  {𝑡, 𝑛, 𝑏1, 𝑏2}   are, respectively, the unit tangent, the principal normal, the first binormal 

and the second binormal vector fields. We find the equiform parameter of 𝑧(𝑠). Then, we can find  

 𝑈1 = 𝑈1𝑡, 𝑈2 = 𝑈2𝑛, 𝑈3 = 𝑈3𝑏1, 𝑈4 = 𝑈4𝑏2, 

So , Frenet formulas for spacelike curves in the equiform geometry of  𝐸1
4 can written  as 

below,  

                                               ∇𝑈1
𝑈1 = 𝐾1

̅̅ ̅𝑈1 + 𝑈2 

                                               ∇𝑈1
𝑈2 = 𝑈2𝐾1

̅̅ ̅ + 𝐾2
̅̅ ̅𝑈3 

                                               ∇𝑈1
𝑈3 = −𝐾2

̅̅ ̅𝑈2 + 𝑈3𝐾1
̅̅ ̅ + 𝐾3

̅̅ ̅𝑈4 

                                               ∇𝑈1
𝑈4 = −𝑈3𝐾3

̅̅ ̅ + 𝐾1
̅̅ ̅𝑈4 

〈𝑈1, 𝑈1〉 = −1, 〈𝑈2, 𝑈2〉 = 〈𝑈3, 𝑈3〉 =   〈𝑈4, 𝑈4〉 = 1 

 (Bulut ve Bektaş, 2020),(Aydın ve Ergüt, 2013) 

The function 𝐾𝑖 are defined by  

𝐾1
̅̅ ̅ = 𝜌̇,                   𝐾2

̅̅ ̅ =
𝑘2

𝑘1
,                   𝐾3

̅̅ ̅ =
𝑘3

𝑘1
 

Fermi-Walker connection is defined by 

 

∇̃𝑈1
𝑋 = ∇𝑈1

𝑋 − 〈𝑈1, 𝑋〉∇𝑈1
𝑈1 + 〈∇𝑈1

𝑈1, 𝑋〉𝑈1 

(Körpınar 2015) 

 

𝑏2 = 𝑡 × 𝑛 × 𝑏1 
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3. Findings and Discussion 

Theorem 3.1.  Let 𝝋 be a timelike equiform curve and 𝑲𝟏
̅̅ ̅̅ , 𝑲𝟐

̅̅ ̅̅ , 𝑲𝟑
̅̅ ̅̅ ≠ 𝟎. So, if  𝝋 is  (1,2)-type slant 

helix then, we have 

〈𝑈3, 𝑈〉 =
−𝑐1 − 𝑐2𝐾1

̅̅ ̅

𝐾2
̅̅ ̅

 

Proof. Suppose that 𝝋 is a (1,2)-type slant helix. So, for a constant field U, we can write 

〈𝑼𝟏, 𝑼〉 = 𝒄𝟏                                                                                                                                       

(1) 

and 

 〈𝑼𝟐, 𝑼〉 = 𝒄𝟐                                                                                                                                      

(2) 

Differentiating eq. (1) and using Fermi-Walker derivative, we obtain 

 〈𝛁̃𝑼𝟏
𝑼𝟏, 𝑼〉 = 𝟎 

and 

 〈𝑲𝟏
̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐 − 〈𝑼𝟏, 𝑼𝟏〉(𝑲𝟏

̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐) + 〈𝑲𝟏
̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐, 𝑼𝟏〉𝑼𝟏, 𝑼〉 = 𝟎  

we obtain, 

〈𝑈2, 𝑈〉 =
−𝑐1𝐾1

̅̅ ̅

2
 

Similarly, Differentiating eq. (1) and using Fermi-Walker derivative, we obtain 

 

                                                            〈∇̃U1
𝑈2, 𝑈〉 = 0  

                                   〈𝑈2𝐾1
̅̅ ̅ + 𝐾2

̅̅ ̅𝑈3 − 〈𝑈1, 𝑈2〉(𝐾1
̅̅ ̅𝑈1 + 𝑈2) + 〈𝐾1

̅̅ ̅𝑈1 + 𝑈2, 𝑈2〉𝑈1, 𝑈〉 = 0 

 

some algebraic calculus gives that theorem 

〈𝑈3, 𝑈〉 =
−𝑐1 − 𝑐2𝐾1

̅̅ ̅

𝐾2
̅̅ ̅

 

which completes the proof. 

Theorem 3.2 Let 𝝋 be a timelike equiform curve and 𝑲𝟏
̅̅ ̅̅ , 𝑲𝟐

̅̅ ̅̅ , 𝑲𝟑
̅̅ ̅̅ ≠ 𝟎. So, if  𝝋 is (1,3)-type slant 

helix , then we have 

〈𝑈4, 𝑈〉 =

−𝑐1𝐾2
̅̅ ̅𝐾1

̅̅ ̅

𝐾2
̅̅ ̅ − 𝑐3𝐾1

̅̅ ̅

𝐾3
̅̅ ̅
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Proof . Suppose that 𝝋 is a (1,3)-type slant helix. So, for a constant field U, we can write 

〈𝑼𝟏, 𝑼〉 = 𝒄𝟏                                                                                                                         (3)                            

and 

 〈𝑼𝟑, 𝑼〉 = 𝒄𝟑                                                                                                                        (4)                                

Differentiating eq. (3) and using Fermi-Walker derivative, we obtain 

 〈𝜵̃𝑼𝟏
𝑼𝟏, 𝑼〉 = 𝟎 

and 

 〈𝑲𝟏
̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐 − 〈𝑼𝟏, 𝑼𝟏〉(𝑲𝟏

̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐) + 〈𝑲𝟏
̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐, 𝑼𝟏〉𝑼𝟏, 𝑼〉 = 𝟎  

we obtain, 

〈𝑈2, 𝑈〉 =
−𝑐1𝐾1

̅̅ ̅

2
 

Similarly, Differentiating eq. (1) and using Fermi-Walker derivative, we obtain 

〈∇̃𝑈1
𝑈3, 𝑈〉 = 0 

〈𝐾2
̅̅ ̅𝑈2 + 𝐾1

̅̅ ̅𝑈3 + 𝐾3𝑈4, 𝑈〉 = 0 

  

some algebraic calculus gives that theorem 

〈𝑈4, 𝑈〉 =

−𝑐1𝐾2
̅̅ ̅𝐾1

̅̅ ̅

𝐾2
̅̅ ̅ − 𝑐3𝐾1

̅̅ ̅

𝐾3
̅̅ ̅

 

Theorem 3.3. Let 𝝋 be a timelike equiform curve and 𝑲𝟏
̅̅ ̅̅ , 𝑲𝟐

̅̅ ̅̅ , 𝑲𝟑
̅̅ ̅̅ ≠ 𝟎 So, if  𝝋 is  (1,4)-type slant 

helix then, we have 

〈𝑈3, 𝑈〉 = −
𝑐4𝐾1

̅̅ ̅

𝐾3
̅̅ ̅

 

 

 

Proof . Suppose that 𝝋 is a (1,4)-type slant helix. So, for a constant field U, we may write 

〈𝑼𝟏, 𝑼〉 = 𝒄𝟏                                                                                                                         (5)                            

and 

 〈𝑼𝟒, 𝑼〉 = 𝒄𝟒                                                                                                                        (6)                                

Differentiating eq. (5) and using Fermi-Walker derivative, we obtain 

 〈𝛁̃𝑼𝟏
𝑼𝟏, 𝑼〉 = 𝟎 

and 



Karadeniz Fen Bilimleri Dergisi 15(3), 995-1003, 2025 1000 

 

 〈𝑲𝟏
̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐 − 〈𝑼𝟏, 𝑼𝟏〉(𝑲𝟏

̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐) + 〈𝑲𝟏
̅̅ ̅̅ 𝑼𝟏 + 𝑼𝟐, 𝑼𝟏〉𝑼𝟏, 𝑼〉 = 𝟎  

we obtain, 

〈𝑈2, 𝑈〉 =
−𝑐1𝐾1

̅̅ ̅

2
 

Similarly, Differentiating eq. (6) and using Fermi-Walker derivative, we obtain 

〈∇̃𝑈1
𝑈4, 𝑈〉 = 0 

〈−𝐾3
̅̅ ̅𝑈3 + 𝐾1

̅̅ ̅𝑈4, 𝑈〉 = 0 

  

some algebraic calculus gives that theorem 

〈𝑈3, 𝑈〉 = −
𝑐4𝐾1

̅̅ ̅

𝐾3
̅̅ ̅

 

Theorem 3.4. Let 𝝋 be a timelike equiform curve and 𝑲𝟏
̅̅ ̅̅ , 𝑲𝟐

̅̅ ̅̅ , 𝑲𝟑
̅̅ ̅̅ ≠ 𝟎 . So,if  𝝋 is  (2,3)-type slant 

helix then, we have 

〈𝑈1, 𝑈〉 = −𝑐2𝐾1
̅̅ ̅ − 𝐾2

̅̅ ̅𝑐3 

 

〈𝑈4, 𝑈〉 = −
𝐾2
̅̅ ̅𝑐2 − 𝐾1

̅̅ ̅𝑐3

𝐾3
̅̅ ̅

 

Proof . Suppose that 𝝋 is a (2,3)-type slant helix. So, for a constant field U, we can write 

〈𝑼𝟐, 𝑼〉 = 𝒄𝟐                                                                                                                         (7)                            

and 

 〈𝑼𝟑, 𝑼〉 = 𝒄𝟑                                                                                                                        (8)                                

Differentiating eq. (7) and using Fermi-Walker derivative, we obtain 

 〈∇̃U1
𝑈2, 𝑈〉 = 0 

 〈𝑈2𝐾1
̅̅ ̅ + 𝐾2

̅̅ ̅𝑈3 − 〈𝑈1, 𝑈2〉(𝐾1
̅̅ ̅𝑈1 + 𝑈2) + 〈𝐾1

̅̅ ̅𝑈1 + 𝑈2, 𝑈2〉𝑈1, 𝑈〉 = 0 

 

we obtain, 

〈𝑈1, 𝑈〉 = −𝑐2𝐾1
̅̅ ̅ − 𝐾2

̅̅ ̅𝑐3 

Similarly, Differentiating eq. (8) and using Fermi-Walker derivative, we obtain 

〈∇̃𝑈1
𝑈3, 𝑈〉 = 0 

〈𝐾2
̅̅ ̅𝑈2 + 𝐾1

̅̅ ̅𝑈3 + 𝐾3𝑈4, 𝑈〉 = 0 

 

some algebraic calculus gives that theorem 

〈𝑈4, 𝑈〉 = −
𝐾2
̅̅ ̅𝑐2 − 𝐾1

̅̅ ̅𝑐3

𝐾3
̅̅ ̅
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Theorem 3.5. Let 𝝋 be a timelike equiform curve and  𝑲𝟏
̅̅ ̅̅ , 𝑲𝟐

̅̅ ̅̅ , 𝑲𝟑
̅̅ ̅̅ ≠ 𝟎 So, if  𝝋 is  (2,4)-type slant 

helix then, we have 

〈𝑈1, 𝑈〉 =

−𝑐2𝐾2
̅̅ ̅ − 𝐾2

̅̅ ̅ (
𝑐4𝐾1

̅̅ ̅

𝐾3
̅̅ ̅ )

𝐾1
̅̅ ̅

 

 

〈𝑈3, 𝑈〉 = −
𝑐4𝐾1

̅̅ ̅

𝐾𝟑
̅̅ ̅

 

Proof . Suppose that 𝝋 is a (2,4)-type slant helix. So, for a constant field U, we can write 

〈𝑼𝟐, 𝑼〉 = 𝒄𝟐                                                                                                                         (9)                            

and 

 〈𝑼𝟒, 𝑼〉 = 𝒄𝟒                                                                                                                        (10)                                

Differentiating eq. (3.9) and using Fermi-Walker derivative, we obtain 

 〈∇̃U1
𝑈2, 𝑈〉 = 0  

 〈𝑈2𝐾1
̅̅ ̅ + 𝐾2

̅̅ ̅𝑈3 − 〈𝑈1, 𝑈2〉(𝐾1
̅̅ ̅𝑈1 + 𝑈2) + 〈𝐾1

̅̅ ̅𝑈1 + 𝑈2, 𝑈2〉𝑈1, 𝑈〉 = 0 

 

we obtain, 

〈𝑈1, 𝑈〉 =

−𝑐2𝐾2
̅̅ ̅ − 𝐾2

̅̅ ̅ (
𝑐4𝐾1

̅̅ ̅

𝐾3
̅̅ ̅ )

𝐾1
̅̅ ̅

 

Similarly, Differentiating eq. (10) and using Fermi-Walker derivative, we obtain 

〈∇̃𝑈1
𝑈4, 𝑈〉 = 0 

〈−𝐾3
̅̅ ̅𝑈3 + 𝐾1

̅̅ ̅𝑈4, 𝑈〉 = 0 

some algebraic calculus gives that theorem 

〈𝑈3, 𝑈〉 = −
𝑐4𝐾1

̅̅ ̅

𝐾𝟑
̅̅ ̅

 

Theorem 3.6. Let 𝝋 be a timelike equiform curve and 𝑲𝟏
̅̅ ̅̅ , 𝑲𝟐

̅̅ ̅̅ , 𝑲𝟑
̅̅ ̅̅ ≠ 𝟎. So, if  𝝋 is (3,4)-type slant 

helix , then we have 

𝐾3
̅̅ ̅

𝐾1
̅̅ ̅

=
𝑐4

𝑐3
= 𝑐𝑜𝑛𝑠𝑡. 

  〈𝑈2, 𝑈〉 = −
𝐾3
̅̅ ̅𝑐4 + 𝐾1

̅̅ ̅𝑐3

𝐾2
̅̅ ̅
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Proof . Let  𝝋  be a (3,4)-type slant helix. So, for a constant field U, we know 

〈𝑼𝟑, 𝑼〉 = 𝒄𝟑                                                                                                                         (11)                            

and 

 〈𝑼𝟒, 𝑼〉 = 𝒄𝟒                                                                                                                        (12)                                

Differentiating eq. (11) and using Fermi-Walker derivative, we obtain 

  

〈∇̃𝑈1
𝑈3, 𝑈〉 = 0 

〈𝐾2
̅̅ ̅𝑈2 + 𝐾1

̅̅ ̅𝑈3 + 𝐾3𝑈4, 𝑈〉 = 0 

we obtain, 

〈𝑈2, 𝑈〉 = −
𝐾3
̅̅ ̅𝑐4 + 𝐾1

̅̅ ̅𝑐3

𝐾2
̅̅ ̅

 

Similarly, Differentiating eq. (12) and using Fermi-Walker derivative, we may write 

〈∇̃𝑈1
𝑈4, 𝑈〉 = 0 

〈−𝐾3
̅̅ ̅𝑈3 + 𝐾1

̅̅ ̅𝑈4, 𝑈〉 = 0 

some algebraic calculus gives that theorem 

𝐾𝟑
̅̅ ̅

𝐾1
̅̅ ̅

=
𝑐4

𝑐3
= 𝑐𝑜𝑛𝑠𝑡. 

 

4. Conclusions and Recommendations 

 

In this study, we obtain (k,m)-type slant helices for equiform timelike curves using Fermi-

Walker derivative. Therefore, slant helices are calculated by using Fermi-Walker derivative for 

timelike curves or another curves in different space. 
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