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ABSTRACT

In this paper, the reliability characteristics of a parallel system are investigated. The parallel 
system under consideration is made up of three active units that run in parallel, with two of 
them having to be operational in order for the system to work. The main purpose of this study 
is to quantify/examine the effect of online and offline preventive maintenance. Preventive 
maintenance is carried out on the systems in two ways: online and offline preventive mainte-
nance. After the first unit of each system fails, online preventive maintenance is performed. 
Following the failure of the second unit of each system, offline preventive maintenance is 
performed. Partial and complete failures are the two types of failures that may occur. Both 
systems can undergo exponential failure and repair. Using supplementary variable technique, 
Laplace transform, and Copula repair approach, the system of first-order differential equa-
tions associated with system effectiveness, which are crucial to this research, is established and 
resolved. Tables and graphs are used to illustrate the important findings based on assumed 
numerical values. System designers, programmers, and maintenance supervisors will be able 
to create and maintain more crucial systems with the assistance of this research paper.
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INTRODUCTION 

One of the most important characteristics used to assess 
system performance in engineering is reliability and is also 
regarded as the best starting point for any system improve-
ment. Due to lack of adequate probabilistic knowledge, 
convectional reliability’s binary state i.e., performance or 

failure state assumptions, are inadequate for analysing the 
reliability of complex industrial systems. The dubiety of 
each individual parameter in large industrial systems adds 
to the overall system reliability dubiety. 

As a result, a number of researchers have created various 
industrial systems to investigate reliability, availability, mean 
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time to system failure, and cost function, as well as the impact 
of coverage variables, failure and repair rates. Researchers 
such as; [1] explored a method for evaluating the reliability 
and profitability of a warranty-dependent industrial sys-
tem. [2] focused on evaluating the performance of serial 
systems with a variety of failure types and repair policies. 
Using Kolmogrov differential equations, [3] proposed a 
method for analyzing the reliability of industrial systems. 
[4] investigated a novel method for reliability analysis of 
series-parallel systems via credibility theory. [5] presented 
their research on the availability of standby complex systems 
in the event of human failure or repair. [6] presented Markov 
chain profit modeling and evaluation between two dissimi-
lar systems under two forms of failures. [7] have published 
a paper on the performance assessment of a series-parallel 
industrial method. [8] presented the findings of an analysis 
of the multi-objective non-linear programming problem for 
reliability (GSA) and compared them to results computed 
using the practice swarm optimization (PSO) methodology. 
The reliability study of a two-dissimilar unit warm standby 
repairable system with priority in usage was addressed by 
[9]. [10] addressed the availability and cost analysis of an 
engineering system with series-connected subsystems. [11] 
discussed the evaluation of some reliability characteristics of 
a single unit system requiring two types of supporting device 
for operations. [12] used the Gumbel-Hougaard family cop-
ula to study the cost assessment of a complex repairable 
system made up of two subsystems in a series arrangement. 
[13] used copula distribution to offer a stochastic study of 
an N-unit plant with various failure kinds. Improving sys-
tem performance can also be attained either by increasing 
the reliability of each component/subsystem in the system or 
by providing proper maintenance (preventive maintenance).

Preventive maintenance is a type of maintenance that 
is carried out on a piece of equipment on a regular basis to 
minimize the risk of failing. It is done when the equipment 
is still running to keep it from breaking down unexpectedly. 
Cleaning, lubrication, oil changes, modifications, repairs, 
checking and removing components, as well as partial 
and full overhauls, are all part of preventive maintenance 
schedule in operation. Preventive maintenance is used in 
many industries to help maintenance managers and reli-
ability engineers increase system reliability, availability, and 
revenue while lowering costs. The primary goal of every 
manufacturing company or factory is to increase profits 
by lowering production costs. In today’s competitive age, 
we can’t afford to lose production or have facilities fail due 
to increased demand. As a result, appropriate maintenance 
procedures must be used to achieve the best results. 

Online and offline preventive maintenance techniques 
are two of the most common and universal maintenance 
techniques among the many. The aim of online preven-
tive maintenance is to inspect the system or any output on 
a regular basis. It is a non-interruptible operation, which 
means the system won’t be shut down until it’s done. This 
assists in cost-cutting, reducing equipment downtime, 

improving asset lifespan and efficiency, and avoids unex-
pected expenses. Offline preventive maintenance is a type 
of inspection that is done manually. Regular asset scanning 
is sufficient for offline preventive maintenance.

 Many research papers on system reliability and avail-
ability in the presence of preventive maintenance have 
been published, including the following; [14] investigated 
cost-effective coal-fired power plant preventive maintenance 
scheduling. [15] conducted a probabilistic study of two sin-
gle-unit device reliability models with preventive mainte-
nance beyond the warranty period and deterioration. [16] 
examined the best preventive maintenance warranty strategy 
for repairable goods with growing failure rates on a regular 
basis. [17] proposed a stochastic study of a reheating-furnace 
system undergoing preventive maintenance and repair. [18] 
presented a report on a single unit system with preventive 
maintenance and repair that was subjected to the fastest pos-
sible operation and repair times. For single machine frame-
work, [19] suggested an integrated model of production 
planning and incomplete preventive maintenance strategy. 
[20] proposed a parallel system reliability assessment with 
two types of preventive maintenance. According to max-
imum operation and repair timeframes, [21] developed a 
single unit system with preventive maintenance and repair. 
Stochastic modeling of non-identical redundant systems 
with priority, preventive maintenance, and Weibull failure 
and repair distributions was presented by [22]. 

The literature review above reveals that the majority of 
previous studies have focused on preventive maintenance 
and other types of repair policies. Preventive maintenance 
policies, both online and offline under copula distribution 
approach, have received little or no attention in the litera-
ture. As a result, the impact of online and offline preventive 
maintenance has been highlighted in this paper. 

The reminder of the paper is organised such that sec-
tion 2 contains notations, assumptions, and description of 
the model under consideration. The formulation and solu-
tion of the model were captured in section 3. The model 
analysis was discussed in section 4. The findings are dis-
cussed in section 5, and finally the conclusion part of the 
paper is given in section 6. 

NOTATIONS, ASSUMPTIONS AND DESCRIPTION 
OF MODEL

Notations
Here, we provide a table with the notations and defini-

tions used in this study.

Assumptions
Below are listed all the presumptions that were made 

for this study.
i. √Firstly, all subsystems are assumed to be operational.
ii. Two units from each subsystem are needed for operation. 
iii. When any component fails, the system’s output suffers.
iv. If a subsystem unit fails, it can be repaired when it is 

still operational, or it can fail completely.



Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 1088−1100, August, 20241090

v. All failure rates are expected to follow exponential dis-
tributions and are constant.

vi. Partially failed states are restored using general distri-
bution, while entirely failed state distribution is han-
dled by the Gumbel Hougaard family copula.

vii. The repaired machine unit should function as new and 
the repair process should have caused no damage.

viii. The load will be ready for the system’s successful per-
formance as soon as the failed unit is repaired. 

The Model Overviews
In this research, we looked at a mathematical model of 

parallel system with two subsystems A and B, each con-
sists of three active units in parallel that can fail in two 
ways: partially or fully. These two systems are separated 

Table 1. Notations and Definitions

Notations Definitions
T Time variable on a time scale
S Laplace transform variable for all expressions
λ1 System A’s failure rate
λ2 System B’s failure rate

∅(x)/ ∅(y) Repair rate of system A / system B

μ0(x)/μ0(y) Repair rate for a fully failed states of system A and system B respectively
pi(t) For i =0 to 10, The probability that the system is in Si state at any given time

Laplace transformation of state transition probability p(t)

Pi (x, t) The probability that a system is in state Si such that for i=1..., the system is under repair, and the elapsed repair 
time is (x, t) with x denoting repair and t denoting time.

Pi (y, t) The probability that a system is in state Si such that for i=1..., the system is under repair, and the elapsed repair 
time is (y, t) with y being the repair variable and t being the time variable.

Pi (m, t) The probability that a system is in state Si for i=1…, the system is under repair, and the elapsed repair time is 
(m, t) with repair variable being m and time variable being t.

Pi (n, t) The probability that a system is in state Si such that for i=1…, the system is under repair, and the elapsed repair 
time is (n, t) with n representing the repair variable and t representing the time variable.

Ep(t) Expected profit over the course of the time interval [0, t)
K1, K2 Revenue and service cost per unit time, respectively
μ0(x) According to the Gumbel-Hougaard family copula definition, joint probability is expressed as:  

. Where µ1 = ∅(x) and u2 = ex

Table 2. Description of States

States Description
S0 Is the ideal state, in which both systems are fully functional. The system works since one unit is on standby in both systems.
S1 In this state, one unit in system A has failed, two units in both systems A and B are operational, and one unit in system B is 

on standby. The system is up and running.
S3 In this state, one unit in system B has failed, two units in both systems A and B are operational, and one unit in system A is 

on standby. The system works. 
S4 Here, one unit in system B has previously failed, one unit in system A suddenly failed, and two units in system A are 

operational. The system is functional.
S5 Previously, a unit has failed in system A, suddenly a unit failed in system B, then the system is operational.
S6 Previously, a unit has failed in system B, suddenly a unit failed in system A, then the system is functional.
S7 After the failure of the first unit in both systems A and B, this state denotes the online preventive maintenance state. In this 

state, the system is operational.
S8 This state denotes system’s A total failure as a result of two of its unit failing. The system is not functioning. 
S9 This state represents system’s B total failure as a result of two of its unit failing. The system is not working.
S10 This state denotes the offline preventive maintenance state where the system is neither down nor working.
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from one another and are located in different locations. 
When two units from both systems A and B fail, the 
systems continue to function, but any more failure will 
bring the systems to total failure. In the case of total fail-
ure, both systems A and B can be fixed simultaneously 
using Gumbel-Hougaard family copula, whereas general 
repair distribution can be used to bring back partially 
failed states. The systems go through online preventive 

maintenance immediately after the failure of first unit with 
a rate of δ0 and immediately fixed with a rate of ∅(m), as 
well as offline preventive maintenance after the failure of 
the second unit with a rate of δ1 and immediately returned 
with a rate of ∅(n). The system has eleven states including 
perfect state, seven of which are operational and three of 
which are not. The detailed overview of the states is given 
below in table 2:

 

 
2𝜆𝜆2                                                                                                   2𝜆𝜆1 
 
 
 
                  𝛿𝛿0        𝜙𝜙(𝑚𝑚)                                        𝜙𝜙(𝑚𝑚)       𝛿𝛿0 
                                                                                                                         
     
 
                             𝜇𝜇0(𝑦𝑦)            𝜇𝜇0(𝑥𝑥) 

   𝜆𝜆2                                                                                                                                           𝜆𝜆1                                        
𝜆𝜆2             2𝜆𝜆2                                 3𝜆𝜆2                           3𝜆𝜆1                             2𝜆𝜆1 

                                                                                                                                      
𝜙𝜙(𝑦𝑦)                              𝜙𝜙(𝑦𝑦)                            𝜙𝜙(𝑥𝑥)                          𝜙𝜙(𝑥𝑥) 
 
           3𝜆𝜆1         𝜙𝜙(𝑥𝑥)                                                 3𝜆𝜆2          𝜙𝜙(𝑦𝑦) 
 
                                                                                                                                   
 
 
 
                            𝜙𝜙(𝑥𝑥)                                           𝜙𝜙(𝑦𝑦) 
                                                      
                                                                                                                          2𝜆𝜆1 
                                                                                                                                                     
                                                                                                     
                           2𝜆𝜆2 
 
  
 
 𝜙𝜙(𝑛𝑛)                                                                                  𝜙𝜙(𝑛𝑛) 
                                           𝛿𝛿1                          𝛿𝛿1 
 
                                                  

𝑃𝑃7(𝑚𝑚, 𝑡𝑡) 
𝑆𝑆7 

𝑃𝑃2(𝑥𝑥, 𝑡𝑡) 
𝑆𝑆2 

𝑃𝑃4(𝑦𝑦, 𝑡𝑡) 
𝑆𝑆4 

𝑃𝑃8(𝑥𝑥, 𝑡𝑡) 

𝑆𝑆8 

𝑃𝑃9(𝑦𝑦, 𝑡𝑡) 

𝑆𝑆9 

𝑃𝑃3(𝑦𝑦, 𝑡𝑡) 
𝑆𝑆3 

𝑃𝑃0(𝑡𝑡) 
𝑆𝑆0 

𝑃𝑃1(𝑥𝑥, 𝑡𝑡) 
𝑆𝑆1 

𝑃𝑃6(𝑥𝑥, 𝑡𝑡) 
𝑆𝑆6 

𝑃𝑃5(𝑦𝑦, 𝑡𝑡) 
𝑆𝑆5 

𝑃𝑃10(𝑛𝑛, 𝑡𝑡) 
𝑆𝑆10 

Figure 1. Transition diagram of the model.

 
 

 
 
 Perfect state   Partial failure     Online PM       Offline PM       Complete failure 
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MODELS’ FORMULATION AND SOLUTION

Model Formulation
As in Lado and Singh (2019), and Singh and Rawal 

(2015), we obtain the following differential difference equa-
tions as:

  
(1)

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

  (10)

  (11)

The study’s boundary conditions are generated from 
figure 2 by analyzing the rates of exit from each state in 
terms of the probability of being in the initial state, P0(t):

  (12)

  (13)

  (14)

  (15)

  (16)

  (17)

  (18)

  (19)

  (20)

  

(21)

 

Initial conditions
P0(0) = 1, i.e., in a perfect state, the probability of a state 

transition at time t = 0 is zero.
With the above initial condition, we can obtain Laplace 

transforms of equations (1) to (11) as:

  
(22)

  (23)

  (24)

  (25)

  (26)

  (27)

  (28)
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  (29)

  (30)

  (31)

  (32)

Laplace transform of boundary conditions:

  (33)

  (34)

  (35)

  (36)

  (37)

  (38)

  (39)

  (40)

  (41)

  
(42)

 

Solution of the models
Combining equation (22) and (32) with the aid of (33) 

to (42), we get:

  (43)

  (44)

  (45)

  (46)

  (47)

  (48)

  (49)

  (50)

  (51)

  (52)

From (21), we obtain:

  (53)

Where:

The probability that the system is operational is:

  

(54)
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MODEL ANALYSIS

Availability Analysis
To make a distinction, we looked at the system’s avail-

ability in two different ways, viz: 

When repair follows Gumbel-Hougaard Family copula 
distribution 

When the repair follows the copula distri-

bution, the system availability can be deter-

mined from (54) for ,  , 

 

with all repairs set to 1, i.e., ∅(x) = ∅(y) = μ0(x) = μ0(y) = 

μ0(m) = μ0(n) = 1, and  λ1 = 0.01, λ2 = 0.02, δ0 = 0.03, and 

δ1 = 0.04 fixed. Then if we take Laplace transforms, we get: 

  
(55)

Table 3 and figure 2 illustrate the system’s availability for 
copula repair distribution when .

When repair follows general distribution
To obtain the availability of the system when the repair 

is through general distribution, we set  and all 
repairs to 1, i.e., ∅(x) = ∅(y) = μ0(x) = μ0(y) = μ0(m) = μ0(n) 
= 0, and  λ1 = 0.01, λ2 = 0.02, δ0 = 0.03, and δ1 = 0.04, then 
taking the Laplace transform of equation (54), we get the 
expression for availability as:

  
(56)

 

Table 4 and figure 3 present the system’s availability for 
general repair distribution when .

Figure 2. Availability against time with respect to copula distribution.

Table 3. Availability against time t with respect to copula distribution

Time 0 10 20 30 40 50 60 70 80 90 100
Availability 1.0000 0.9374 0.8678 0.8034 0.7437 0.6885 0.6374 0.5901 0.5463 0.5057 0.4681

Table 4. Availability against time t in terms of general repair

Time 0 10 20 30 40 50 60 70 80 90 100
Availability 1.0000 0.9374 0.8678 0.8033 0.7437 0.6885 0.6374 0.5900 0.5462 0.5057 0.4681
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RELIABILITY ANALYSIS

By reducing all repair rates to zero i.e., ∅(x) = ∅(y) = 
μ0(x) = μ0(y) = μ0(m) = μ0(n) = 0, and taking λ1 = 0.01, λ2 
= 0.02, δ0 = 0.03, and δ1 = 0.04 in equation (54), then using 
the inverse Laplace transform, the system’s reliability can be 
expressed as:

  (57)

Reliability can be calculated using equations (57) for 
different values of time t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 
90, and 100, as shown in Table 5 and Figure 4.

Mean Time to Failure (MTTF) Analysis
The expression for MTTF can be obtained by setting all 

repairs to zero and restricting as s reaches zero: 

   
(58)

 

Setting λ1 = 0.01, λ2 = 0.02, δ0 = 0.03, δ1 = 0.04 and 
varying λ1, λ2, δ0 and δ1  one as 0.01, 0.02, 0.03, 0.04, 0.05, 
0.06, 0.07, 0.08, 0.09 respectively in equation (58), one may 

Figure 3. Availability against time in terms of general repair.

Table 5. Variation of reliability corresponding to time t

Time 0 10 20 30 40 50 60 70 80 90 100
Reliability 1.0000 0.7978 0.4774 0.2579 0.1340 0.0695 0.0370 0.0206 0.0123 0.0079 0.0054

Figure 4. Variation of reliability corresponding to time.



Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 1088−1100, August, 20241096

obtain table 6 and figure 5 which show the variation of 
MTTF in terms of failure rates.

Sensitivity Analysis
MTTF sensitivity can be determined using the partial 

derivative of MTTF with respect to failure rates in equation 
(58). Table 7 and Figure 6 display the MTTF sensitivity for 
fixed values of failure rates as λ1 = 0.01, λ2 = 0.02, δ0 = 0.03, 
δ1 = 0.04. 

Cost Function Analysis
Case 1: Expression for cost function/Expected profit 

when the repair follows copula distribution
 If the service facility is open at all times, the formula 

below will determine the estimated profit for the interval 
[0, t).

  (59) 

Where K1, K2 and K3 in the interval [0, t) are the revenue 
generated, service cost per unit time, and, service cost due 
to online and offline maintenance, respectively. Equation 
(60) can be obtained for the same set of parameters in equa-
tion (55).

  

(60)

Fixing K1 = 1, K2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and, K3 = 
0.1. Table 8 and figure 7 can be obtained by using different 
values of the time variable, such as t = 0, 10, 20, … … … 
100.

Case 2: when the repair follows general distribution, the 
cost function is expressed as:

Table 6. MTTF variation in terms of failure rates

Failure Rate λ1 λ2 δ0 δ1

0.01 23.4391 31.8526 25.4245 24.1469
0.02 18.6473 23.4391 24.3056 23.7803
0.03 15.8481 19.0529 23.4391 23.5730
0.04 13.9870 16.3130 22.7579 23.4391
0.05 12.6479 14.4229 22.2165 23.3453
0.06 11.6322 13.0340 21.7833 23.2759
0.07 10.8323 11.9676 21.4356 23.2224
0.08 10.1844 11.1217 21.1566 23.1799
0.09 9.6480 10.4337 20.9336 23.1453

 

Figure 5. MTTF variation in terms of failure rates.
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Table 7. Sensitivity of the MTTF to changes in failure rate

Failure rate

0.01 -654.5725 -1243.4183 -127.5855 -51.0185
0.02 -352.1928 -573.6695 -97.9045 -26.4351
0.03 -223.0796 -336.5049 -76.4815 -16.2583
0.04 -155.5404 -223.4422 -60.5112 -11.0296
0.05 -115.4175 -160.0163 -48.2868 -7.9799
0.06 -89.4430 -120.6018 -38.7212 -6.0437
0.07 -71.5630 -94.3224 -31.0950 -4.7370
0.08 -58.6773 -75.8745 -24.9171 -3.8131
0.09 -49.0550 -62.4030 -19.8423 -3.1358

Figure 6. Sensitivity vs failure rate.

Table 8. Cost function/Expected profit versus time for copula repair

Time Ep(t)
K2 = 0.1

Ep(t)
K2 = 0.2

Ep(t)
K2 = 0.3

Ep(t)
K2 = 0.4

Ep(t)
K2 = 0.6

Ep(t)
K2 = 0.6

0 0 0 0 0 0 0
10 7.7355 6.7355 5.7355 4.7355 3.7355 2.7355
20 14.7571 12.7571 10.7571 8.7571 6.7571 4.7571
30 21.109 18.109 15.109 12.109 9.109 6.109
40 26.8407 22.8407 18.8407 14.8407 10.8407 6.8407
50 32.9984 27.9984 22.9984 17.9984 12.9984 7.5678
60 37.6246 31.6246 25.6246 19.6246 13.6246 7.6246
70 42.7588 35.7588 28.7588 21.7588 14.7588 7.7588
80 48.4375 40.4375 32.4375 24.4375 16.4375 8.4375
90 53.6946 44.6946 35.6946 26.6946 17.6946 8.6946
100 59.5614 49.5614 39.5614 29.5614 19.5614 9.5614
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Figure 7. Cost function/Expected profit versus time for copula repair.

Table 9. Cost function/Expected profit versus time for general repair 

Time Ep(t)
K2 = 0.1

Ep(t)
K2 = 0.2

Ep(t)
K2 = 0.3

Ep(t)
K2 = 0.4

Ep(t)
K2 = 0.6

Ep(t)
K2 = 0.6

 0 0 0 0 0 0 0
10 7.7348 6.7348 5.7348 4.7348 3.7348 2.7348
20 14.7558 12.7558 10.7558 8.7558 6.7558 4.7558
30 21.1071 18.1071 15.1071 12.1071 9.1071 6.1071
40 26.8384 22.8384 18.8384 14.8384 10.8384 6.8384
50 32.9956 27.9956 22.9956 17.9956 12.9956 7.5678
60 37.6215 31.6215 25.6215 19.6215 13.6215 7.6215
70 42.7555 35.7555 28.7555 21.7555 14.7555 7.7555
80 48.4340 40.4340 32.4340 24.4340 16.4340 8.4340
90 53.6910 44.6910 35.6910 26.6910 17.6910 8.6910
100 59.5576 49.5576 39.5576 29.5576 19.5576 9.5576

Figure 8. Cost function/Expected profit versus time for copula repair.
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  (61) 

Table 9 and figure 8 are obtained using the same param-
eters as in equation (60). 

RESULTS AND DISCUSSION

For investigating the effects of online and offline pre-
ventive maintenance, we calculate the system availability, 
reliability, mean time to failure (MTTF), MTTF sensitivity, 
and cost function for the established models numerically. 
When failure rates are set at various values, figure 2 shows 
how availability changes over time. The figure depicts how 
the availability of repairable systems declines over time, but 
eventually stabilizes at zero after a sufficiently long inter-
val of time. The graphical representation of the model can 
predict the future behavior of a complex system for a given 
set of parameters at any time. The values of availability 
when repair follows a general distribution are similar to 
the values of availability when repair follows the Gumbel-
Hougaard family copula distribution; this can be seen in 
figure 2 and 3. This is attributable to the system’s online and 
offline preventive maintenance. However, there is no deny-
ing that using copula repair increases system’s availability 
over general repair. 

Figure 4 shows the difference in reliability over time. 
When compared to system availability, it can be seen that 
system reliability plummets. This is due to lack of system 
repairs. The general consensus is that the less the repairs, 
the lower the reliability. This illustrates what failure to man-
age the structure/system entails. 

Figure 5 illustrates the differences in the value of the 
system’s mean time to failure (MTTF) for failure rates λ1, λ2, 
δ0 and δ1 respectively, fixing other parameters constant. The 
MTTF values with respect to δ0 and δ1 is much higher than 
the MTTF values corresponding to λ1 and λ2. According to 
this sensitivity study, online and offline preventive mainte-
nance failure rates are more responsible for proper system 
functioning. Figure 5 illustrates this. 

The information on the sensitivity analysis conducted 
in this paper is shown in figure 6.

Figures 7 and 8 demonstrate the difference in effective 
benefit over time when the repair follows a copula distri-
bution or a general distribution, respectively, with revenue 
cost per unit time is set at 1.0, cost of online and offline 
maintenance set at 0.1, the service cost is varied and the 
failure rates constant. Figures 7 and 8 show that when the 
repair follows the copula distribution, the expected gain is 
higher than when the repair follows the general distribu-
tion. Because of online and offline preventive maintenance, 
the expected benefit when repairing with copula distribu-
tion is comparable to the expected profit when repairing 
with general repair. According to this sensitivity review, 

the importance of using copula repair would be decreased 
if online and offline preventive maintenance is mandated. 
However, copula repair is still recommended for the sys-
tem’s proper operation. 

CONCLUSION

The reliability metrics for different failure values and 
repair rates are critically analyzed in order to measure the 
performance of the systems under consideration. The sys-
tem’s transient probabilities and reliability metrics such as 
availability, reliability, mean time to failure and cost are cal-
culated using the Markovian process, Laplace transforma-
tion, and supplementary variable approaches. The influence 
of time and other system characteristics on reliability met-
rics was simulated using MATLAB. Numerical experiments 
were used to obtain and validate the fundamental expres-
sions such as availability, reliability, mean time to failure, 
sensitivity, and cost function. On the basis of the numeri-
cal results obtained for a particular case in figures 2-8 and 
tables 1-7, it is clear that the value, i.e., the importance of 
copula repairs has decreased with online and offline pre-
ventive maintenance. This means by implementing online 
and offline preventive maintenance, system failure would 
be greatly reduced, resulting in improved output and rev-
enue generation. It is generally known that system failure 
will reduce production efficiency and may even result in 
a tragedy. This research paper will help system engineers, 
programmers, and maintenance managers design more 
important systems and maintain them in the best interests 
of humanity. Future iterations of this work may combine 
the Gumbel-Hougaard family Copula with the Bivariate 
Gumbel-Hougaard family Copula. 
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