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ABSTRACT  

Purpose:  This study aims to develop a versatile and adaptive system that optimizes manual warehouse 

operations through the integration of Digital Twin technology and AI/ML models. 

Methodology: The framework combines Digital Twin technology with advanced AI/ML analytics to 

dynamically adjust operational strategies based on real-time data collected from warehouse activities. 

Findings: A prototype implementation demonstrated significant improvements, including a 28.6% 

reduction in average picking time, a 20% improvement in inventory turnover, an increase in demand 

forecasting accuracy from 85% to 92%, and a reduction in labor costs by 15%. 

Originality:  This research uniquely applies Digital Twin technology to manual warehouse environments, 

showcasing its effectiveness in enhancing operational efficiency without the need for full automation. 
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İnsan Merkezli Depo Operasyonlarının Optimizasyonu: Dinamik Algoritmalar ve 
AI/ML Kullanarak Dijital İkiz Yaklaşımı 

ÖZET 

Amaç: Bu çalışmada, Dijital İkiz teknolojisi ve Yapay Zekâ/Makine Öğrenmesi modellerinin entegrasyonu 

yoluyla manuel depo operasyonlarını optimize eden çok yönlü ve uyarlanabilir bir sistem geliştirmeyi 

hedeflenmiştir.  

Yöntem: Çerçeve, depo faaliyetlerinden toplanan gerçek zamanlı verilere dayanarak operasyonel 

stratejileri dinamik olarak ayarlamak için Dijital İkiz teknolojisini gelişmiş Yapay Zekâ/Makine Öğrenimi 

analitiğiyle birleştiriyor.  

Bulgular: Prototip uygulaması, ortalama toplama süresinde %28,6'lık bir azalma, stok devir hızında %20'lik 

bir iyileşme, talep tahmin doğruluğunda %85'ten %92'ye bir artış ve işçilik maliyetlerinde %15'lik bir azalma 

dahil olmak üzere önemli iyileştirmeler gösterdi. 

Özgünlük: Bu araştırma, Dijital İkiz teknolojisini manuel depo ortamlarına benzersiz bir şekilde 

uygulayarak, tam otomasyona ihtiyaç duymadan operasyonel verimliliği artırmadaki etkinliğini ortaya 

koyuyor. 

Anahtar Kelimeler: Dijital İkiz, Depo, Optimizasyon, Yapay Zekâ, Makine Öğrenmesi. 

JEL Kodları: C61, C63, L86, M11, O33.
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1. INTRODUCTION  

In the rapidly evolving landscape of supply chain and warehouse management, the focus on automation 
technologies—such as robotics, IoT, and AI/ML—has predominantly overshadowed the optimization needs 
of manual and human-centric operations. Although automated systems have significantly improved 
efficiency and accuracy, a substantial portion of global warehouses still heavily depend on manual labor for 
critical tasks like product placement, picking, and routing. This reliance on human workers introduces 
unique challenges, including variability in performance, inefficiencies in resource allocation, and difficulties 
in scaling operations to meet fluctuating demand (Graves and Yücesan, 2009).  

The manual nature of these operations often leads to bottlenecks, particularly during peak activity periods, 
where the absence of automation can exacerbate delays in order fulfillment and increase operational costs. 
The performance variability among workers, influenced by factors such as fatigue, skill levels, and 
experience, adds another layer of complexity to managing warehouse operations effectively. Moreover, the 
dynamic nature of consumer demand necessitates a flexible and adaptive approach to inventory 
management and order processing, which is often lacking in manual systems (Kaber & Riley, 2017; Ivanov 
et al., 2020: 379).  

To address these challenges, Digital Twin technology has emerged as a transformative approach, providing 
a virtual replica of physical systems for real-time monitoring, simulation, and optimization. This technology 
enables organizations to analyze, optimize, and enhance the accuracy and efficiency of their operations, 
providing a holistic view of the physical warehouse. While Digital Twins have been extensively explored in 
automated environments, their application in manual, human-centric warehouse operations remain 
underexplored (Grieves and Vickers, 2017; Boschert and Rosen, 2016: 63).  

Digital Twin technology in warehousing offers significant benefits, including improved accuracy, enhanced 
visualization, increased efficiency, and greater agility. For instance, tools like SketchUp for 3D modeling 
and Microsoft Power BI for data visualization play crucial roles in implementing Digital Twins, allowing for 
detailed and real-time insights into warehouse operations. This integration not only enhances the accuracy 
of operational assessments but also provides a platform for optimizing workflows and resource allocation 
(Kritzinger et al., 2018; Tao et al., 2016).  

Industry leaders such as Amazon and PepsiCo have demonstrated the practical applications of Digital Twin 
technology in optimizing warehouse operations. Amazon, for example, employs AI-enabled digital twins to 
enhance warehouse design and flow, thereby improving productivity. PepsiCo utilizes digital twins to 
optimize throughput, reduce downtime, and lower energy consumption across its distribution centers, 
showcasing the scalability and adaptability of this technology in complex logistics networks (Amazon, 2021; 
PepsiCo, 2020).  

1.1. Problem Statement 

The reliance on manual labor in many warehouses leads to inefficiencies and limited scalability. Existing 
systems often fail to dynamically adapt to fluctuating demand and operational conditions, resulting in 
suboptimal performance. The need for a flexible, data-driven approach to optimize these environments is 
critical, particularly during peak activity periods.  

1.2. Aim and Objectives 

This paper aims to develop a flexible system to optimize manual warehouse operations by dynamically 
selecting algorithms for product placement, picking, and routing, improving efficiency and adaptability. The 
specific objectives are: 

a) Develop and Implement Multiple Algorithms: Create algorithms for key operations, including product 
placement, picking, and routing, which can be dynamically switched based on real-time data and 
requirements. 

b) Utilize a Simulation and Visualization Interface: Design a user-friendly interface to simulate warehouse 
scenarios, enabling managers to test different algorithm configurations and optimize strategies for varying 
conditions. 

c) Integrate AI/ML for Predictive Analytics: Use AI and ML models to provide predictive insights on demand 
forecasting and worker performance, helping to guide the selection of optimal algorithms based on trends. 

d) Evaluate Algorithm Compatibility and Performance: Assess the compatibility and efficiency of algorithm 
combinations for different conditions, ensuring seamless transitions between configurations. 

e) Ensure Practical Applicability and Scalability: Address real-world integration, user training, and scalability 
challenges, ensuring the system’s applicability across various warehouse sizes and complexities. 
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1.3. Significance of the Study 

The significance of this study lies in the innovative application of Digital Twin technology to manual 
warehouse environments, an area that has received limited attention compared to automated systems. By 
integrating real-time data and advanced analytics, the proposed framework aims to transform traditional 
manual processes into more efficient, scalable systems. This research not only contributes to the academic 
understanding of Digital Twin applications in non-automated environments, but also provides practical 
solutions for industry professionals looking to optimize manual warehouse operations.  

1.4. Overview of the Proposed Approach 

The proposed framework integrates key components to tackle warehouse management challenges. A 
Digital Twin model consolidates data from Warehouse Management Systems (WMS), manual inputs, and 
historical records for real-time monitoring and simulation. Advanced AI/ML analytics provide insights into 
employee performance, inventory levels, and supplier reliability, using techniques like time series analysis 
and neural networks. The system dynamically selects algorithms for product placement, picking, and 
routing based on real-time data, ensuring adaptability and efficient resource use. Additionally, supplier 
analytics aid in inventory planning and handling supply chain disruptions, creating a scalable, efficient 
warehouse framework even without full automation.  

2. LITERATURE REVIEW 

Digital Twin (DT) technology has emerged as a significant innovation in various industries, including 
aviation, manufacturing, logistics and warehousing. The technology provides a virtual representation of 
physical systems, enabling real-time monitoring, simulation and optimization. This review examines the 
evolution of Digital Twin technology, its applications in warehousing, its integration with Artificial Intelligence 
(AI) and Machine Learning (ML), and the current challenges and future directions in this field. 

2.1. Historical Development of Digital Twin Technology 

The concept of Digital Twin technology was first introduced in 2002 by Michael Grieves during a 
presentation on Product Lifecycle Management (PLM) (Grieves, 2002: 92). Originally conceived as a digital 
replica of a physical product for simulation and analysis throughout its lifecycle, Digital Twin technology 
quickly gained traction, especially in the aerospace industry. NASA adopted Digital Twin models to simulate 
spacecraft and satellite systems, improving mission planning and risk management (Glaessgen and 
Stargel, 2012). This application demonstrated the potential of Digital Twins to provide precise, real-time 
data on complex systems, enabling predictive maintenance and optimization of operations. 

By 2011, Digital Twin technology had expanded into manufacturing, where companies such as Siemens 
integrated it into their Digital Enterprise Suite. This integration allowed manufacturers to simulate 
manufacturing processes, optimize workflows, and reduce time to market (Grieves and Vickers, 2017). The 
ability to continuously update the digital model based on real-world data provided a dynamic tool for process 
optimization and predictive maintenance, demonstrating the adaptability of Digital Twin technology to 
different operational contexts. 

2.2. Expansion into Logistics and Warehousing 

In recent years, Digital Twin technology has made significant progress in logistics and warehousing. Initially, 
its application focused on predictive maintenance, which uses real-time data to predict equipment failures 
and reduce downtime (Uhlemann et al., 2017). This early adoption demonstrated the technology’s ability to 
increase operational efficiency by minimizing unplanned outages. However, the scope of Digital Twin 
applications has since expanded to include inventory management, operational efficiency, and dynamic 
process optimization (Kritzinger et al., 2018). 

For example, Amazon is using AI-powered digital twins to improve warehouse layout and flow, leading to 
significant productivity gains (Amazon, 2021). These digital twins enable real-time adjustments to inventory 
placement and picking processes, optimizing both space utilization and picking efficiency. Similarly, 
PepsiCo has integrated digital twins into its distribution centers to increase throughput, reduce downtime, 
and reduce energy consumption, proving the scalability and adaptability of this technology across complex 
logistics networks (PepsiCo, 2020). 

2.3. Integration of AI/ML with Digital Twin Technology 

The integration of AI and ML with Digital Twin technology has revolutionized warehouse management by 
providing advanced solutions for demand forecasting, inventory optimization, and operational efficiency. 
AI/ML algorithms analyze large amounts of data to predict demand patterns, optimize inventory levels, and 
allocate resources efficiently. Fuller et al. (2020) demonstrated the use of neural networks and LSTM 
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models to improve demand forecast accuracy, a critical factor in reducing both stockouts and excess 
inventory. These predictive models use historical sales data, market trends, and external factors to provide 
real-time insights, allowing warehouses to proactively adjust their inventory strategies. 

Reinforcement learning, a subset of machine learning, has been particularly effective in dynamically 
optimizing picking routes and task assignments. By analyzing real-time data on worker availability, 
equipment status, and order urgency, reinforcement learning algorithms can continuously learn and adapt, 
reducing picking times and improving operational efficiency (Chen et al., 2019). This approach is in sharp 
contrast to traditional static methods that often fail to adapt to the fluctuating demands of modern storage 
environments. 

2.4. Emerging Trends and Future Directions 

Digital Twin (DT) technology has evolved substantially, yet significant gaps remain in its application within 
human-centric, manual warehouse settings. Most DT models are designed for machine-driven, automated 
environments, limiting their effectiveness in scenarios where human factors like fatigue, ergonomic risks, 
and performance variability play critical roles (Kaber & Riley, 2017). This machine-centered focus results 
in models less suited for optimizing manual operations due to their inability to account for human variability. 

Recent advancements have begun addressing these gaps by incorporating real-time, human-centric data. 
For example, Rashid and Rattenbury (2018) discuss machine learning models that dynamically adjust 
inventory management based on real-time data, enhancing accuracy and efficiency but largely for semi-
automated systems. Extending these approaches to fully manual environments remains a crucial research 
area, especially for accommodating human-induced variability in real-time workflows. 

Furthermore, integrating DT with Internet of Things (IoT) technology has transformed various fields. IoT-
enabled DTs facilitate continuous data collection on environmental and operational conditions, which 
significantly improves model responsiveness and accuracy (Tao et al., 2020). In urban logistics and smart 
cities, real-time IoT data optimizes resources and energy use, suggesting that similar approaches in 
warehouses could boost workflow efficiency and sustainability where human interaction is high. 

Advances in reinforcement learning (RL) are also expected to impact DT in manual environments. While 
RL has proven effective in optimizing tasks in automated systems (Chen et al., 2019), applying it in manual 
workflows remains underexplored. Adapting RL for such settings could bridge the gap between machine-
oriented efficiency and the flexibility needed for human-centered operations. 

2.5. Current Challenges and Opportunities for Innovation 

Integrating Digital Twin (DT) technology with AI, ML, and IoT holds immense promise, yet human-centric 
warehouse environments face specific challenges. A primary obstacle is data integration and management; 
DT systems rely on accurate, real-time data from multiple sources, but seamless integration is challenging, 
particularly with manual data entry, leading to inconsistencies and potential errors (McKinsey & Company, 
2022). 

Another challenge is optimizing warehouse layout for manual tasks. Studies like those by Aylak et al. (2021) 
on pallet loading and Aylak (2022) on layout optimization underscore the effectiveness of data-driven 
approaches in automated settings. However, manual environments require layouts that address 
accessibility, ergonomics, and strain reduction. Human-centered DT models that adapt layouts dynamically 
can significantly improve both efficiency and worker well-being. 

The complexity of current DT systems also requires significant training, posing a barrier in labor-intensive 
settings. Using augmented reality (AR) or virtual reality (VR) technologies could simplify these interfaces, 
making DT models more intuitive and engaging for workers, thus boosting both operational efficiency and 
employee satisfaction (Chicaiza et al., 2020). 

Additionally, emerging technologies like blockchain and 5G present further opportunities for DT innovation. 
Blockchain enhances data transparency and traceability, while 5G provides the high-speed connectivity 
essential for real-time data analysis. Together, these technologies support scalable and adaptable DT 
systems, broadening their potential in both automated and manual warehouse environments. 

2.6. Contribution to Knowledge 

This study addresses gaps in Digital Twin (DT) applications for human-centric warehouses by creating a 
framework that incorporates real-time, human-centered data. Unlike traditional DT models designed for 
automation, this framework integrates worker performance, task variability, and ergonomic needs, enabling 
accurate simulation and optimization of manual workflows. 
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Additionally, the study adapts AI/ML algorithms and association rule-based optimization, usually applied in 
automated settings, for human-driven tasks. This approach balances machine-driven efficiency with 
human-centered adaptability, extending DT technology’s applicability to manual operations. 

Overall, this research advances DT understanding in human-centric environments, providing a flexible 
model that fills critical gaps in existing literature and promotes a harmonious integration of human and 
machine dynamics. 

2.7. Conclusion 

Digital Twin technology has made significant strides in transforming warehouse operations by providing a 
dynamic, real-time virtual representation of physical systems. The integration of AI/ML and IoT has further 
enhanced its capabilities by providing advanced solutions for demand forecasting, inventory optimization, 
and operational efficiency. However, significant challenges remain in applying Digital Twin technology to 
manual, human-centric environments, where integrating human factors and real-time adaptability can 
unlock greater efficiencies. As technology continues to evolve, there is significant potential for further 
innovation, particularly in integrating advanced analytics and digital technologies to improve manual 
warehouse operations. 

3. METHODOLOGY 

This study integrates Digital Twin technology with advanced AI/ML algorithms to optimize warehouse 
operations, focusing on improving inventory management, picking efficiency, and overall operational 
workflow. The methodology includes detailed system design, data integration, algorithm development, and 
testing in a real-world environment. Below, we provide a comprehensive description of each component 
supported by relevant figures and formulas. 

3.1. Research Paradigm 

The research is based on a pragmatist paradigm that emphasizes practical solutions that can be 
implemented in real-world environments. This approach allows for the use of both quantitative and 
qualitative data to provide a holistic view of warehouse operations and aligns with the study’s goal of 
creating a scalable and adaptable system to increase efficiency in manual warehouse environments. 

3.2. System Design and Components 

The Digital Twin system for warehouse operations is designed to improve performance and efficiency 
through a multi-layered architecture where each layer plays a different role. Figure 1 illustrates this 
architecture, highlighting how these layers interact to create a comprehensive virtual model of the 
warehouse environment. 

The Data Collection Layer collects real-time information about inventory, product locations, employee 
activities, and environmental conditions from a variety of sources, including sensors, barcode scanners, 
cameras, and manual inputs. This data forms the foundation of the Digital Twin, enabling accurate 
simulations and informed decision-making. 

The Data Integration Layer then processes, cleans, transforms, and stores this raw data, providing 
consistency and organization for further analysis. This layer plays a vital role in maintaining data integrity 
and facilitating its seamless integration into the Digital Twin model. 

The Digital Twin Core uses this processed data to create a dynamic, virtual representation of the 
warehouse. It includes a simulation engine and dynamic algorithms that enable real-time simulations and 
predictive modeling, providing insights into potential operational efficiencies and identifying bottlenecks. 

Beneath this, the AI/ML Analytics Layer uses advanced machine learning and AI techniques to analyze the 
data and predict future trends. It includes predictive analytics and reinforcement learning tools used to 
forecast demand, optimize inventory placement, and improve decision-making processes. 

The Decision Support System (DSS) integrates insights from the analytics layer to facilitate real-time 
decision-making and scenario planning. This system helps warehouse managers evaluate different 
strategies and make informed decisions based on both current and projected conditions, thereby optimizing 
operations. 

Finally, the Visualization and User Interface Layer provides intuitive tools for data visualization, including 
dashboards, 3D visualizations, and reporting tools. These interfaces make complex data accessible and 
understandable, supporting effective communication and encouraging data-driven decision-making. 
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Figure 1. Digital twin architecture for warehouse operations 

3.3. Algorithm Development 

A suite of algorithms has been developed and implemented within the Digital Twin system to optimize core 
warehouse operations such as product placement, picking, and routing. These algorithms are adaptable 
and responsive to real-time data and provide dynamic solutions to a variety of operational challenges. 

3.3.1 Product Placement Algorithms 

ABC Analysis: This algorithm categorizes inventory based on movement rates and value and optimizes 
placement by placing high-demand products in accessible locations. The formula for calculating each 
product’s priority is given as Equation 1. 

Priority =
Annual Demand×Unit Cost

Total Inventory Cost
                                                                                                          (1) 

This formula calculates priority by multiplying annual demand by unit cost and dividing by total inventory 
cost, ensuring that high-demand, high-value products are placed in easily accessible locations. 

Zonal Placement: This method divides the warehouse into zones based on product categories and handling 
characteristics, minimizing travel time and optimizing space usage. Zone assignment is calculated using 
Equation 2. 

Zone Score =
Average Pick Time

Number of Picks
× Distance Factor                                                                 (2) 

The zone score formula helps determine the most efficient placement of items by adjusting both the average 
pick time and the number of picks by the distance factor. 
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Dynamic Slotting: This algorithm dynamically adjusts product locations based on real-time demand data, 
ensuring that frequently accessed items are placed in the most accessible locations. The efficiency of 
placement is determined by Equation 3. 

Slotting Efficiency =
Pick Frequency×Pick Density

Slot Availability
                                                                      (3) 

This formula measures nesting effectiveness and optimizes the use of available space by calculating the 
ratio of foraging frequency and density to nest availability. 

3.3.2 Picking Algorithms 

Batch Picking: This method minimizes travel distances and shortens picking time by combining items from 
multiple orders into a single picking round. The effectiveness of bulk picking is evaluated as Equation 4. 

Batch Efficiency =
Total Items Picked

Total Distance Traveled
                                                                     (4) 

Aggregate efficiency is calculated by dividing the total number of items picked by the total distance traveled, 
highlighting the efficiency gains from consolidated picking. 

Wave Picking: This method balances workloads and improves process flow by synchronizing picking 
operations with packaging and shipping schedules. Optimization of wave picking is expressed as Equation 
5. 

Wave Efficiency =
Orders Processed in Wave

Total Processing Time
                                                             (5) 

Wave efficiency measures the ratio of orders processed to total processing time, ensuring waves are 
synchronized for maximum efficiency. 

3.3.3 Routing Algorithms 

Traveling Salesman Problem (TSP): This algorithm calculates the shortest possible route that covers all 
required collection locations by minimizing travel distance and time. The TSP optimization is given by 
Equation 6. 

Minimize  ∑ 𝑑(𝑥𝑖 , 𝑥𝑖+1)𝑛−1
𝑖=1 + 𝑑(𝑥𝑛 , 𝑥1)                                                               (6) 

This formula represents the aim of minimizing the total distance traveled by calculating the sum of the 
distances between consecutive pickup points and return to the starting point. 

Ant Colony Optimization (ACO): Inspired by ant colonies, this heuristic algorithm finds optimal paths based 

on real-time feedback and environmental conditions. The probability 𝑃𝑖𝑗 of moving from location 𝑖 to 𝑗 is 

given as Equation 7. 

𝑃𝑖𝑗 =
[𝜏𝑖𝑗]

𝛼
[𝜂𝑖𝑗]

𝛽

∑ [𝜏𝑖𝑘]𝛼[𝜂𝑖𝑘]𝛽
𝑘∈allowed

                                                    (7) 

This formula calculates the probability of choosing a path based on the pheromone levels 𝜏 and heuristic 

values 𝜂, weighted by parameters 𝛼 and 𝛽. 

3.4. AI/ML Integration 

The integration of Artificial Intelligence (AI) and Machine Learning (ML) in the proposed methodology plays 
a key role in optimizing various aspects of warehouse operations. By leveraging these advanced 
technologies, the system provides detailed insights across multiple dimensions including order analysis, 
demand forecasting, inventory management, and workforce optimization, facilitating optimization. Each 
component is carefully selected to address specific challenges and enhance overall efficiency. 

3.4.1 Order Analysis and Demand Forecasting 

Accurate demand forecasting is critical in warehouse management as it directly impacts inventory levels, 
order fulfillment rates, and overall operational efficiency. The use of AI/ML models for demand forecasting 
enables a more precise prediction of future demand, which is essential for maintaining optimal inventory 
levels and reducing both stock-outs and overstocking situations. 

3.4.1.1 Time Series Analysis 

Time series analysis is used using models such as ARIMA (AutoRegressive Integrated Moving Average) 
and SARIMA (Seasonal AutoRegressive Integrated Moving Average). These models are particularly useful 
for predicting future demand based on historical sales data. The ARIMA model is defined by the following 
Equation 8. 
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𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡                      (8) 

This equation represents an autoregressive model with moving average (ARMA) terms that is used to 
predict future values based on past observations and error terms. ARIMA was chosen because of its 
effectiveness in capturing linear patterns and trends in time series data. It is particularly useful for datasets 
with strong temporal dependencies and where seasonality does not significantly affect the data. The 
model’s flexibility in handling different types of time series (with or without trends and seasonality) makes it 
a versatile tool for demand forecasting in warehouses with stable and predictable demand patterns. 

3.4.1.2 Machine Learning Models 

Machine learning models such as Long Short-Term Memory (LSTM) networks and Recurrent Neural 
Networks (RNN) are also used for demand forecasting. These models are designed to capture complex 
patterns in demand data, including non-linear relationships and long-term dependencies. The LSTM model 
is defined by the following Equation 9. 

ℎ𝑡 = 𝜎(𝑊ℎ ⋅ 𝑥𝑡 + 𝑈ℎ ⋅ ℎ𝑡−1 + 𝑏ℎ)                                                                                (9) 

In this formula, ℎ𝑡 is the hidden state at time t, σ is the activation function (usually a sigmoid or tanh function), 
𝑊ℎ and 𝑈ℎ are weight matrices, 𝑥𝑡 is the input at time t, ℎ𝑡−1 is the hidden state from the previous time step, 

and 𝑏ℎ is the bias vector. LSTM networks are a type of RNN that can learn long-term dependencies in 
sequential data by using memory cells that can maintain information over extended periods. 

3.4.2 Inventory Management and Optimization 

Effective inventory management is vital to reducing holding costs, improving service levels, and ensuring 
the right products are available at the right time. AI/ML techniques are used to classify and segment 
inventory, optimize stock levels, and layout design to increase operational efficiency. 

3.4.2.1 Classification Algorithms 

Support Vector Machines (SVM) and Decision Trees are used to classify inventory based on turnover rates 
and other relevant characteristics, optimize stock levels, and minimize holding costs. SVM was chosen due 
to its ability to handle high-dimensional data and perform well in binary and multi-class classification tasks. 
It is particularly effective in scenarios where inventory items need to be classified into different categories 
based on various characteristics such as turnover rates, size, and perishability. The SVM classification 
function is given as Equation (10). 

𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)𝑛
𝑖=1 + 𝑏)                                                          (10) 

In this formula, 𝑓(𝑥) is the decision function, 𝛼𝑖  are the model parameters (Lagrange multipliers), 𝑦𝑖   are the 

target labels, 𝐾(𝑥𝑖 , 𝑥) is the kernel function that computes the similarity between data points 𝑥𝑖  𝑎𝑛𝑑 𝑥, and 
𝑏  is the bias term. SVM finds the hyperplane that best separates the different classes of data points in a 
high-dimensional space. 

To optimize inventory classification and support product placement decisions, the C4.5 Decision Tree 
algorithm was chosen due to its ability to handle categorical and continuous data effectively. This algorithm 
constructs interpretable decision trees, providing a clear and structured decision path ideal for manual 
warehouse settings where rules need to be easily understood by staff. C4.5 selects features based on 
information gain, calculated through entropy to measure data uncertainty. Given a dataset 𝐷 with categories 

𝐶𝑖, the entropy 𝐻(𝐷) is shown in Equation 11. 

𝐻(𝐷) = − ∑ 𝑝(𝐶𝑖)log2
𝑛
𝑖=1 𝑝(𝐶𝑖)                                                    (11) 

Where 𝑝(𝐶𝑖) represents the probability of each category. For each feature 𝐴, the information gain 𝐼𝐺(𝐷, 𝐴) 
is calculated as in Equation 12. 

𝐼𝐺(𝐷, 𝐴) = 𝐻(𝐷) − ∑
|𝐷𝑣|

|𝐷|
 𝐻(𝐷𝑣)𝑣∈𝑉                                                                                              (12) 

Where 𝑉 is the set of unique values of 𝐴 and 𝐷𝑣 the subset of 𝐷 for each 𝑣. This process yields a tree that 
segments inventory by attributes like turnover rates, enabling effective categorization into fast, medium, 
and slow-moving classes. This structured approach helps streamline product placement and inventory 
turnover, aligning with the observed improvements in classification accuracy for different inventory 
categories, as detailed in the results. 

3.4.2.2 Clustering Techniques 

K-means clustering is used to segment inventory based on characteristics such as size, perishability, and 
demand frequency, and helps in designing efficient storage layouts. K-means clustering is chosen for its 
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simplicity and efficiency in segmenting large data sets. The K-means clustering objective function is defined 
in Equation 13. 

𝐽 = ∑ ∑ |𝑥𝑗
(𝑖)

− 𝜇𝑖|
2𝑛

𝑗=1
𝑘
𝑖=1                                                                          (13) 

Here, 𝐽  is the objective function (sum of squared distances), 𝑘 is the number of clusters, 𝑛 is the number 

of data points, 𝑥𝑗
(𝑖)

 represents a data point assigned to cluster i, and 𝜇𝑖 is the centroid of cluster i. The K-

means algorithm aims to minimize the within-cluster variance by assigning each data point to the cluster 
whose mean is the nearest, updating the centroids iteratively. 

To determine the optimal number of clusters (𝑘), the Elbow Method was applied, where the sum of squared 

distances (SSD) from each data point to its nearest cluster center is plotted against varying values of 𝑘. 
The 'elbow' point, where additional clusters provide diminishing returns in SSD reduction, was identified as 
the most efficient balance between segmentation accuracy and computational efficiency. This approach 
allowed for practical, data-driven cluster optimization suited to the dynamic nature of manual warehouse 
environments. 

3.5. Simulation and Testing 

Extensive simulations and real-world testing were performed to validate the system's performance and 
optimize its configurations: 

Scenario Analysis: Various operational scenarios were simulated using the Digital Twin model to evaluate 
the impact of different optimization strategies on key performance indicators such as picking time, order 
accuracy, and cost efficiency. The simulations allowed multiple strategies to be tested under controlled 
conditions, allowing the effectiveness of each approach to be evaluated. 

Real-World Testing: The system was implemented in a shared warehouse covering 5,000 square meters 
and managing 10,000 SKUs. Over a three-month period, data on inventory levels, order histories, and 
employee performance metrics were collected and analyzed to compare the performance of the Digital 
Twin system with traditional methods. The results showed significant improvements in operational 
efficiency, validating the effectiveness of the proposed methodologies. 

4. RESULTS 

This chapter presents the results of applying Digital Twin technology and AI/ML models to improve 
warehouse operations. The main goal is to show how the integration of dynamic algorithms and advanced 
analytics can lead to tangible improvements in efficiency, accuracy, and cost-effectiveness. The results 
highlight the benefits of these innovative approaches in a real-world warehouse environment, focusing on 
key areas such as demand forecast accuracy, inventory classification, picking optimization, and workforce 
management. This analysis aims to provide clear evidence of the effectiveness of the system in 
transforming traditional manual operations into more streamlined, data-driven processes. 

4.1. Performance of AI/ML Models for Demand Forecasting 

Demand forecasting is a key component of effective warehouse management that directly impacts 
inventory levels, order fulfillment, and overall operational efficiency. In this study, we applied ARIMA 
(Autoregressive Integrated Moving Average) and LSTM (Long Short-Term Memory) models to forecast 
demand based on historical data. These models were chosen for their ability to handle different data 
patterns; ARIMA is well-suited for linear trends and seasonality, while LSTM is excellent at capturing 
complex, nonlinear dependencies over time. 

4.1.1 Accuracy of Forecasting Models 

To evaluate the performance of the forecasting models, we performed a comparative analysis of ARIMA 
and LSTM on different time frames, including daily, weekly and monthly forecasts. 

Table 1. Forecasting accuracy of each model 

Model Daily Forecast Accuracy Weekly Forecast Accuracy Monthly Forecast Accuracy 

ARIMA 85% 87% 88% 
LSTM 90% 93% 95% 

As seen in Table 1, the LSTM model consistently outperformed the ARIMA model across all time frames, 
especially for monthly forecasts, where it achieved an accuracy of 95% compared to ARIMA’s 88%. This 
suggests that LSTM is more capable of capturing complex demand patterns and trends over longer 
periods. 
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Figure 2: Actual vs. predicted demand for monthly forecasts using ARIMA and LSTM models 

Figure 2 shows the actual and forecasted demand using both models for monthly forecasting. While the 
LSTM model closely follows the actual demand trends, the ARIMA model shows more deviation, 
especially during periods of rapid demand change. 

4.1.2 Impact on Inventory Management 

The improved accuracy in demand forecasting had a significant impact on inventory management within 
the warehouse. By forecasting demand more accurately, the system was able to optimize inventory levels, 
reducing the risk of both stock-outs and overstock situations. 

Table 1. Impact of AI/Ml model implementation on inventory metrics 

Metric 
Before 

Implementation 
After Implementation 

(ARIMA) 
After Implementation 

(LSTM) 

Average Stockouts 10 per month 7 per month 4 per month 
Overstock 
Instances 

15 per month 10 per month 5 per month 

Inventory Turnover 4.2 4.8 5.5 

As shown in Table 2, the use of ARIMA and LSTM models significantly reduced average stockouts and 
overstock situations. Specifically, the LSTM model reduced stockouts from 10 to 4 per month and 
overstock situations from 15 to 5 per month. This led to a higher inventory turnover ratio, which improved 
from 4.2 to 5.5 after LSTM implementation, indicating more efficient use of warehouse space and 
resources. 

4.2. Inventory Classification and Optimization 

To evaluate the effectiveness of various inventory management strategies in a dynamic warehouse 
environment, the performance of Support Vector Machines (SVM) and Decision Tree models for inventory 
classification was evaluated. These models were selected due to their distinct advantages: SVM is highly 
effective in high-dimensional spaces and is excellent at handling the complex relationships between 
variables required to correctly understand various inventory models. In contrast, Decision Trees provide 
simplicity and ease of interpretation, making them particularly valuable for real-time decision making and 
rapid adjustments in warehouse operations. This study aims to examine the results of these models to 
evaluate their impact on inventory turnover and picking efficiency and to provide insights into the most 
effective approaches to optimize inventory management in a dynamic context. 

4.2.1 Performance Metrics 

To evaluate the performance of SVM and Decision Tree models in classifying inventory items, we analyzed 
their accuracy using confusion matrices. The confusion matrices in Table 3 and Table 4 show the 
performance of SVM and Decision Tree models in classifying inventory items, respectively. 
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Table 2. Confusion matrix for SVM model 

Actual \ Predicted Fast-Moving Medium-Moving Slow-Moving 

Fast-Moving 450 30 20 
Medium-Moving 40 400 60 
Slow-Moving 10 50 390 

 

Table 3. Confusion matrix for decision tree model 

Actual \ Predicted Fast-Moving Medium-Moving Slow-Moving 

Fast-Moving 430 50 20 
Medium-Moving 60 380 60 
Slow-Moving 20 70 360 

In addition to the complexity matrices, we evaluated the models using basic performance metrics such as 
precision, recall, and F1 score, as shown in Table 5. 

Table 4. Classification performance metrics 

Model Precision Recall F1 Score 

SVM 88% 87% 87.50% 
Decision Tree 84% 83% 83.50% 

Performance measurements show that both models performed well in classifying inventory items, with 
SVM showing slightly higher precision, recall, and F1 scores. The SVM model showed 88% precision, 
meaning it was fairly accurate in predicting fast-moving items. The 87% recall indicates that SVM 
effectively identified all relevant items in each category, while the 87.5% F1 score reflects a good balance 
between precision and recall. The Decision Tree model also performed adequately, but showed greater 
variability in its classifications, particularly in distinguishing between medium and slow-moving items. 

4.2.2 Effect on Inventory Turnover and Stock Management 

Correctly classifying stock items has a direct impact on stock turnover rates and overall inventory 
management. By effectively categorizing products into fast-moving, medium-moving, and slow-moving 
items, you can optimize warehouse stock levels, reduce holding costs, and increase picking efficiency. 

Before the implementation of SVM and Decision Tree models, inventory turnover was relatively low, 
reflecting inefficiencies in inventory management. After the models were deployed, a noticeable 
improvement in inventory turnover was observed, as shown in Figure 2. The turnover rate has been 
calculated as Equation 14. 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑅𝑎𝑡𝑒 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐺𝑜𝑜𝑑𝑠 𝑆𝑜𝑙𝑑 /𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦                                             (12) 

 

Figure 3. Comparative inventory turnover rates before and after implementing the classification 
models 
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The graph in Figure 3 shows that after implementing the SVM and Decision Tree models, the inventory 
turnover ratio increased steadily, from an average of 4.3 to 5.7 over a 12-month period. This improvement 
indicates more efficient inventory management, with faster-moving items being replenished more frequently 
and slower-moving items being identified for liquidation or strategic repositioning. Accurate inventory 
classification also contributed to better stock management by ensuring that products were stored in optimal 
locations based on their movement rates. This improved picking efficiency and reduced travel time within 
the warehouse. 

4.3. Inventory Segmentation Using K-means Clustering 

Inventory segmentation is an important aspect of warehouse management, especially in a dynamic 
environment. The primary goal of segmentation is to separate inventory items into different groups or 
clusters based on shared characteristics such as picking frequency, item size, and handling requirements. 
The application of K-means clustering resulted in the formation of three distinct clusters, representing fast-
moving, medium-moving, and slow-moving items. These clusters were based on factors such as average 
picking frequency, item size, and storage requirements, which were derived from historical sales data and 
operational metrics. 

4.3.1 Clustering Results 

Figure 4 shows a scatter plot showing how inventory items are grouped into clusters using the K-means 
algorithm. The x-axis represents the collection frequency, while the y-axis shows the item size. Each cluster 
is represented by a different color, clearly showing the segmentation of fast-moving, medium-moving, and 
slow-moving items. 

 

Figure 4. Clustering of inventory items based on picking frequency and item size using k-means 
algorithm 

As shown in Figure 4, fast-moving products (shown in blue squares) generally have a higher picking 
frequency and smaller size, making them ideal for storage in easily accessible locations. Medium-moving 
products (shown in green squares) have a medium picking frequency and size, suggesting that they should 
be placed in intermediate storage locations. Slow-moving products (shown in red squares) are 
characterized by a lower picking frequency and larger size, making them suitable for storage in less 
accessible areas. 

4.3.2 Operational Efficiency Improvements 

Effective segmentation through K-means clustering significantly improved various operational metrics 
within the warehouse, particularly in the areas of picking efficiency, travel time, and storage optimization. 
The strategic placement of items based on their cluster characteristics led to a reduction in average picking 
times and travel distances within the warehouse. By positioning fast-moving items closer to the picking 
stations and grouping similar items together, the warehouse minimized the time workers spent searching 
for and retrieving products. Figure 5 compares average picking times and travel distances before and after 
implementing inventory segmentation. 
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Figure 5. Comparison of average picking times and travel distances before and after k-means 
clustering implementation 

As Figure 4 shows, over the 12-month period after implementing K-means clustering for inventory 
segmentation, average picking time decreased from 8.5 minutes to 5.8 minutes, representing a 31.8% 
improvement in picking efficiency. Similarly, travel distance within the warehouse has also decreased, 
further improving operational efficiency, as shown in Figure 6. 

 

Figure 6. Comparison of average travel distances within the warehouse before and after k-means 
clustering implementation 

Figure 6 shows that the average travel distance within the warehouse decreased by 31.1%, from 90 meters 
to 62 meters, highlighting the effectiveness of inventory segmentation in optimizing storage layouts and 
improving overall operational efficiency. 

By using K-means clustering for inventory segmentation, the warehouse not only improved picking 
efficiency and reduced travel time, but also optimized storage space, contributing to smoother operations 
and better resource utilization. These results demonstrate the significant benefits of implementing data-
driven approaches to inventory management, in line with the overall goals of improving warehouse 
performance through advanced methodologies. 

4.4. Results of Dynamic Algorithms for Loading, Picking, and Routing 

The primary goal of implementing dynamic algorithms for loading, picking, and routing within the warehouse 
was to leverage the capabilities of the Digital Twin and AI/ML outputs to explore alternative operational 
strategies. While the warehouse was initially based on standard algorithms, it was hypothesized that 
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dynamic, data-driven alternatives could deliver superior performance. This section details the findings from 
these alternative scenarios, showing how different algorithms impact warehouse efficiency. 

4.4.1 Loading Algorithms 

Initially, the warehouse used a standard FIFO (First In, First Out) loading algorithm, believing it effectively 
optimized its operations by ensuring old stock was used first, thus reducing spoilage and maintaining 
product quality. However, through Digital Twin simulations, various loading strategies were tested, including 
dynamic FIFO/LIFO combinations that adapted to real-time inventory levels and product characteristics. 

Comparative analysis of the standard FIFO algorithm and the dynamically selected algorithms is given in 
Table 6. The data shows how the dynamic approach driven by real-time data and predictive analysis 
outperforms the single method strategy on various metrics. 

Table 5. Performance of standard vs. dynamic loading algorithms 

Algorithm Average Loading Time (mins) Loading Accuracy (%) Resource Utilization (%) 

Standard FIFO 5.5 95 82 
Dynamic FIFO/LIFO 3.9 97 88 

The dynamic loading algorithm, which switches between FIFO and LIFO based on product type and 
movement speed, was found to significantly improve loading efficiency. For example, the average loading 
time per pallet was reduced from 5.5 minutes with the standard FIFO method to 3.9 minutes with the 
dynamic approach, representing a 29% improvement. 

4.4.2 Picking Algorithms 

The warehouse initially used a static batch picking algorithm that bundled orders together to minimize travel 
time. While this method was effective under stable conditions, it showed limitations during busy periods or 
when the order profile changed significantly. Using the Digital Twin environment, alternative picking 
algorithms were simulated, including wave picking and cluster picking based on real-time order data and 
worker availability. 

The adaptability of the collection algorithms was a key factor in improving operational efficiency. By 
continuously analyzing real-time data, the system dynamically selected the most efficient collection 
strategy, significantly reducing idle time and optimizing worker productivity. Figure 7 presents a comparative 
analysis of collection times and accuracy rates before and after implementing dynamic collection 
algorithms. 

 

Figure 7. Comparative analysis of picking times and accuracy rates 

Switching to a dynamic picking strategy that adjusts between batch picking and wave picking based on 
order volume and product locations reduced average picking time from 11.0 minutes to 7.2 minutes—a 
34.5% reduction. Additionally, picking accuracy increased from 90% to 96%, demonstrating the algorithm’s 
ability to effectively adapt to changing conditions. 
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4.4.3 Routing Algorithms 

Initially, the warehouse used a standard TSP (Traveling Salesman Problem) approach for routing, which 
focused on minimizing travel distances based on fixed product locations. However, this method did not 
account for real-time changes in the warehouse environment, such as inventory movement and worker 
availability. Using the Digital Twin to simulate various routing strategies, including Ant Colony Optimization 
(ACO), the warehouse discovered more flexible and adaptable routing solutions. 

The adoption of dynamic routing algorithms that adapt routes based on real-time data led to a significant 
reduction in travel time within the warehouse. For example, as shown in Table 7, the average travel distance 
per route decreased by 25%, from 80 meters with the TSP to 60 meters with the ACO algorithm. 

 Table 6. Routing algorithm performance comparison 

Algorithm Travel Time (mins) Distance (meters) Route Optimization (%) 

TSP 10 80 85 
ACO 7.5 60 92 

A detailed comparison of routing algorithms revealed that when dynamically adjusted based on live 
warehouse data, ACO consistently outperformed TSP, particularly in scenarios with high variability in 
inventory locations and employee movements. Figure 8 visually represents these efficiency gains, 
highlighting the reduction in travel distances and improved route optimization. 

 

Figure 8. Routing efficiency before and after algorithm implementation 

By leveraging the Digital Twin environment and AI/ML outputs, the warehouse was able to test and 
implement alternative algorithms for loading, picking, and routing. Dynamic algorithms demonstrated 
significant improvements in operational efficiency by adapting to real-time data to optimize processes 
beyond the capabilities of static, traditional methods. These findings highlight the value of a flexible, data-
driven approach to warehouse management, especially in environments where conditions are constantly 
changing. 

4.5. Digital Twin Model Effectiveness 

The Digital Twin model was implemented to provide a real-time virtual representation of warehouse 
operations, allowing for enhanced decision-making and operational efficiency. By simulating different 
scenarios and adjusting to live data, the Digital Twin enables proactive management of inventory, 
workforce, and overall warehouse processes. 

4.5.1 Real-Time Adaptation and Scenario Testing 

The Digital Twin model played a crucial role in testing various scenarios that could impact warehouse 
operations. For example, in the case of unexpected demand surges or equipment malfunctions, the model 
allowed managers to simulate different response strategies and choose the most effective one. This 
capability not only enhanced decision-making but also ensured that the warehouse could adapt quickly to 
changing conditions. 

During a simulated scenario of a 30% increase in order volume, the Digital Twin model tested several 
strategies for inventory reallocation and workforce deployment. It was found that reassigning pickers to 

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

T
ra

v
e

l 
D

is
ta

n
c

e
 (

m
e

te
rs

)

Time (Months)

ACO TSP



 

 

Erhan Arslan 

Special Issue | Productivity for Logistics 
 

134 

high-priority zones and optimizing picking routes led to a 15% reduction in order processing time compared 
to the traditional static approach. 

To evaluate the effectiveness of the Digital Twin model, a comparative analysis of key performance 
indicators (KPIs) was conducted before and after its implementation. The metrics were carefully selected 
to reflect critical areas of warehouse operations, such as accuracy, efficiency, and adaptability. 

Table 7. Key performance indicators before and after digital twin implementation 

KPI Pre-Implementation Post-Implementation Improvement (%) 

Order Fulfillment Time (hrs) 4 3.2 20 
Inventory Accuracy (%) 95 98 3 
Resource Utilization Efficiency (%) 85 92 7 
Workforce Productivity (items/hr) 82 91 11 
Stockout Instances (per month) 10 4 60 

The implementation of the Digital Twin model has proven its effectiveness in optimizing warehouse 
operations by providing a platform for real-time monitoring, simulation, and decision-making. The ability to 
test different scenarios and dynamically adjust operations has led to significant improvements in a variety 
of metrics (see Table 8). Order fulfillment time has decreased by 20% from 4.0 hours to 3.2 hours, improving 
customer satisfaction during peak periods. Inventory accuracy has increased from 95% to 98%, reducing 
stock-outs by 60% and better matching stock levels to demand. Additionally, resource utilization has 
improved by 7% and labor productivity has increased by 11% thanks to optimized task assignments and 
workflow configurations. 

4.5.2 Cost-Benefit Analysis and Sustainability of the Digital Twin Model 

The Digital Twin model was deployed in a 5,000-square-meter shared warehouse managing 10,000 SKUs, 
with an initial setup cost of approximately $60,000. This investment includes $25,000 for AI server 
infrastructure to support real-time tracking and forecasting, $20,000 for software customization and 
integration with existing barcode systems, and $15,000 for training 30 employees, averaging $500 per 
person. 

During a three-month trial, the model demonstrated substantial operational gains, including a 20% reduction 
in picking times, improved order accuracy, and faster vehicle loading. These improvements are projected 
to yield annual savings exceeding $400,000 through: 

Labor Cost Reductions: Streamlined operations and efficient picking processes save approximately 
$90,000 annually. 

Enhanced Vehicle Utilization: Optimized loading reduces trips and cuts transportation costs by an estimated 
$80,000. 

Lower Inventory Holding Costs: Faster inventory turnover reduces storage expenses by around $150,000 
per year. 

Better Order Fulfillment: Enhanced accuracy and speed reduce returns and improve client retention, saving 
an additional $80,000. 

Given these benefits, the Digital Twin model’s return on investment (ROI) is expected within two months, 
making it a highly sustainable and cost-effective solution for medium-sized warehouses. 

4.6. Challenges and Limitations 

Implementing the Digital Twin model presented challenges, particularly in integrating data from inventory 
management systems, barcode scanners, and manual inputs. Ensuring data quality and consistency was 
difficult, as varied formats and manual entries introduced errors that sometimes delayed real-time decision-
making. Addressing these integration issues required substantial effort, highlighting the need for seamless 
data flow in future iterations to improve model accuracy and efficiency. 

The adaptation process also posed hurdles. Initially, performance declined as employees adjusted to new 
processes and technologies. Extensive training sessions were necessary to familiarize staff with the Digital 
Twin interface, AI/ML outputs, and how to effectively respond to system recommendations. This adjustment 
period caused a temporary slowdown in operations, which improved as staff gained proficiency and the 
system adapted to real-time conditions. 

This study also has limitations. The project was conducted in a single warehouse, which may not represent 
the diversity of other warehouse settings. Furthermore, models were tested under controlled conditions, 
which may not fully capture real-world complexities like extreme demand fluctuations or equipment failures. 
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Future research could address these limitations by exploring diverse warehouse environments and 
additional variables to validate the model's effectiveness on a larger scale and over extended periods. 

5. CONCLUSION and DISCUSSION 

This study investigated Digital Twin technology combined with Artificial Intelligence and Machine Learning 
(AI/ML) models to optimize operations in a 5,000-square-meter warehouse handling 10,000 SKUs. Rather 
than highlighting specific algorithms, the study illustrated how Digital Twin technology offers a 
comprehensive view of warehouse processes, allowing for simulations and testing of various strategies. 
Results indicate that even seemingly efficient warehouses can reveal hidden inefficiencies and identify new 
optimization opportunities. This finding highlights the importance of continuous assessment, actionable 
insights, and innovation in modern warehouse management. 

5.1. Key Findings 

Revealing Hidden Inefficiencies: The Digital Twin model enabled simulations of diverse operational 
scenarios, uncovering inefficiencies unnoticed by management. By comparing different picking algorithms, 
such as batch, wave, and cluster picking, the study demonstrated considerable potential improvements in 
picking time and accuracy. This aligns with Kaber and Riley (2017), who noted the challenges of optimizing 
manual operations in human-centric environments, emphasizing the importance of data-driven 
assessments for effective improvement. 

Data-Driven Optimization: Integrating AI/ML models, such as LSTM for demand forecasting and SVM for 
inventory classification, generated data-driven insights, empowering the warehouse to make better-
informed decisions. These models provided more accurate demand forecasts and inventory turnover rates, 
enabling proactive adjustments in stock levels, minimizing stockouts, and preventing overstocking. This 
approach builds on Rashid and Rattenbury (2018), who highlighted machine learning's potential in semi-
automated inventory management, by applying these insights in a fully manual environment to drive 
continuous improvement. 

Dynamic Algorithm Adaptation: Adaptive algorithms proved effective for responding to real-time warehouse 
conditions. For instance, dynamic FIFO and LIFO strategies, applied based on real-time data, were more 
efficient than static approaches in certain contexts. Similarly, dynamic routing algorithms like Ant Colony 
Optimization (ACO) and the Traveling Salesman Problem (TSP) significantly improved routing efficiency 
and reduced travel distances, consistent with findings by Graves and Yücesan (2009) on the benefits of 
dynamic routing in warehouse productivity. 

Enhancing Operational Awareness: The Digital Twin model increased operational awareness by visualizing 
the impact of various algorithms and strategies. This approach demonstrated the advantages of 
transitioning from traditional methods to advanced, data-driven approaches, enabling the warehouse 
management team to adopt a more flexible and adaptable model. This finding supports Ivanov et al. (2019), 
who emphasize digital solutions' role in enhancing visibility and decision-making in complex logistics 
environments. 

5.2. Broader Implications 

The study’s findings have significant implications for warehouses that perceive themselves as efficient. 
Digital Twin technology and AI/ML models offer opportunities to uncover hidden inefficiencies and 
experiment with alternative strategies better aligned with operational goals. 

Empowering Decision-Makers: The Digital Twin model allows decision-makers to simulate scenarios and 
test strategies without interrupting ongoing operations. This feature provides a safe environment for 
experimentation, making the Digital Twin model a valuable tool for continuous improvement. 

Encouraging Flexibility and Innovation: This study underscores the need for flexibility and innovation in 
warehouse management. By demonstrating that various algorithms perform optimally under different 
conditions, the study encourages warehouse managers to explore new methods and technologies. 
Integrating AI/ML models to analyze data and recommend optimizations further cultivates a culture of 
adaptability and continuous enhancement. 

Future Research Directions: Future research could broaden this study by applying Digital Twin technology 
to various warehouse environments with differing automation levels and operational challenges. Further 
studies could also examine the long-term effects of these technologies on warehouse performance and 
employee satisfaction, as well as their wider impact on supply chain resilience and efficiency. 
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