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Abstract − In this paper, hyper-dual Leonardo quaternions are defined and studied. Some
basic properties of the hyper-dual Leonardo quaternions, including their relationships with
the hyper-dual Fibonacci quaternions and hyper-dual Lucas quaternions, are analyzed. In
addition, some formulae and identities, such as the recurrence relations, Binet’s formula, gen-
erating functions, Vajda’s identity, certain sum formulae, and some binomial-sum formulae,
are investigated for hyper-dual Leonardo quaternions.
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1. Introduction

Dual numbers invented in 1873 by Clifford [1] are an extension of real numbers. Hyper-dual numbers
are an extension of dual numbers. Fike and Alonso [2] introduced hyper-dual numbers to demonstrate
the advantages of hyper-dual numbers in second-order numerical differentiation. Dual and hyper-dual
numbers have become a useful tool in mathematics and engineering. For further information about the
applications of dual and hyper-dual numbers, see [3–13]. Quaternions discovered by Hamilton [14] are
a 4-dimensional hyper-complex number system. Cohen and Shoham [9] defined hyper-dual quaternions
by replacing each real number in a quaternion with the associated hyper-dual number.

Integer sequences are an important field of study in mathematics. The Fibonacci sequence is one of
the most well-known examples of special integer sequences. This sequence is widely used in many
scientific fields, including mathematics, physics, engineering, and art. Another well-known sequence
is the Lucas sequence, closely related to the Fibonacci sequence. Many authors have investigated the
Fibonacci and Lucas sequences in [15–17], among others. Another integer sequence studied intensively
by researchers in recent years and closely related to the Fibonacci sequence is the Leonardo sequence.
Some properties of this sequence have been investigated in [18,19]. Several authors have investigated
the properties of hyper-complex numbers with distinct integer sequences from various perspectives.
Some examples of recent studies on quaternions and hyper-dual numbers with the Fibonacci, Lucas,
and Leonardo sequences can be found in [20–25].

This paper aims to define the hyper-dual Leonardo quaternions by considering the concepts of hyper-
dual numbers, quaternions, and Leonardo numbers and to investigate some of their algebraic and
combinatorial properties.
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2. Preliminaries

This section provides some basic notions to provide a background for the next section.

Definition 2.1. [1] Let a and b be arbitrary real numbers. Then, a dual number x has the form

x = a + bε

where ε is the dual unit that satisfies the rules ε2 = 0 and ε ̸= 0.

Definition 2.2. [2] Let x1 and x2 be any dual numbers and ε be the dual unit. Then, a hyper-dual
number z is represented as follows:

z = x1 + x2ε

Furthermore, it is easy to see that any hyper-dual number z can be characterized by

z = a1 + a2ε1 + a3ε2 + a4ε1ε2

where, for all i ∈ {1, 2, 3, 4}, ai is a real number and ε1 and ε2 are the dual units that satisfy the rules

ε1
2 = ε2

2 = (ε1ε2)2 = 0, ε1 ̸= ε2, ε1ε2 = ε2ε1, ε1 ̸= 0, ε2 ̸= 0, and ε1ε2 ̸= 0 (2.1)

Let z1 = a1 + a2ε1 + a3ε2 + a4ε1ε2 and z2 = b1 + b2ε1 + b3ε2 + b4ε1ε2 be any two hyper-dual numbers.
Then, the addition, scalar multiplication (by a scalar λ), and multiplication of two hyper-dual numbers
are defined as follows, respectively:

z1 + z2 = (a1 + b1) + (a2 + b2)ε1 + (a3 + b3)ε2 + (a4 + b4)ε1ε2

λz1 = λa1 + λa2ε1 + λa3ε2 + λa4ε1ε2

and
z1z2 = (a1b1) + (a1b2 + a2b1)ε1 + (a1b3 + a3b1)ε2 + (a1b4 + a2b3 + a3b2 + a4b1)ε1ε2

The set of all the hyper-dual numbers forms a 4-dimensional, with the basis {1, ε1, ε2, ε1ε2}, com-
mutative, and associative algebra over the real numbers. For detailed information about hyper-dual
numbers, see [2].

Definition 2.3. [14] A quaternion q is of the form

q = q1 + q2i + q3j + q4k

where, for all i ∈ {1, 2, 3, 4}, qi is a real number and i, j, and k are the quaternionic units that satisfy
the multiplication rules

i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, and ki = j = −ik (2.2)

Let p = p1 + p2i + p3j + p4k and q = q1 + q2i + q3j + q4k be any two quaternions. Then, the addition,
scalar (λ) multiplication, and multiplication of two quaternions are defined as follows, respectively:

p + q = (p1 + q1) + (p2 + q2)i + (p3 + q3)j + (p4 + q4)k

λq = λq1 + λq2i + λq3j + λq4k

and
pq = (p1q1 − p2q2 − p3q3 − p4q4) + (p1q2 + p2q1 + p3q4 − p4q3)i + (p1q3 + p3q1 + p4q2 − p2q4)j

+(p1q4 + p4q1 + p2q3 − p3q2)k

The set of all the quaternions forms a 4-dimensional, with the basis {1, i, j, k}, non-commutative, and
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associative algebra over the real numbers. For further quaternion information, see [14,26].

Definition 2.4. [9] A hyper-dual quaternion Q is defined as

Q = z1 + z2i + z3j + z4k

where, for all i ∈ {1, 2, 3, 4}, zi is a hyper-dual number and i, j, and k are the quaternionic units
defined as in (2.2).

Note that the dual units ε1 and ε2 commute with the quaternionic units i, j, and k, e.g., ε1i = iε1 [9].
In the rest of this section, we provide some definitions and identities of the sequences of Fibonacci,
Lucas, and Leonardo numbers.

Definition 2.5. [15] For n ≥ 2, the Fibonacci and Lucas numbers are defined by the recurrence
relations, respectively:

Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1

and
Ln = Ln−1 + Ln−2 with L0 = 2, L1 = 1

Here, Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively.

Definition 2.6. [18] The Leonardo numbers are defined recursively by

Len = Len−1 + Len−2 + 1, n ≥ 2

or

Len = 2Len−1 − Len−3, n ≥ 3

with the initial conditions Le0 = Le1 = 1 and Le2 = 3. Here, Len denotes the n-th Leonardo number.

Moreover, Ömür and Koparal [24] defined the hyper-dual generalized Fibonacci and Lucas numbers. In
particular cases of the hyper-dual generalized Fibonacci and Lucas numbers, the hyper-dual Fibonacci
and Lucas numbers can be derived as:

Definition 2.7. [24] The hyper-dual Fibonacci and hyper-dual Lucas numbers are defined as follows,
respectively:

HDFn = Fn + Fn+1ε1 + Fn+2ε2 + Fn+3ε1ε2 (2.3)

and

HDLn = Ln + Ln+1ε1 + Ln+2ε2 + Ln+3ε1ε2 (2.4)

where ε1 and ε2 are the dual units defined as in (2.1).

Definition 2.8. [25] The hyper-dual Leonardo numbers are

HDLen = Len + Len+1ε1 + Len+2ε2 + Len+3ε1ε2 (2.5)

where ε1 and ε2 are the dual units in (2.1).

Moreover, the recurrence relation of the hyper-dual Leonardo numbers is provided by

HDLen = HDLen−1 + HDLen−2 + A, n ≥ 2 (2.6)

or

HDLen = 2HDLen−1 − HDLen−3, n ≥ 3 (2.7)

Here, A := 1 + ε1 + ε2 + ε1ε2 [25].
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Definition 2.9. [20] The Fibonacci and Lucas quaternions are defined as follows, respectively:

QFn = Fn + Fn+1i + Fn+2j + Fn+3k

and
QLn = Ln + Ln+1i + Ln+2j + Ln+3k

where i, j, and k are the quaternionic units in (2.2).

Definition 2.10. [23] The Leonardo quaternions are defined by

QLen = Len + Len+1i + Len+2j + Len+3k (2.8)

where i, j, and k are the quaternionic units in (2.2).

Binet’s formula for QLen is

QLen = 2αn+1α̂ − βn+1β̂

α − β
− qu (2.9)

where α = 1+
√

5
2 , β = 1−

√
5

2 , α̂ := 1 + αi + (1 + α)j + (1 + 2α)k, β̂ := 1 + βi + (1 + β)j + (1 + 2β)k,
and qu := 1 + i + j + k [23]. Then, the following properties hold [23]:

QLen = 2QFn+1 − qu (2.10)

QLen+1 − QLen = 2QFn (2.11)

QLen+2 = QLen+1 + QLen + qu (2.12)
n∑

k=1
QLek = QLen+2 − QLe2 − nqu (2.13)

n∑
k=1

QLe2k−1 = QLe2n − QLe0 − nqu (2.14)

and
n∑

k=1
QLe2k = QLe2n+1 − QLe1 − nqu (2.15)

Here, QFn is the n-th Fibonacci quaternion and QLen is the n-th Leonardo quaternion.

Ait-Amrane et al. [27] defined the hyper-dual Horadam quaternions from two perspectives. In the par-
ticular case of the hyper-dual Horadam quaternions, the hyper-dual Fibonacci and Lucas quaternions
can be derived as follows:

Definition 2.11. [27] The hyper-dual Fibonacci and Lucas quaternions are defined by

QHDFn = HDFn + HDFn+1i + HDFn+2j + HDFn+3k

and
QHDLn = HDLn + HDLn+1i + HDLn+2j + HDLn+3k

respectively, where HDFn is the n-th hyper-dual Fibonacci number, HDLn is the n-th hyper-dual
Lucas number, and i, j, and k are the quaternionic units in (2.2).

In addition, the hyper-dual Fibonacci and Lucas quaternions can be defined as:

Definition 2.12. [27] The hyper-dual Fibonacci and Lucas quaternions are defined by

QHDFn = QFn + QFn+1ε1 + QFn+2ε2 + QFn+3ε1ε2
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and
QHDLn = QLn + QLn+1ε1 + QLn+2ε2 + QLn+3ε1ε2

respectively, where ε1 and ε2 are the dual units in (2.1).

3. Main Results

This section begins with defining the general term of the hyper-dual Leonardo quaternions.

Definition 3.1. For n ≥ 0, the n-th hyper-dual Leonardo quaternion is

QHDLen = HDLen + HDLen+1i + HDLen+2j + HDLen+3k (3.1)

where HDLen is the n-th hyper-dual Leonardo number and i, j, and k are the quaternionic units in
(2.2).
Moreover, considering (2.5) and (2.8), we can obtain

QHDLen = HDLen + HDLen+1i + HDLen+2j + HDLen+3k

= (Len + Len+1ε1 + Len+2ε2 + Len+3ε1ε2) + (Len+1 + Len+2ε1 + Len+3ε2 + Len+4ε1ε2)i

+(Len+2 + Len+3ε1 + Len+4ε2 + Len+5ε1ε2)j + (Len+3 + Len+4ε1 + Len+5ε2 + Len+6ε1ε2)k

= (Len + Len+1i + Len+2j + Len+3k) + (Len+1 + Len+2i + Len+3j + Len+4k)ε1

+(Len+2 + Len+3i + Len+4j + Len+5k)ε2 + (Len+3 + Len+4i + Len+5j + Len+6k)ε1ε2

= QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2

Therefore, the general term of the hyper-dual Leonardo quaternions can be reidentified in the following.

Definition 3.2. For n ≥ 0, the n-th hyper-dual Leonardo quaternion is

QHDLen = QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2 (3.2)

where QLen is the n-th Leonardo quaternion and ε1 and ε2 are the dual units in (2.1).

The first three hyper-dual Leonardo quaternions are as follows:

QHDLe0 = (1 + i + 3j + 5k) + (1 + 3i + 5j + 9k)ε1 + (3 + 5i + 9j + 15k)ε2

+(5 + 9i + 15j + 25k)ε1ε2

QHDLe1 = (1 + 3i + 5j + 9k) + (3 + 5i + 9j + 15k)ε1 + (5 + 9i + 15j + 25k)ε2

+(9 + 15i + 25j + 41k)ε1ε2

and
QHDLe2 = (3 + 5i + 9j + 15k) + (5 + 9i + 15j + 25k)ε1 + (9 + 15i + 25j + 41k)ε2

+(15 + 25i + 41j + 67k)ε1ε2

Throughout this paper, let A := 1 + ε1 + ε2 + ε1ε2, qu := 1 + i + j + k, and ∆ := Aqu = quA.

By (2.6) and (3.1), the following recurrence relation of the hyper-dual Leonardo quaternions is ob-
tained:

QHDLen = QHDLen−1 + QHDLen−2 + ∆, n ≥ 2 (3.3)

Moreover, by (2.7) and (3.1), the alternative recurrence relation of the hyper-dual Leonardo quater-
nions is obtained:

QHDLen = 2QHDLen−1 − QHDLen−3, n ≥ 3 (3.4)
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Theorem 3.3. For n ≥ 0,

i. QHDLen − QHDLen+1i − QHDLen+2j − QHDLen+3k = 3(HDLen+4 + HDLen+2) + 2A

ii. QHDLen − QHDLen+1ε1 − QHDLen+2ε2 − QHDLen+3ε1ε2 = QLen − 2QLen+3ε1ε2

Proof. Let n ≥ 0.

i. Using (3.1) to the left-hand side (LHS),

LHS = HDLen + HDLen+1i + HDLen+2j + HDLen+3k

− (HDLen+1 + HDLen+2i + HDLen+3j + HDLen+4k)i
− (HDLen+2 + HDLen+3i + HDLen+4j + HDLen+5k)j
− (HDLen+3 + HDLen+4i + HDLen+5j + HDLen+6k)k

From the multiplication rules of the quaternionic units in (2.2),

LHS = HDLen + HDLen+2 + HDLen+4 + HDLen+6

Using (2.6),

LHS = 3HDLen+4 + 3HDLen+2 + 2A

ii. Using (3.2) to the left-hand side (LHS),

LHS = QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2

− (QLen+1 + QLen+2ε1 + QLen+3ε2 + QLen+4ε1ε2)ε1

− (QLen+2 + QLen+3ε1 + QLen+4ε2 + QLen+5ε1ε2)ε2

− (QLen+3 + QLen+4ε1 + QLen+5ε2 + QLen+6ε1ε2)ε1ε2

Considering the multiplication rules of the dual units in (2.1),

LHS = QLen − 2QLen+3ε1ε2

Lemma 3.4. For positive integer n, the followings hold:

i. HDLen−1 + HDLen+1 = 2HDLn+1 − 2A [25]

ii. HDLen + HDFn + HDLn = 2HDLen + A

where HDLen, HDFn, and HDLn are the n-th hyper-dual Leonardo, hyper-dual Fibonacci, and
hyper-dual Lucas numbers, respectively.

Proof. ii. From (2.3)-(2.5) and the relation Len + Fn + Ln = 2Len + 1 provided in [19], the proof is
clear.

Theorem 3.5. For n ≥ 0, the followings hold:

i. QHDLen−1 + QHDLen+1 = 2QHDLn+1 − 2∆

ii. QHDLen + QHDFn + QHDLn = 2QHDLen + ∆

iii. QHDLen = 2QHDFn+1 − ∆

iv. QHDLen+1 − QHDLen = 2QHDFn

where QHDFn and QHDLn are the n-th hyper-dual Fibonacci and hyper-dual Lucas quaternions,
respectively.
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Proof. From (2.10), (2.11), (3.1), and (3.2) and Lemma 3.4, the proofs of i., ii., iii., and iv. are
obvious.

Theorem 3.6. For n ≥ 0, Binet’s formula of the hyper-dual Leonardo quaternions is

QHDLen = 2
(

α∗αn+1 − β∗βn+1

α − β

)
− ∆ (3.5)

where α = 1+
√

5
2 , β = 1−

√
5

2 ,

α∗ := (1 + αi + (1 + α)j + (1 + 2α)k)(1 + αε1 + (1 + α)ε2 + (1 + 2α)ε1ε2)

and
β∗ := (1 + βi + (1 + β)j + (1 + 2β)k)(1 + βε1 + (1 + β)ε2 + (1 + 2β)ε1ε2)

Proof. From (2.9) and (3.2) and the equalities 1+α = α2, 1+2α = α3, 1+β = β2, and 1+2β = β3,

QHDLen = QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2

=
(

2αn+1α̂ − βn+1β̂

α − β
− qu

)
+
(

2αn+2α̂ − βn+2β̂

α − β
− qu

)
ε1

+
(

2αn+3α̂ − βn+3β̂

α − β
− qu

)
ε2 +

(
2αn+4α̂ − βn+4β̂

α − β
− qu

)
ε1ε2

= 2αn+1α̂

α − β
(1 + αε1 + α2ε2 + α3ε1ε2) − 2βn+1β̂

α − β
(1 + βε1 + β2ε2 + β3ε1ε2)

− qu(1 + ε1 + ε2 + ε1ε2)

= 2α∗αn+1

α − β
− 2β∗βn+1

α − β
− ∆

Theorem 3.7. The ordinary generating function for the hyper-dual Leonardo quaternions is

g(x) = QHDLe0 + (QHDLe1 − 2QHDLe0)x + (QHDLe2 − 2QHDLe1)x2

1 − 2x + x3

Proof. Let

g(x) =
∞∑

n=0
QHDLenxn

be the ordinary generating function for the hyper-dual Leonardo quaternions. Then, from (3.4),

g(x) = QHDLe0 + QHDLe1x + QHDLe2x2 +
∞∑

n=3
QHDLenxn

= QHDLe0 + QHDLe1x + QHDLe2x2 +
∞∑

n=3
(2QHDLen−1 − QHDLen−3)xn

= QHDLe0 + QHDLe1x + QHDLe2x2 + 2x
∞∑

n=3
QHDLen−1xn−1 − x3

∞∑
n=3

QHDLen−3xn−3

= QHDLe0 + QHDLe1x + QHDLe2x2 − 2x(QHDLe0 + QHDLe1x) + 2x
∞∑

n=0
QHDLenxn

− x3
∞∑

n=0
QHDLenxn

= QHDLe0 + (QHDLe1 − 2QHDLe0)x + (QHDLe2 − 2QHDLe1)x2 + 2xg(x) − x3g(x)
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Hence,

g(x)(1 − 2x + x3) = QHDLe0 + (QHDLe1 − 2QHDLe0)x + (QHDLe2 − 2QHDLe1)x2

Theorem 3.8. The exponential generating function for the hyper-dual Leonardo quaternions is

eg(x) =
∞∑

n=0
QHDLen

xn

n! = 2 α∗α

α − β
eαx − 2 β∗β

α − β
eβx − ∆ex

where α∗ and β∗ are defined as in Theorem 3.6.

Proof. From (3.5), we obtain

eg(x) =
∞∑

n=0
QHDLen

xn

n!

=
∞∑

n=0

(
2
(

α∗αn+1 − β∗βn+1

α − β

)
− ∆

)
xn

n!

= 2 α∗α

α − β

∞∑
n=0

(αx)n

n! − 2 β∗β

α − β

∞∑
n=0

(βx)n

n! − ∆
∞∑

n=0

xn

n!

= 2 α∗α

α − β
eαx − 2 β∗β

α − β
eβx − ∆ex

Corollary 3.9. The Poisson generating function for the hyper-dual Leonardo quaternions is

pg(x) = 2 α∗α

α − β
e(α−1)x − 2 β∗β

α − β
e(β−1)x − ∆

Proof. Since pg(x) = eg(x)e−x, the proof is straghtforward.

Theorem 3.10. For n ≥ 1, the followings hold:

i.
n∑

k=1
QHDLek = QHDLen+2 − QHDLe2 − n∆

ii.
n∑

k=1
QHDLe2k−1 = QHDLe2n − QHDLe0 − n∆

iii.
n∑

k=1
QHDLe2k = QHDLe2n+1 − QHDLe1 − n∆

Proof. i. From (2.13) and (3.2),
n∑

k=1
QHDLek =

n∑
k=1

(QLek + QLek+1ε1 + QLek+2ε2 + QLek+3ε1ε2)

=
(

n∑
k=1

QLek

)
+
(

n∑
k=1

QLek+1

)
ε1 +

(
n∑

k=1
QLek+2

)
ε2 +

(
n∑

k=1
QLek+3

)
ε1ε2

= (QLen+2 − QLe2 − nqu) + (QLen+2 + QLen+1 − QLe2 − QLe1 − nqu) ε1

+ (2QLen+2 + QLen+1 − 2QLe2 − QLe1 − nqu) ε2

+ (QLen+3 + 2QLen+2 + QLen+1 − QLe3 − 2QLe2 − QLe1 − nqu) ε1ε2
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Then, considering (2.12),
n∑

k=1
QHDLek = (QLen+2 − QLe2 − nqu) + (QLen+3 − QLe3 − nqu) ε1 + (QLen+4 − QLe4 − nqu) ε2

+ (QLen+5 − QLe5 − nqu) ε1ε2

Then, it follows that
n∑

k=1
QHDLek = (QLen+2 + QLen+3ε1 + QLen+4ε2 + QLen+5ε1ε2)

− (QLe2 + QLe3ε1 + QLe4ε2 + QLe5ε1ε2) − nqu(1 + ε1 + ε2 + ε1ε2)

= QHDLen+2 − QHDLe2 − n∆

This completes the proof of i. In a similar manner, ii. and iii. can be proved by using (2.14) and
(2.15).

Theorem 3.11. For n ≥ 0, the followings hold:

i. QHDLe2n =
n∑

k=0

(n
k

)
(QHDLek + ∆) − ∆

ii. QHDLe2n+1 =
n+1∑
k=0

(n+1
k

)
(QHDLek−1 + ∆) − ∆

Proof. i. From (3.5),

QHDLe2n = 2
(

α∗α2n+1 − β∗β2n+1

α − β

)
− ∆

= 2
(

α∗α(α2)n − β∗β(β2)n

α − β

)
− ∆

= 2
(

α∗α(1 + α)n − β∗β(1 + β)n

α − β

)
− ∆

Since (1 + α)n =
n∑

k=0

(n
k

)
αk and (1 + β)n =

n∑
k=0

(n
k

)
βk, then

QHDLe2n = 2
(

α∗α

α − β

n∑
k=0

(
n

k

)
αk − β∗β

α − β

n∑
k=0

(
n

k

)
βk

)
− ∆

= 2
n∑

k=0

(
n

k

)(
α∗αk+1 − β∗βk+1

α − β

)
− ∆

=
n∑

k=0

(
n

k

)(
2α∗αk+1 − β∗βk+1

α − β
− ∆

)
+

n∑
k=0

(
n

k

)
∆ − ∆

=
n∑

k=0

(
n

k

)
(QHDLek + ∆) − ∆

ii. The proof is similar to the proof of i.

Theorem 3.12. (Vajda’s Identity) For non-negative integers n, r, and s,

QHDLen+rQHDLen+s − QHDLenQHDLen+r+s = 4√
5

(−1)n+1(β∗α∗αs − α∗β∗βs)Fr

+ ∆(QHDLen + QHDLen+r+s)
− ∆(QHDLen+r + QHDLen+s)

where Fr is the r-th Fibonacci number.
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Proof. Applying (3.5) to the left-hand side (LHS),

LHS =
(

2
(

α∗αn+r+1 − β∗βn+r+1

α − β

)
− ∆

)(
2
(

α∗αn+s+1 − β∗βn+s+1

α − β

)
− ∆

)

−
(

2
(

α∗αn+1 − β∗βn+1

α − β

)
− ∆

)(
2
(

α∗αn+r+s+1 − β∗βn+r+s+1

α − β

)
− ∆

)

= 4
(

(αβ)n+1(αr − βr)(β∗α∗αs − α∗β∗βs)
(α − β)2

)

− ∆ (QHDLen+r + QHDLen+s − QHDLen − QHDLen+r+s)

= 4√
5

(−1)n+1(β∗α∗αs − α∗β∗βs)Fr

+ ∆(QHDLen + QHDLen+r+s − QHDLen+r − QHDLen+s)

Here, Fr = αr−βr

α−β [15].

In the particular case of Theorem 3.12, we have the following results:

Corollary 3.13. (Catalan’s Identity) For non-negative integers n and s such that n ≥ s,

QHDLen−sQHDLen+s − (QHDLen)2 = 4√
5

(−1)n+s(β∗α∗αs − α∗β∗βs)Fs

+ ∆(2QHDLen − QHDLen−s − QHDLen+s)

Proof. Taking r → −s in Theorem 3.12 and considering the relation F−r = (−1)r+1Fr [15], the
proof is obvious.

Corollary 3.14. (Cassini’s Identity) For positive integer n,

QHDLen−1QHDLen+1 − (QHDLen)2 = 4√
5

(−1)n+1(β∗α∗α − α∗β∗β)

+ ∆(QHDLen−2 − QHDLen−1)

Proof. Taking r → −s and s = 1 in Theorem 3.12 and using (3.3), the proof is clear.

Corollary 3.15. (d’Ocagne’s Identity) For positive integers n and m,

QHDLen+1QHDLem − QHDLenQHDLem+1 = 4√
5

(−1)n+1(β∗α∗αm−n − α∗β∗βm−n)

+ ∆(QHDLem−1 − QHDLen−1)

Proof. Taking s → m − n and r = 1 in Theorem 3.12 and using (3.3), the proof is clear.

4. Conclusion

In this study, the hyper-dual Leonardo quaternions have been proposed from two different perspec-
tives. At first, the hyper-dual quaternions have been defined using the hyper-dual Leonardo numbers
as coefficients in quaternions. Then, as equivalent to this first definition, the hyper-dual Leonardo
quaternions have been defined using the Leonardo quaternions as coefficients in hyper-dual numbers.
Some of their properties, such as non-homogeneous and homogeneous recurrence relations, Binet’s
formula, certain sum formulae, and binomial-sum formulae, have been provided. The ordinary, ex-
ponential, and Poisson-generating functions, Vajda’s identity, and, in particular cases, Catalan’s,
Cassini’s, and d’Ocagne’s identities of the hyper-dual Leonardo quaternions have been presented. For
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future studies, researchers may define hyper-dual split quaternions provided in [10] with the Leonardo
number coefficients.
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[19] Y. Alp, E. G. Koçer, Some properties of Leonardo numbers, Konuralp Journal of Mathematics 9
(1) (2021) 183–189.

[20] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, The American Mathe-
matical Monthly 70 (3) (1963) 289–291.

[21] M. R. Iyer, A note on Fibonacci quaternions, The Fibonacci Quarterly 7 (3) (1969) 225–229.

[22] S. Halıcı, On Fibonacci quaternions, Advances in Applied Clifford Algebras 22 (2012) 321–327.

[23] P. D. Beites, P. Catarino, On the Leonardo quaternions sequence, Hacettepe Journal of Mathe-
matics and Statistics 53 (4) (2024) 1001–1023.

[24] N. Ömür, S. Koparal, On hyper-dual generalized Fibonacci numbers, Notes on Number Theory
and Discrete Mathematics 26 (1) (2020) 191–198.
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