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1. Introduction

Dual numbers invented in 1873 by Clifford [1] are an extension of real numbers. Hyper-dual numbers
are an extension of dual numbers. Fike and Alonso [2] introduced hyper-dual numbers to demonstrate
the advantages of hyper-dual numbers in second-order numerical differentiation. Dual and hyper-dual
numbers have become a useful tool in mathematics and engineering. For further information about the
applications of dual and hyper-dual numbers, see [3-13]. Quaternions discovered by Hamilton [14] are
a 4-dimensional hyper-complex number system. Cohen and Shoham [9] defined hyper-dual quaternions

by replacing each real number in a quaternion with the associated hyper-dual number.

Integer sequences are an important field of study in mathematics. The Fibonacci sequence is one of
the most well-known examples of special integer sequences. This sequence is widely used in many
scientific fields, including mathematics, physics, engineering, and art. Another well-known sequence
is the Lucas sequence, closely related to the Fibonacci sequence. Many authors have investigated the
Fibonacci and Lucas sequences in [15-17], among others. Another integer sequence studied intensively
by researchers in recent years and closely related to the Fibonacci sequence is the Leonardo sequence.
Some properties of this sequence have been investigated in [18,19]. Several authors have investigated
the properties of hyper-complex numbers with distinct integer sequences from various perspectives.
Some examples of recent studies on quaternions and hyper-dual numbers with the Fibonacci, Lucas,

and Leonardo sequences can be found in [20-25].

This paper aims to define the hyper-dual Leonardo quaternions by considering the concepts of hyper-
dual numbers, quaternions, and Leonardo numbers and to investigate some of their algebraic and

combinatorial properties.
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2. Preliminaries

This section provides some basic notions to provide a background for the next section.

Definition 2.1. [1] Let a and b be arbitrary real numbers. Then, a dual number z has the form
r=a+be

where ¢ is the dual unit that satisfies the rules €2 = 0 and ¢ # 0.

Definition 2.2. [2] Let z1 and x2 be any dual numbers and € be the dual unit. Then, a hyper-dual

number z is represented as follows:

Z = X1 + XT2€

Furthermore, it is easy to see that any hyper-dual number z can be characterized by
z = a1 + a2e1 + azer + aqe1€2
where, for all i € {1,2,3,4}, a; is a real number and ¢; and 3 are the dual units that satisfy the rules
e12=e2=(6162)2 =0, e1#ey, erea=e9e1, €1 #0, e #0, and e169#0 (2.1)

Let z1 = a1 + ase1 + azeo + age169 and 29 = by + baeq + bzeg + bye1e2 be any two hyper-dual numbers.
Then, the addition, scalar multiplication (by a scalar A), and multiplication of two hyper-dual numbers

are defined as follows, respectively:
21+ 290 = (a1 + b1) + (ag + b2)€1 + (a3 + 53)62 + ((I4 + b4)5152
Az1 = Aa1 + Aaseq + Aasges + Aageres

and
2129 = (albl) + (a1b2 + agbl)&“l + (a1b3 + a3b1)€2 + (alb4 + aobs + asbs + a4b1)£152

The set of all the hyper-dual numbers forms a 4-dimensional, with the basis {1,e1,e2,£162}, com-
mutative, and associative algebra over the real numbers. For detailed information about hyper-dual

numbers, see [2].
Definition 2.3. [14] A quaternion ¢ is of the form
q=q1+ q2i +q3j + qak

where, for all ¢ € {1,2,3,4}, ¢; is a real number and 7, j, and k are the quaternionic units that satisfy

the multiplication rules
==k =ijk=—-1, ij=k=—ji, jk=i=—kj, and ki=j=—ik (2.2)

Let p = p1 + p2i + p3j + pak and g = q1 + q2¢ + q3j + quk be any two quaternions. Then, the addition,
scalar (\) multiplication, and multiplication of two quaternions are defined as follows, respectively:

pta=@1+q)+ p2+q)i+ (p3s+g3)j+ (pa+ @)k
A = Aq1 + Aq2i + Ag3j + Aqsk
and
pq = (P1q1 — P2q2 — P393 — Paqa) + (P1G2 + P2q1 + P3qs — Paq3)i + (p1g3 + P3q1 + PaG2 — P2Ga)j

+(p1ga + paqi + p2g3 — P3q2)k

The set of all the quaternions forms a 4-dimensional, with the basis {1,1, 7, k}, non-commutative, and



Journal of New Theory 48 (2024) 78-89 / Hyper-Dual Leonardo Quaternions 80

associative algebra over the real numbers. For further quaternion information, see [14,26].
Definition 2.4. [9] A hyper-dual quaternion @ is defined as
Q = 21 + 220 + 235 + 24k

where, for all i € {1,2,3,4}, z; is a hyper-dual number and i, j, and k are the quaternionic units
defined as in (2.2).

Note that the dual units £; and £ commute with the quaternionic units i, j, and k, e.g., €17 = ieq [9].
In the rest of this section, we provide some definitions and identities of the sequences of Fibonacci,

Lucas, and Leonardo numbers.

Definition 2.5. [15] For n > 2, the Fibonacci and Lucas numbers are defined by the recurrence
relations, respectively:
F,=F, 1+F, o with Fy=0, F1 =1

and
L,=L, 1+ L, s with Lyg=2 L1 =1

Here, F,, and L,, denote the n-th Fibonacci and Lucas numbers, respectively.
Definition 2.6. [18] The Leonardo numbers are defined recursively by
Le,=Le, 14+ Ley o+1, n>2
or
Le, =2Le, 1 — Le,_3, n>3
with the initial conditions Ley = Le; = 1 and Les = 3. Here, Le, denotes the n-th Leonardo number.

Moreover, Omiir and Koparal [24] defined the hyper-dual generalized Fibonacci and Lucas numbers. In
particular cases of the hyper-dual generalized Fibonacci and Lucas numbers, the hyper-dual Fibonacci
and Lucas numbers can be derived as:

Definition 2.7. [24] The hyper-dual Fibonacci and hyper-dual Lucas numbers are defined as follows,
respectively:

HDF, = F, + Fpy1161 + Fry0e0 + Fryseien (2.3)
and
HDL, =Ly + Lyt161 + Lpqoca + Lpise162 (2.4)
where €1 and ey are the dual units defined as in (2.1).
Definition 2.8. [25] The hyper-dual Leonardo numbers are
HDLe, = Le, + Lepi161 + Lepiocs + Lepizeien (2.5)
where €1 and ey are the dual units in (2.1).
Moreover, the recurrence relation of the hyper-dual Leonardo numbers is provided by
HDLe,=HDLe, 1+ HDLe, 5+ A, n>2 (2.6)
or
HDLe,=2HDLe, 1 — HDLe, 3, n>3 (2.7)

Here, A :=1+¢1 + 9+ 182 [25)].
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Definition 2.9. [20] The Fibonacci and Lucas quaternions are defined as follows, respectively:
QFn :Fn+Fn+1i+Fn+2j+Fn+3k

and
QLn =L,+ LnJrli + Ln+2j + Ln+3k3

where 4, j, and k are the quaternionic units in (2.2).
Definition 2.10. [23] The Leonardo quaternions are defined by

QLe, = Ley, + Leyt1i + Leptoj + Lenysk (2.8)
where 4, j, and k are the quaternionic units in (2.2).

Binet’s formula for ()Le,, is

a"tla — 6n+13
where @ = 238 5= 1oV5 64— 1 4 i+ (14 a)j+ (14 2a)k, B := 1+ Bi+ (1+ 8)j + (1 +20)k,
and q, := 141+ j + k [23]. Then, the following properties hold [23]:

QLe, =2 (2.9)

QLe, =2QF, 11— qu (2-10)
QLens1 — QLey, = 2QF, (2.11)
QLeni2 = QLep1 + QLey + gy (2‘12)
n
> QLer = QLenys — QLez — ngy (2.13)
k=1
n
> QLegi—1 = QLean, — QLeg — ngy (2.14)
k=1
and
n
> QLegy = QLeant1 — QLer — ngy (2.15)
k=1

Here, QF,, is the n-th Fibonacci quaternion and Q) Le,, is the n-th Leonardo quaternion.

Ait-Amrane et al. [27] defined the hyper-dual Horadam quaternions from two perspectives. In the par-
ticular case of the hyper-dual Horadam quaternions, the hyper-dual Fibonacci and Lucas quaternions

can be derived as follows:
Definition 2.11. [27] The hyper-dual Fibonacci and Lucas quaternions are defined by
QHDF,, = HDF,, + HDF, 1t + HDF, 1 2j + HDF, 3k

and
QHDL,=HDL,+ HDL,1i+HDLp2j+ HDL, 3k

respectively, where HDF,, is the n-th hyper-dual Fibonacci number, H DL, is the n-th hyper-dual

Lucas number, and 4, j, and k are the quaternionic units in (2.2).
In addition, the hyper-dual Fibonacci and Lucas quaternions can be defined as:

Definition 2.12. [27] The hyper-dual Fibonacci and Lucas quaternions are defined by

QHDF, = QF, + QF, 161 + QF, 262 + QF, 136162
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and
QHDL, = QLy + QLpt161 + QLyy262 + QLpy 36162

respectively, where €1 and €3 are the dual units in (2.1).
3. Main Results

This section begins with defining the general term of the hyper-dual Leonardo quaternions.
Definition 3.1. For n > 0, the n-th hyper-dual Leonardo quaternion is
QHDLe, =HDLe,+ HDLep1i+ HDLeypy2j + HDLe, 3k (3.1)

where HD Le,, is the n-th hyper-dual Leonardo number and ¢, j, and k are the quaternionic units in
(2.2).
Moreover, considering (2.5) and (2.8), we can obtain
QHDLe, = HDLe, + HDLey 1i + HDLep2j + HDLen sk
= (Lep + Lept161 + Lepyoes + Lepise1ea) + (Lepy1 + Lepyoer + Leptsea + Lepae162)0
+(Lenta + Lepiser + Lenyaco + Lepiserea)j + (Lents + Lepyacr + Lepisea + Lepge162)k
= (Len + Lep11i + Leyyoj + Lenysk) + (Lept1 + Lepyoi + Lepisi + Leptak)er
+(Lepyo+ Leyysi+ Lepyaj + Lenisk)es + (Lents + Lenigi + Ley 15 + Lenyok)eies
= QLe, + QLept161 + QLepyoe2 + QLepyse162

Therefore, the general term of the hyper-dual Leonardo quaternions can be reidentified in the following.
Definition 3.2. For n > 0, the n-th hyper-dual Leonardo quaternion is
QHDLe, = QLe, + QLepi161 + QLey 060 + QLey 38162 (3.2)
where Q) Le,, is the n-th Leonardo quaternion and 1 and €2 are the dual units in (2.1).
The first three hyper-dual Leonardo quaternions are as follows:
QHDLey = (14+1+3j+5k)+ (14 3i+ 55+ 9k)er + (3+ 5i + 97 + 15k)es
+(5+9i + 155 + 25k)e1e0
QHDLe; = (14 3i+554+9k) + (3+ 5i+ 975 + 15k)er + (5 + 9 + 155 + 25k)e2
+(9 + 150 + 255 + 41k)e1eo

and
QHDLey = (3+5i+ 975 + 15k) + (54 97 + 155 + 25k)e; + (9 + 150 + 255 + 41k)es

+(15 4 250 + 415 + 67k)e1£2
Throughout this paper, let A:=14¢1 +e9+ €169, ¢ :=1+i+j+k, and A := Aq, = ¢, A.

By (2.6) and (3.1), the following recurrence relation of the hyper-dual Leonardo quaternions is ob-

tained:
QHDLe, =QHDLe, 1+ QHDLe,_ 5+ A, n>2 (3.3)

Moreover, by (2.7) and (3.1), the alternative recurrence relation of the hyper-dual Leonardo quater-

nions is obtained:

QHDLe, = 2QHDLe,_, — QHDLe,_5, n >3 (3.4)
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Theorem 3.3. For n > 0,

i. QHDLe, — QHDLeyn11i — QHDLey9j — QHDLey 3k =3(HDLeypg + HDLey o) + 2A
1. QHDLe, — QHDLe, 1161 — QHDLeypi0e0 — QHD Le, 136169 = QLe, — 2Q Ley, 136169
PrOOF. Let n > 0.

i. Using (3.1) to the left-hand side (LHS),

LHS = HDLe, + HDLepy1i + HDLepy0j + HDLep 3k
— (HDLepy1 + HDLenyoi + HDLepysj + HDLep ak)i
— (HDLeyy2 + HDLeyy3i+ HDLey 45 + HDLey 1 5k)j
— (HDLepys + HDLens4i + HDLepssj + HDLepgk)k

From the multiplication rules of the quaternionic units in (2.2),
LHS = HDLe, + HDLey 2+ HDLey s+ HDLey 16
Using (2.6),

LHS =3HDLepy +3HDLeyyo + 24

it. Using (3.2) to the left-hand side (LHS),

LHS =QLe, + QLep161 + QLepyoes + QLep3e162
— (QLepy1 + QLepy2e1 + QLepi3ea + QLeptac162)e1
— (QLeépy2 + QLepyser + QLeptger + QLey58162)e0
— (QLents + QLeptae1 + QLepisea + QLepge162)e162

Considering the multiplication rules of the dual units in (2.1),
LHS = QLe, — 2QLe,1361€9

O

Lemma 3.4. For positive integer n, the followings hold:

i. HDLen_1 + HDLeyn11 =2HDLy 1 —2A [25]

ii. HDLe, + HDF,, + HDL, =2HDLe, + A

where HDLe,, HDF,, and HDL, are the n-th hyper-dual Leonardo, hyper-dual Fibonacci, and
hyper-dual Lucas numbers, respectively.

PROOF. ii. From (2.3)-(2.5) and the relation Le,, + F,, + L,, = 2Le,, + 1 provided in [19], the proof is
clear. [J

Theorem 3.5. For n > 0, the followings hold:

i. QHDLe,—1+QHDLepy1 =2QHDLy ) — 2A

it. QHDLe, + QHDF, + QHDL, = 2QHDLe, + A
1i. QHDLe, =2QHDF,4+1 — A

w. QHDLept1 — QHDLe, =2QHDF,

where QHDF,, and QHDL,, are the n-th hyper-dual Fibonacci and hyper-dual Lucas quaternions,

respectively.
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ProOF. From (2.10), (2.11), (3.1), and (3.2) and Lemma 3.4, the proofs of i., 4., iii., and iv. are
obvious. [

Theorem 3.6. For n > 0, Binet’s formula of the hyper-dual Leonardo quaternions is

*anJrl _ B*ﬂnJrl
a—pf )_A

QHDLe, =2 (O‘

where a = 1+2‘/5, 8= 1_2\/5,
=14 ai+(1+a)j+ (1+20)k)(1+ aer + (14 a)eg + (1 + 2a)e169)

and
B =0+Bi+1+8)j+(1+20)k)(1+ Ber + (1+B)ea+ (1 +28)e1e2)

PROOF. From (2.9) and (3.2) and the equalities 1 +a = o?, 1+2a = o3, 1+ = 3%, and 1428 = 33,

QHDLe, = QLey + QLept161 + QLepi282 + QLepy3e162
antlg — gntl A at24 — gnt2 A

a—f a—f
a"t34 — n+3 72 ot — n+4 2
+ 12 a B_Qu g2+ |2 b 5—qu €1€2
a—f a—f
anJrld 9 n+1B 9
:2a_6(1+a61+0462+a36162)—2a_6(1+[351+ﬁ52+B35152)

—qu(l14+¢e1 +e2 + £169)
* n+1 * on+1
oo _2,6’ B B

a—pf a—f A

=2

O

Theorem 3.7. The ordinary generating function for the hyper-dual Leonardo quaternions is

(z) QHDLeg+ (QHDLey — 2QHDLeg)x + (QHDLes — 2QHD Ley ) 2?
g\r) =

1—2z+ 23
PRrROOF. Let

g(z) = i QHDLeyz"

n=0

be the ordinary generating function for the hyper-dual Leonardo quaternions. Then, from (3.4),

.9]
g(x) = QHDLeo + QHDLeyx + QHDLeyr” + Y QHDLepa"
n=3

(e,
= QHDLeg+ QHDLerx + QHDLesa® + > (2QHDLen—1 — QHDLey_3)z"

n=3
o o0
= QHDLey+ QHDLeyx + QHDLeya® + 22 QHDLep_12" " —2® > QHDLeyp 3™ ?
n=3 n=3

= QHDLeyg+ QHDLeix + QHDLeya”® — 22(QHDLeg + QHDLeyx) + 22 > QHDLeya"

n=0

oo
— a3 Z QHDLe,xz"

n=0

= QHDLey+ (QHDLe; — 2QHDLeg)x + (QHDLey — 2QHDLey)x? + 2zg(x) — x3g(x)
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Hence,
g(x)(1 =2z +23) = QHDLey + (QHDLe; — 2QHDLeg)x + (QHDLey — 2QH D Ley )z
O

Theorem 3.8. The exponential generating function for the hyper-dual Leonardo quaternions is

A o 276*5 e’ — Ae®

eg(z):ZQHDLen%:2a_ﬁe P

n=0

where o and 8* are defined as in Theorem 3.6.

PRrROOF. From (3.5), we obtain

o xn
eg(z) = Z QHDLenm
n=0 ’

B [e’s) Oé*OéTH_l*ﬁ*,Bn-’_l "
-5 (=) )

L, afa X (az)” BB = (Ba)" x
_2a—ﬁ = n! _Qa—ﬁnzzzo n! _Anz::oﬁ

B8 4
ar _ 9 T _ Ae®
o7 a—ﬁe e
0

Corollary 3.9. The Poisson generating function for the hyper-dual Leonardo quaternions is

A0 (ate _o BB (s-1)e _ A
a—pf a—pf
PROOF. Since pg(x) = eg(x)e™*, the proof is straghtforward. O

pg(z) =2

Theorem 3.10. For n > 1, the followings hold:

i él QHDLey = QHDLep o — QHDLey — nA

i é OQHDLes 1 = QHDLes, — QHDLeg — nA
i, él QHDLes, = QHDLegys1 — QHDLe; — nA
PRO(;F. i. From (2.13) and (3.2),

n n

> QHDLey = > (QLey + QLeps121 + QLegsoer + QLejr3e162)
k=1 k=1

= (Z QL6k> + (Z QL6k+1> €1+ (Z QL€k+2> €9 + (Z QL€k+3> £1&2
k=1 k=1 k=1 k=1

= (QLent2 — QLes — nqy) + (QLent2 + QLeypy1 — QLes — QLey — ngy) €1
+ (2QLeny2 + QLepi1 —2QLey — QLer — ngy) €2
+ (QLeny3 +2QLepio + QLept1 — QLes — 2QLex — QLer — ngy) €162
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Then, considering (2.12),

n
> QHDLe = (QLenya — QLey — nqu) + (QLenys — QLes — nqy) €1 + (QLents — QLes — ngy) &2
k=1

+ (QLen-I—S - QL65 - nCIu) €1€2

Then, it follows that

n
Z QHDLey, = (QLept2 + QLepyzer + QLepiaca + QLepyse162)
k=1
— (QLea + QLeser + QLeger + QLese1e2) — ngy(l + €1 + £2 + €162)

=QHDLeyio —QHDLes — nA

This completes the proof of 7. In a similar manner, . and /. can be proved by using (2.14) and
(2.15). O

Theorem 3.11. For n > 0, the followings hold:

i, QHDLes, = 3 (")(QHDLey + A) — A

n+1
ii. QHDLesny1 = 3. ("1")(QHDLej_1 +A) — A

PROOF. i. From (3.5),

o 2n+1 2n+1
QHDL62n_2< 55 >_A

( 66(5)>_A

( a(l+a)” gﬁ(uﬁ)) A

(k)ﬂk, then

— i(z) s (1)) -2
( )

n atak * ok
_2Z<Z> 1 6ﬁ+1

k
n

A
] C = )

i( ) (QHDLej, + A) — A

Since (1 + a)” = i (1)a* and (1 + B)"
k=0

bl
w:

71. The proof is similar to the proof of 7. [J

Theorem 3.12. (Vajda’s Identity) For non-negative integers n, r, and s,
4
QHDLe, ,QHDLe, s —QHDLe,QHDLep yis = ﬁ(—w“( *o*al — o B*B%)F,

+ A(QHDLe, + QHDLey 1 ys)
— A(QHDLens, + QHDLey)

where F, is the r-th Fibonacci number.
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PRrROOF. Applying to the left-hand side (LHS),

(3.5)
( <a*an+r+1 5 Bn+r+1> B A) (2 (a*an+s+1 _ ﬁ*ﬁn-l—s—i-l) B A)
a—p
) a*an—‘rl B*Bn—H A 5 a*an+r+s+1 _ B*Bn+r+8+1 A
_ - IB _ - ﬂ _

. ((aﬁ)”“(a’” — A (Bt - a*ﬁ*58>>

(a—p)?

— A(QHDLe, ,+ QHDLe, s — QHDLe, — QHDLe, 1)
4
— 1n+1 **8_**SF’I‘
U (et —at )

+A(QHDLe, + QHDLeyyrys — QHDLeyy, — QHDLey )
Here, F, = % [15]. O
In the particular case of Theorem 3.12, we have the following results:

Corollary 3.13. (Catalan’s Identity) For non-negative integers n and s such that n > s,
4
QHDLe, ;QHDLe,,, — (QHDLe,)* = ﬁ(—l)"”(ﬂ*a*as — o B*B*)F,

+ A(2QHDLe, — QHDLe,_, — QHDLe,)

PROOF. Taking 7 — —s in Theorem 3.12 and considering the relation F_, = (—1)"*'F, [15], the
proof is obvious. [

Corollary 3.14. (Cassini’s Identity) For positive integer n,

= ) Faa—a')

+A(QHDLe, 5 — QHDLe, 1)

QHDLe, 1QHDLe, 1 — (QHDLe,)*

ProOOF. Taking r — —s and s = 1 in Theorem 3.12 and using (3.3), the proof is clear. [

Corollary 3.15. (d’Ocagne’s Identity) For positive integers n and m,

\L/Lg( 1)n+1(5* * M1 a*ﬁ*ﬁm—n)

+A(QHDLey,—1 —QHDLe, 1)

QHDLe,1QHDLe,, — QHDLe,QHDLey 1 =

PROOF. Taking s = m —n and r = 1 in Theorem 3.12 and using (3.3), the proof is clear. []
4. Conclusion

In this study, the hyper-dual Leonardo quaternions have been proposed from two different perspec-
tives. At first, the hyper-dual quaternions have been defined using the hyper-dual Leonardo numbers
as coefficients in quaternions. Then, as equivalent to this first definition, the hyper-dual Leonardo
quaternions have been defined using the Leonardo quaternions as coefficients in hyper-dual numbers.
Some of their properties, such as non-homogeneous and homogeneous recurrence relations, Binet’s
formula, certain sum formulae, and binomial-sum formulae, have been provided. The ordinary, ex-
ponential, and Poisson-generating functions, Vajda’s identity, and, in particular cases, Catalan’s,
Cassini’s, and d’Ocagne’s identities of the hyper-dual Leonardo quaternions have been presented. For
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future studies, researchers may define hyper-dual split quaternions provided in [10] with the Leonardo

number coefficients.
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