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Graphical/Tabular Abstract (Grafik Özet) 

The discharge energy of lithium-ion battery under DST drive cycle and different temperature 

conditions is estimated by FOX-BiRNN method. The performance of different deep sampling 

methods is compared. /Lityum-iyon bataryanın DST sürüç çevrimi ve farklı sıcaklık koşullarında 

deşarj enerjisi FOX-BiRNN yöntemiyle tahmin edilmiştir. Farklı derin örğenme yöntemlerinin 

performansı karşılaştırılmıştır.  

 

Figure A: Flow chart of discharge energy estimation of lithium-ion battery under different 

temperature conditions./ Şekil A:Lityum-iyon bataryanın farklı sıcaklık koşullarında deşarj 

enerjisi tahminin akış diagramı  

Highlights (Önemli noktalar)  

 Estimation of lithium-ion battery discharge energy under DST driving cycle and different 

temperature conditions/Lityum-iyon bataryanın deşarj enerjisinin DST sürüş çevrimi 

vefarklı sıcaklık koşullarında tahmini, 

 The estimation performance of BiGRU, BiLSTM, BiRNN and FOX-BiRNN methods for 

discharge energy estimation is compared /Deşarj enerjisi tahmini için BiGRU, BiLSTM, 

BiRNN ve FOX-BiRNN yöntemlerinin tahmin performansı karşılaştırılmıştır 

 Hyperparameter values of the BiRNN method were determined with FOX 

optimization./FOX optimizasyonuyla BiRNN yönteminin hiperparametre değerleri 

belirlenmiştir. 

Aim (Amaç): The aim of this study is to estimate the discharge energy of lithium-ion battery under 

DST driving cycle and different temperature conditions with FOX-BiRNN method and different 

deep learning methods./ Bu çalışmanın amacı, lityum-iyon bataryanın deşarj enerjisini DST sürüş 

çevrimi ve farklı sıcaklık koşulalrı altında FOX-BiRNN yöntemi ve faklı derin öğrenme 

yöntemelriyle tahmin etmek. 

Originality (Özgünlük): The most successful discharge energy estimation was obtained by applying 

the hyperparameter values determined by the FOX optimization to the BiRNN method./ FOX 

optimizasyonuyla belirlenen hiperparametre değerlerinin BiRNN yöntemine uygulanmasıyla en 

başarılı deşarj enerjisi tahmini elde edilmiştir. 

Results (Bulgular): The FOX-BiRNN method achieved 99.4186% prediction success at 0 0C 

according to the R2 metric, 99.6080% at 25 0C according to the R2 metric, and 99.4148% at 45 0C 

according to the R2 metric./ FOX-BiRNN yöntemi, R2 metriğine göre 0 0C 'de %99.4186, R2 

metriğine göre 25 0C' de %99.6080 ve R2 metriğine göre 45 0C' de %99.4148 tahmin başarısı elde 

etmiştir. 

Conclusion (Sonuç): While estimating the discharge energy of the lithium-ion battery, the 

hyperparameter value of the BiRNN method was determined quickly by FOX optimization and the 

most successful results were obtained./Lityum-iyon bataryanın deşarj enerjisi tahmini yapılırken 

FOX optimziasyonu tarafından BiRNN yönteminin hiperparametre değeri hızlı bir şekidle 

belirlenerek en başarılı sonuçalar elde edilmiştir.  
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Abstract 

In this study, the discharge energy of the lithium-ion battery was estimated by using the FOX- 

Bidirectional Recurrent Neural Network (Bi-RNN) method for the Dynamic Stress Test (DST) 

driving cycle method and different temperatures. For lithium-based batteries, discharge energy 

estimation is critical for long-term use, while problems such as overheating are major problems. 

For this reason, in this study, the discharge energy of lithium-ion batteries under different 

temperature conditions was estimated using bidirectional-based deep learning methods. In 

addition, the hyperparameter values of the BiRNN method were determined with FOX 

optimization, and the FOX-BiRNN method was proposed. The discharge energy estimations of 

FOX-BiRNN, BiRNN, Bidirectional Gated Recurrent Unit (Bi-GRU), and Bidirectional Long-

short term (Bi-LSTM) methods were compared. The obtained estimation results were compared 

using the most commonly used battery parameter estimation metrics in the literature for 

performance comparison. The estimation success of the proposed method was presented using 

many comparison metrics and graphics. The FOX-BiRNN method was the most successful 

method for discharge energy estimation by obtaining values of %99.4186 at 0 0C according to the 

R2 metric, %99.6080 at 25 0C according to the R2 metric, and %99.4148 at 45 0C according to the 

R2 metric. 
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Öz 

Bu çalışmada, lityum-iyon pilin deşarj enerjisi, Dinamik Stres Testi (DST) sürüş çevrimi yöntemi 

ve farklı sıcaklıklar için FOX- Çift Yönlü Tekrarlayan Sinir Ağı (Bi-RNN) yöntemi kullanılarak 

tahmin edilmiştir. Lityum bazlı bataryalar için, deşarj enerjisi tahmini uzun süreli kullanım için 

kritik öneme sahipken, aşırı ısınma gibi sorunlar büyük problemlerdir. Bu nedenle, bu çalışmada, 

lityum-iyon pillerin farklı sıcaklık koşullarındaki deşarj enerjisi, çift yönlü tabanlı derin öğrenme 

yöntemleri kullanılarak tahmin edilmiştir. Ayrıca, BiRNN yönteminin hiperparametre değerleri 

FOX optimizasyonu ile belirlenmiş ve FOX-BiRNN yöntemi önerilmiştir. FOX-BiRNN, BiRNN, 

Çift Yönlü Kapılı Tekrarlayan Birim (Bi-GRU) ve Çift Yönlü Uzun-Kısa Dönem (Bi-LSTM) 

yöntemlerinin deşarj enerjisi tahminleri karşılaştırılmıştır. Elde edilen tahmin sonuçları, 

performans karşılaştırması amacıyla literatürde en sık kullanılan batarya parametre tahmin 

metrikleri kullanılarak karşılaştırılmıştır. Önerilen yöntemin tahmin başarısı birçok karşılaştırma 

metrikleri ve grafikler kullanılarak sunulmuştur. FOX-BiRNN yöntemi, R2 metriğine göre 0 0C'de 

%99.4186, R2 metriğine göre 25 0C'de %99.6080 ve R2 metriğine göre 45 0C'de %99.4148 

değerleri elde ederek deşarj enerjisi tahmini için en başarılı yöntemdi. 

 

1. INTRODUCTION (GİRİŞ) 

Nearly 28% of all carbon dioxide (CO2) emissions 

are attributed to the transport sector, with road 

transport accounting for more than 70% of these 

emissions, according to a research by the European 

Union. In order to reduce the concentration of air 

pollutants like CO2 and other greenhouse gases, the 

governments of the majority of industrialized 

nations are promoting the usage of electric vehicles 

(EVs) [1]. Energy storage is one of the key technical 

developments for the development of new energy 

electric vehicles and smart networks. Of all the 

existing chemical and physical solutions, the 

lithium-ion battery is the type of energy storage [2] 

technology that is evolving at the fastest rate due to 

https://orcid.org/0000-0003-2343-9182
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the rapid development of new energy electric cars. 

Because there have been so many electric car fires 

lately, people's opinions about them have shifted. 

Additionally, this has created obstacles and elevated 

expectations for battery management solutions [3], 

[4]. For this reason, the discharge energy state 

estimation of lithium-based batteries is of critical 

importance. In terms of energy management and 

safety, accurate estimation of lithium-based battery 

parameters is very important [5]. For this reason, 

there are many studies in the literature to determine 

battery parameters. Because State of Health (SOH) 

[6], [7], [8], [9] measures a battery's residual 

capacity relative to its initial value, it has gained 

popularity as an additional indication of battery 

deterioration in recent years [10]. The latest 

techniques for estimating lithium battery parameters 

include both hybrid and data-driven algorithms 

[11]. Therefore, data-driven techniques have been 

receiving more and more attention as battery 

operating data becomes more widely available. 

Gaussian process regression (GPR) is a commonly 

used technique for estimating SOH among them 

[12]. In a study, it was shown that GPR has the best 

performance in SOH estimation among four typical 

data-driven methods (linear regression, support 

vector machine, relevance vector machine and 

GPR) [13]. In order to estimate SOH, deep learning 

techniques like deep convolutional neural networks, 

long short-term memory neural networks, and prior 

knowledge-based neural networks were also used 

[14]. However, when estimating parameters such as 

SOH, State of Energy  (SOE), and capacity of 

lithium-based batteries using machine learning, 

determining the appropriate hyperparameter values 

is a very important problem. Along with SOH 

estimation on a long time scale and State of Charge 

(SOC) estimation on a short time scale, model-

based dual-time SOH and SOC  combined 

estimation approaches were also presented [15]. In 

a study, a new method was proposed for energy state 

estimation in experiments conducted at different 

temperatures for lithium-ion batteries. Energy state 

estimation was successfully performed with the 

Particle Filter-Extended Kalman filter method [16]. 

In another study, Adaptive FOX optimization and 

RNN method were used to predict Crude Oil Prices 

[17]. In another study, the use of Bi-RNN method in 

confidence estimation provided significant 

improvement [18]. In deep learning methods, 

determining hyperparameters appropriately is 

critical for making appropriate predictions due to 

reasons such as time, speed, and success. Since 

determining these hyperparameter values is based 

on long-term trial-and-error methods, determining 

them quickly with metaheuristic optimization 

methods is a very important development. This 

study was carried out to solve the hyperparameter 

search problem by estimating the discharge energy 

of lithium-ion battery under different temperatures 

and DST driving cycle data with FOX optimization-

BiRNN method. In addition, estimating the battery 

discharge energy in a healthy and reliable way is of 

critical importance due to energy management in 

the use of electric vehicles. In this study, discharge 

energy was estimated for each of the different 

temperatures. With this study, it was presented that 

FOX optimization can be used in deep learning-

based lithium battery parameter estimation. In 

addition, it was concluded that FOX optimization, a 

new metaheuristic optimization method in the 

literature, found very effective results in the 

hyperparameter search process. 

2. MATERIALS AND METHODS (MATERYAL 

VE METOD) 

In this study, deep learning training was performed 

on a personal computer with an i7 processor and an 

Ubuntu operating system. In addition, the 

hyperparameter search process of the Bi-RNN 

method was performed using the code written in the 

Python programming language using the FOX 

optimization with a population number of 20. Deep 

learning training was performed by converting the 

data to .csv format for the use of the dataset. 

2.1. Experimental Data (Deneysel Veri) 

The data used in this study is a publicly available 

dataset. A publicly available dataset consisting of 

experimental data at 0 0C, 25 0C, and 450C and the 

DST driving cycle was used [19]. Batteries were 

tested at low temperature (0 0C), room temperature 

(25 0C) and high temperature (40 0C). In general, 

testing batteries at these temperatures is to examine 

temperature changes that affect their performance 

and life. Additionally, when this battery dataset was 

examined, it was seen that the Arbin BT2000 

Battery Test System was used to test the battery. In 

the battery dataset used in this study, the test 

samples were subjected to dynamic stress testing to 

determine the model parameters. DST applies a 

dynamic discharge regime to a lithium battery. The 

battery behavior is tested according to the current 

profile of DST. Although DST takes into account 

regenerative charging and uses a series of current 

steps with varying amplitudes and durations, it is a 
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simplification of the real battery charging 

conditions [20]. The characteristics of the INR 

18650-20R lithium-ion battery used in charge-

discharge experiments and test drive profiles during 

the preparation of the public data set used in this 

study are given in Table 1 [21].  

The properties of the dataset used in this study are 

given in Figure 1. Graphs are presented for different 

temperature values. The dataset was created using 

batteries for 80% battery level and 50% battery level 

for testing. In addition, the effect of temperature 

change on performance was examined under three 

different temperature conditions and the data was 

recorded. In the dataset where many different 

driving methods were used, only the data used for 

the DST driving method was used for this study. In 

addition, data with separate data files for all 

temperature values and a battery level of 50% were 

used. Figure 1-a shows the data obtained at 0°C 

temperature conditions, Figure 1-b shows the results 

obtained at 25°C temperature conditions, and Figure 

1-c shows the results obtained during the operation 

of the lithium battery at 45°C temperature 

conditions. Figure 1 shows the graphical 

representation of the input data and output data 

values of deep learning models for three different 

temperature values. The dV/dT value of these data 

features indicates the change in the voltage value 

over time and is very important for battery 

Table 1. Lithium-ion battery features (Lityum-iyon batarya özellikleri) 

Parameters Specifications  

Capacity Rating 2000mAh 

Cell Chemistry LNMC/Graphite 

Max current (A) 22 

Cut-off voltage 2.4/4.2 

Max. Voltage 4.2V ± 0.05V 

 

 

Figure 1. Dataset properties, a-0 0C, b-25 0C, and c-450C (Veriseti özellikleri, a-0 0C, b-25 0C, and c-450C) 
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performance and health. While the Voltage value 

indicates the voltage value in the battery, the 

Current value indicates the change in the current in 

the DST driving mode applied to the battery. The 

Discharge Energy value indicates the change in the 

internal energy while the battery is being 

discharged. While the Voltage, Current, and dV/dT 

values are the input data, the Discharge Energy 

value is the value that should be estimated by deep 

learning. The data was prepared as a result of 

measuring the Voltage, Current, and dV/dT values 

of the battery at different temperature values under 

the DST driving mode of the battery. The Discharge 

Energy value of the lithium battery at different 

temperatures was estimated using the data in the 

graph in this study.  

2.2. FOX Optimization (FOX Optimizasyonu) 

A fox may survive in an environment with low 

productivity and few species. Although foxes come 

in various colors, white and red are the most 

prevalent hues. The red fox and the arctic fox are the 

two most prevalent species of fox. The most 

common animal is the red fox, which has expanded 

to cities across the USA, Europe, Canada, Japan, 

Australia, and Europe. The FOX algorithm mimics 

the hunting behavior of a red fox when it dives into 

the snow to hunt its prey [22]. The arctic fox is 

highly skilled at hunting its prey from both above 

and below. To find prey, the red fox initially roams 

the search area at random. It uses the prey's 

ultrasonic sound to locate its prey. The red fox may 

hear the sound of its prey while it seeks. The red fox 

is at the exploitation stage after detecting the noise. 

The sound of the prey takes some time to reach the 

red fox because it is capable of hearing ultrasonic 

sounds.  In an attempt to decide whether to jump 

against the prey, the red fox advances the target. As 

a result, the red fox attempts to leap in response to 

how long it takes for prey to become visible. The 

red fox's hunting habits are shown in Figure 2. In 

addition, the coefficients c1 and c2 specified in Table 

2 represent the jumping coefficients of the red fox. 

In addition, the number of epochs in deep learning 

models and the number of epochs - iterations in the 

optimization method are determined as 10. FOX 

first initializes the population, often known as the X 

matrix. The location of red foxes is an X. Next, each 

search agent's fitness is determined for each 

iteration using conventional benchmark functions. 

The fitness value of each search agent (each row in 

an X matrix) is compared to the fitness of other 

agents (other rows) in order to determine the 

optimal location (BestX) and best fit (BestFitness). 

In order to compare the fitness of the current row 

 

Figure 2. FOX population search for prey (FOX popülasyonunun av arayışı) 
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(fitnessi + 1) to the fitness of the preceding row 

(fitnessi) throughout the course of iterations, 

BestFitness and BestX are performed using a 

condition. There is a condition on the possibility of 

killing the prey during the exploitation phase.  

The random variable p has a value between 0 and 1. 

Consequently, it is necessary to determine the red 

fox's new location if the random number p is larger 

than 0.18. In order to determine a new location, one 

must compute the distance sound travels 

Dist _ S _ Tit, the red fox's distance from the prey 

Dist _ Fox _ Preyit, and the leaping value Jumpit. 

Consequently, the sound travel time Time_S_Tit is 

assigned a random integer between 0 and 1. By 

multiplying the speed of sound in the air (Sp_S) by 

the time sound travels (Tit), one may get the distance 

of the sound from the red fox. Equation (1) is used 

to find the distance traveled by the sound, which 

means distance 

Dist_S_Tit = Sp_S*Time_s_Tit (1) 

 

The ideal resolution the discovery process is 

significantly impacted by BestXit that has been 

discovered. Equation (2) illustrates the fox's 

exploration strategy for locating a new location in 

the search space X(it + 1) [23]. 

X(it+1)=BestXit*rand(1, dimension)*MinT*a (2) 

 

2.3. Bidirectional Recurrent Neural Networks 
(Çift Yönlü Yinelenen Sinir Ağı) 

Bidirectional RNNs were initially introduced in 

1997. The concept involves connecting two 

recurrent networks that have been trained in 

opposing directions, meaning they are trained by 

reading the input sequence once from the left and 

once from the right, and then feeding into the same 

output layer. Unlike unidirectional RNN, the 

network with this design collects more information 

since it knows everything about the neighboring 

points before and after each data point [24]. The 

working diagram of a Bi-RNN architecture is given 

in Figure 3. 

Mathematics is used to specify the network in 

Equations 3-5. Iterating the forward layer from f=1 

to F yields the forward hidden sequence, ℎ⃗ 𝑓
𝑙 . 

Iterating the backward layer from f=1 to F yields the 

backward hidden sequence, ℎ⃖⃗𝑓
𝑙 . The weight matrices 

that are input are 𝑊
𝑥ℎ⃗⃗ 
𝑙 , 𝑊

𝑥ℎ⃗⃗⃖
𝑙 , the hidden weight 

matrices are 𝑊
ℎ⃗⃗ ℎ⃗⃗ 
𝑙 , 𝑊

ℎ⃗⃗⃖ℎ⃗⃗⃖
𝑙 , and the bias terms for the 

forward and backward hidden layers are 𝑏
ℎ⃗⃗ 
𝑙 , 𝑏

ℎ⃗⃗⃖
𝑙 , 

respectively. A deep bidirectional RNN may be 

created by stacking many bidirectional RNN layers. 

The input for each hidden layer comes from the 

forward and backward layers that came before it, or 

from ℎ⃗ 𝑓−1
𝑙  and ℎ⃗⃖𝑓−1

𝑙 . Equation-5 states that the 

hidden activations ℎ⃗ 𝑓
𝐿−1 and ℎ⃗⃖𝑓

𝐿−1 f of the final 

 

Figure 3. Bi-RNN architecture (Bi-RNN mimarisi) 
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hidden layer L−1 are used to update the output layer 

yf. The output weight matrices are denoted by 𝑊ℎ⃗⃗ 𝑦 

and 𝑊ℎ⃗⃗⃖𝑦, and by the output bias term [25]. 

ℎ⃗ 𝑓
𝑙 = 𝑔(𝑊

𝑥ℎ⃗⃗ 
𝑙 𝑥𝑓

𝑙 + 𝑊
ℎ⃗⃗ ℎ⃗⃗ 
𝑙 ℎ⃗ 𝑓−1

𝑙 + 𝑏
ℎ⃗⃗ 
𝑙 ) (3) 

ℎ⃗⃖𝑓
𝑙 = 𝑔(𝑊

𝑥ℎ⃗⃗⃖
𝑙 𝑥𝑓

𝑙 + 𝑊
ℎ⃗⃗⃖ℎ⃗⃗⃖
𝑙 ℎ⃗⃖𝑓−1

𝑙 + 𝑏
ℎ⃗⃗⃖
𝑙 ) (4) 

𝑦𝑓 = 𝑚(𝑊ℎ⃗⃗ 𝑦ℎ⃗
 
𝑓
𝐿−1 + 𝑊ℎ⃗⃗⃖𝑦 ℎ⃗⃖𝑓

𝐿−1 + 𝑏𝑦) (5) 

 

Figure 4 shows the process of determining the 

hyperparameter values of the deep learning method 

of the FOX optimization method. In this study, deep 

learning models were first created. Among the 

models with the same parameter numbers, the 

hyperparameter values of the BiRNN method were 

found with the FOX optimization method and 

candidate solutions. As can be seen in the figure, the 

deep learning model was created and the learning 

rate and Beta_1 hyperparameter value were tried to 

be found with the FOX optimization. The 

hyperparameter values were updated according to 

the fitness value up to the epoch value and the 

prediction performance of the new deep learning 

models was tested. Finally, the BiRNN model was 

obtained according to the appropriate 

hyperparameter values. 

3. RESULTS (BULGULAR) 

In this study, the discharge energy estimation of 

lithium-ion batteries was performed for different 

temperature conditions with deep learning methods. 

Hyperparameter values of the Bi-RNN method were 

determined by searching in a wide range with the 

FOX optimization method. Figure 5 shows the 

hyperparameter search sought in the deep learning 

method. While estimating the discharge energy of 

the lithium-ion battery using the BiRNN method, 

the determination of hyperparameter values was 

made using FOX optimization. The most important 

hyperparameters in the BiRNN method include the 

learning rate and Beta_1 hyperparameters. The 

Beta_1 hyperparameter value indicates the rate at 

which past gradient values will be taken into 

account, while the learning rate is the term related 

to the updating of the model weights. Figure 4 

represents the application of candidate values and 

the updating of these values according to the result 

 

Figure 4. Determining hyperparameters of deep learning method by FOX optimization method (FOX 

optimizasyon yöntemi ile derin öğrenme yönteminin hiperparametrelerinin belirlenmesi) 
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while determining the appropriate hyperparameter 

value with FOX optimization. The features of the 

FOX optimization method are given in Table 1. 

While the population size of the FOX optimization 

method was determined as 20, the c values for the 

jumps coefficient values of the population members 

were determined as 0.5 and successful results were 

obtained. FOX optimization parameter values are 

 

Figure 5. Hyperparameters different search 
(Hiperarametrelerin farklı aranması) 

 
Table 2. FOX optimization method’s parameters (FOX 

optimizasyon yönteminin parametreleri) 

Parameter Detail 

pop_size 20 

c1 0.5 

c2 0.5 

 

 

Figure 6. Fitness value obtained while searching for suitable parameters with the optimization 

method. (Optimizasyon yöntemi ile uygun parametreler aranırken elde edilen uygunluk değeri) 
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given in Table 2. The change of fitness value over 

time in the deep learning hyperparameter 

determination process using FOX optimization is 

given in Figure 6. In deep learning methods, the 

hyperparameter, which is considered the first 

parameter to be adjusted in overfitting and 

underfitting problems, is the learning rate 

hyperparameter. For this reason, in this study, a 

wide range was used while determining the learning 

rate and beta_1 hyperparameter value with the FOX 

optimization method. Table 3 shows the 

hyperparameter values searched with the FOX 

optimization method in the Bi-RNN method in this 

study. The fitness value of the appropriate values 

found by searching these two hyperparameter 

values together in the FOX optimization is 

0.995412. 

 

After determining the hyperparameter values of the 

Bi-RNN method using FOX optimization, the FOX-

BiRNN method was obtained by applying these 

values to the Bi-RNN method. The discharge energy 

estimation results of the lithium-ion battery of the 

FOX-BiRNN, Bi-RNN, Bi-LSTM, and Bi-GRU 

methods were given, and experiments were carried 

out for different temperature values. The deep 

learning experiment results are given in Table 4. 

According to the results given in Table 3, the worst 

estimation performance as a result of the training 

carried out using 0 0C data was obtained by the Bi-

LSTM method with the value of 0.076318 

according to the MSE metric. The Bi-RNN method 

reached the second most unsuccessful estimation 

result at this temperature value and this value was 

0.059190 according to the MSE metric. The most 

successful method was the FOX-BiRNN method, 

which made an error in estimation with the value of 

0.023992 with the MSE metric. As a result of deep 

learning trainings performed using 25 0C data at a 

different temperature value, the least successful 

method was the Bi-LSTM method with a value of 

0.098343 according to the MSE metric and made 

the most error in prediction. FOX-BiRNN method 

became the most successful method by reaching the 

value of 0.024546 according to the MSE metric and  

Table 4. FOX optimization method’s search areas (FOX optimziasyon yönteminin 

arama alanları) 

Hyperparameter Search Area Found 

learning rate 0.0000001- 0.01 0.004011210229063557 

beta_1 0.9- 0.999 0.9876397443378757 

 

Table 3. Deep learning experimental results (Derin öğrenme deneysel sonuçları) 

Temperature Model MSE RMSE MAE R² 

0 0C 

Bidirectional LSTM 0.076318 0.276257 0.166312 0.981507 

Bidirectional RNN 0.059190 0.243290 0.111000 0.985657 

Bidirectional GRU 0.030730 0.175299 0.086079 0.992554 

FOX-BiRNN 0.023992 0.154893 0.061595 0.994186 

25 0C 

Bidirectional LSTM 0.098343 0.313597 0.184775 0.984295 

Bidirectional RNN 0.026196 0.161851 0.059866 0.995817 

Bidirectional GRU 0.034208 0.184955 0.094992 0.994537 

FOX-BiRNN 0.024546 0.156670 0.059706 0.996080 

45 0C 

Bidirectional LSTM 0.103336 0.321460 0.214098 0.978626 

Bidirectional RNN 0.041659 0.204104 0.114284 0.991383 

Bidirectional GRU 0.048836 0.220988 0.148079 0.989899 

FOX-BiRNN 0.028295 0.168210 0.094473 0.994148 

Average 

Bidirectional LSTM 0.092666 0.303771 0.188395 0.981476 

Bidirectional RNN 0.042348 0.203082 0.095050 0.990952 

Bidirectional GRU 0.037924 0.193747 0.109716 0.992330 

FOX-BiRNN 0.025611 0.159924 0.071925 0.994805 
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making the least error in prediction. In the training 

performed using 45 0C data at a different 

temperature value, the Bi-LSTM method became 

the least successful method by making the error in 

prediction with the value of 0.103336 according to 

the MSE metric. In the training performed at the 

same temperature value, the FOX-BiRNN method 

achieved success by making the least error in 

prediction with the value of 0.028295 according to 

the MSE metric. 

4. CONCLUSIONS (SONUÇLAR) 

As the importance of comfort and healthy use in 

electric vehicles has increased, the healthy, long-

term, and safe use of lithium-based batteries that 

provide the energy needs of electric vehicles has  

 

become very important. The healthy use of lithium-

based batteries depends on accurate, fast, and 

reliable estimation of battery parameters. In 

addition, it is critical to know the behavior of 

lithium batteries under different temperature 

conditions and different drive cycles. In this study, 

discharge energy estimation of lithium-ion batteries 

was successfully performed with four deep learning 

methods using a publicly available dataset with the 

data obtained at 0 0C, 25 0C, and 45 0C in the DST 

driving method. Since one of the most important 

problems in the process of determining the 

parameters of lithium batteries based on artificial 

intelligence is the determination of 

hyperparameters, the hyperparameter values of the 

Bi-RNN method were determined by using FOX 

 

Figure 7.a. FOX-BiRNN estimation results for 0 0C (FOX-BiRNN 0 0C için tahmin sonuçları) 

 

 

Figure 7.b. FOX-BiRNN estimation results for 25 0C (FOX-BiRNN 25 0C için tahmin sonuçları) 

 

 

 

 

Figure 7.c. FOX-BiRNN estimation results for 45 0C (FOX-BiRNN 45 0C için tahmin sonuçları) 
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optimization in this study. In addition, the 

prediction performance of four deep learning 

methods, Bi-LSTM, Bi-RNN, Bi-GRU, and FOX-

BiRNN methods are compared. The discharge 

energy prediction results of the lithium-ion battery 

were evaluated by using the most commonly used 

prediction metrics in the literature. According to the 

results obtained, the FOX-BiRNN method was 

proposed by making the most successful prediction 

with a value of 99.4805% according to the R2 metric 

when averaged over all experiments. The prediction 

of the discharge energy of the lithium battery by the 

proposed method is presented as a result of graphics 

and tables with different prediction metrics. The 

obtained results will provide intuition for solving 

other problems in real life. The author intends to 

estimate the parameters of lithium-based batteries 

by comparing the success of different optimization 

methods in further studies. 
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