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ABSTRACT

Linear-dependent variables are typically modeled through the Spearman correlation, a classi-
cal statistical technique. In reality, the dependence between the data cannot always be linear. 
The copula approach has often been a popular tool for modeling dependent data in these 
cases. Archimedean copulas, which can model mostly symmetrical data, are also among the 
copula families used for this purpose. Recently, asymmetric copula models have been devel-
oped to model unsymmetrical-dependent variables. The dependency measure is calculated 
using directional dependency coefficients instead of the Spearman correlation when the data 
is asymmetrical. Appropriate asymmetric model selection is made with the help of these mea-
surements.
In the study, first, dependency parameters corresponding to different Spearman coefficients 
were obtained for Archimedean copula families, and asymmetric copulas were derived from 
them. Then, simulation data were obtained for these parameter values to determine the effect 
of asymmetry on data modeling, and directional dependency measures were found. In addi-
tion, the study methodology was applied to automobile bodily injury claims data, which is a 
real dataset with an asymmetric structure. Here, we used two different asymmetric models: 
the Khoudraji copula KC models, which are created by multiplying independent and Archi-
medean copulas, and the LCC models, which are linear-convex combinations of Archimedean 
copulas. Finally, the appropriate model was selected according to the directional dependency 
coefficients, and the results were interpreted.
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INTRODUCTION 

Determining the dependency structure of variables is 
important in many areas of research, including statistics, 

finance, engineering, and actuaries. In deciding this depen-
dence structure, the Spearman correlation, which is one 
of the standard statistical methods, is used. This method 
can model variables with a normal distribution, i.e., linear 
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dependent variables. However, the dependency coeffi-
cient may often differ in the real data’s lower and upper 
tail regions. It may also be affected by whether the data 
are symmetrical or asymmetrical. For situations where the 
correlation becomes complex, known statistical models are 
insufficient. Analytical methods have recently been devel-
oped for this purpose. In this sense, copulas, first proposed 
by Sklar [1], are popular methods used to model dependent 
variables.

Copulas are preferred because they allow for more real-
istic data modeling and are capable of generating joint dis-
tributions for statistical modeling of dependent variables 
without restrictions on the marginal distributions of each 
variable. Nelsen [2], Salvadori and De Michele [3], Genest 
and Favre [4], Joe [5], Durante and Sempi [6], and Hong et 
al. [7] showed statistical behavior of copulas as dependent 
variables.

Moreover, there are studies on the use of copulas in 
fields such as hydrology [8-10], earthquakes [11], finance 
[12-15], wind [16], ocean [17, 18], climate science [19], and 
bioinformatics [20, 21].

On the other hand, most parametric copula models, 
such as Archimedean copulas, can only be applied to data 
with symmetric dependence. Some authors have high-
lighted this shortcoming of existing copula approaches in 
their studies, such as Genest and Favre [4], Kim et al. [20], 
and Sungur [22,23]. Indeed, most data have an asymmetric 
dependence structure. In such data, ignoring asymmetry 
affects the identification of the dependence structure and 
subsequent calculations. Some authors such as [24-28] 
have recently contributed to the development of asymmet-
ric copula construction to eliminate this deficiency. These 
include various techniques used in multivariate data mod-
eling to capture asymmetric dependence.

Our study focuses on the asymmetric Khoudraji copula 
(KC) and linear convex combination (LCC) copula fami-
lies, which can be easily generated using Archimedean cop-
ulas. Khoudraji copulas were first developed by Khoudraji 
[29] and consist of Archimedean copula families and inde-
pendent (product) copula families. Subsequently, authors 
such as Nelsen [2], Rodríguez-Lallena and Ubeda-Flores 
[24], Klement and Mesiar [25], Liebscher [30], Durante 
[31], Quessy and Kortbi [32], Siburg et al. [33], and Bezak et 
al. [34] developed asymmetric copulas. In addition, Zhang 
et al. [35] examined several asymmetric copula functions 
capable of modeling both linear and nonlinear asymmetric 
dependence structures using Khoudraji copulas between 
ocean variables. Moreover, Zhang et al. [36] demonstrated 
the advantages of asymmetric copulas with Khoudraji cop-
ulas and compared them with traditional copula approaches 
for modeling site soil data. Besides, Lin et al. [37], Bai et al. 
[38], and Huang and Dong [39] compared the performance 
of symmetric copula, Khourdaji copula, and traditional 
conditional modeling methods on bivariate wave data. LCC 
copulas are also constructed from Archimedean copulas 
and their linear convex combinations. Authors such as Ma 

and Zhang [18], Siburg [33], and Wu [40] have investigated 
the asymmetric properties of these asymmetric families. 
Recently, some authors ([12], [15], [41]) have also shown 
that asymmetric copulas provide more realistic and accu-
rate results when modeling asymmetric multivariate data.

While model selection with classical models considers 
well-known selection criteria such as AIC, KS Cramer-von 
Mises, and MSE, model selection with asymmetric models 
uses directional dependence measures calculated based on 
conditional copula functions. Model selection with direc-
tional dependence of copulas is a statistical approach that 
involves choosing the most appropriate copula function to 
describe the dependency structure between two or more 
random variables. The importance of this study is the selec-
tion of the most appropriate model with the directional 
dependency method, which considers the direction of the 
relationship, among the asymmetric models created with 
Khoudraji copulas. The advantage of this method is that it 
allows more accurate and flexible modeling of the depen-
dency structures of asymmetric data.

This study analyzed data on “automobile bodily injury 
claims” from CASdataset [42]. Frees and Wang [43] 
modeled these data using the classical copula approach. 
However, since the data are both dependent and asym-
metric, it is necessary to work with asymmetric-dependent 
models. To this end, unlike the previous study, we apply the 
asymmetric copula approach to this dataset and determine 
appropriate models according to directional dependence 
measures. Thus, this modeling improves the risk assess-
ment and decision-making process by providing valuable 
information and tools for insurers, researchers, and other 
stakeholders in the auto insurance industry.

The remainder of this article is organized as follows. 
The first section introduces copulas and asymmetric cop-
ula models. The Archimedean copulas used in this study 
and the Khoudraji asymmetric copula models derived 
from them are given. The parameter values corresponding 
to Spearman correlations were found. The symmetric and 
asymmetric measurements were analyzed, and the results 
obtained by simulation for these parameters are presented 
in tables and graphs. In the next section, one-parameter 
and two-parameter KCC and LCC models are applied to 
“Automobile Bodily Injury Claims” data, and model selec-
tion is performed according to directional dependence 
measures. The results are discussed in the last section.

COPULA THEORY AND MEASURES OF 
ASYMMETRY 

Definition of the Copula
A copula is a mathematical function that describes the 

dependence structure between multiple variables, regard-
less of their marginal distributions. The idea behind copu-
las is to separate the modeling of the dependencies between 
variables from the modeling of the marginal distributions 
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of individual variables. This allows for more flexibil-
ity in modeling complex dependencies, especially when 
the underlying data do not follow a normal distribution. 
Copulas have been widely used in various fields, such as 
finance, economics, and actuarial science, to model mul-
tivariate data and estimate the risk of various financial 
instruments. 

The Sklar theorem, first introduced by economist Sklar 
[1], plays an important role in copula theory, which is a 
powerful tool for modeling the dependencies between vari-
ables in multivariate data. It is defined as

Sklar’s Theorem: Let H be an n-dimensional distribu-
tion function with marginal distributions F1,…,Fn. An n-di-
mensional copula C for all x ∈ Rn is given by

  (1) 

 If F1,…,Fn are continuous, then C is unique. Conversely, 
if F1,…,Fn are marginal distribution functions and C is a 
copula, a function H(x1,…,xn) with marginal distributions 
F1,…,Fn is defined by Eq. (1). 

The theorem states that any multivariate distribution 
function can be represented as the copula of its marginal 
distribution functions and a uniformly distributed random 
variable on the unit hypercube. This result allows for flex-
ible modeling of the dependence structure between differ-
ent variables and has important applications in fields such 
as finance, insurance, and actuarial science.

A unique bivariate copula  C: [0,1]2 → [0,1] is defined 
as , where  and 

 are the inverse distribution functions of X and Y, 
respectively. 

Asymmetric Copula Models
Different types of copulas have been proposed in the 

literature, such as Archimedean copulas, elliptical copulas, 
extreme-value copulas, vine copulas, and empirical cop-
ulas. Many commonly used copula families, such as the 
Gaussian, Clayton, Gumbel, and Frank copulas, have the 
property of exchangeability, which means that the cop-
ula function is symmetric with respect to its arguments. 
This means that  for all . 
This property is desirable because it allows a simpler and 
more intuitive interpretation of the dependence structure. 
However, this can be a limitation if the data have asymmet-
ric dependence.

To eliminate this deficiency, recently, asymmetric copu-
las have been constructed in various ways. One simple way 
to construct an asymmetric copula is by using the rotation 
method. In this method, using a rotation matrix R, the stan-
dard copula is transformed into a new copula with a differ-
ent dependency structure. The rotation is then defined as 
CR (u,v) = C(R * (u,v)) where CR is the rotated copula and R 
* (u,v) is the rotation of the standard coordinates. 

Ma and Zhang [18], and Zhang et al. [35] have 
described and implemented other methods of creating an 

asymmetric copula. This study focuses on Khoudraji copu-
las (KC), developed by multiplying copulas, and LCC cop-
ulas constructed using their linear convex combinations. 
KC and LCC copulas have been widely used in different 
fields and applications, particularly in finance, in model-
ing dependency structures in various types of data. They 
have also been used in bioinformatics, environmental sci-
ences, and engineering to model the dependence between 
variables. These studies fit the empirical data better than 
some traditional copulas when the data exhibit asymmetric 
dependence.

Our study uses these models to analyze automobile 
bodily injury claim data and determine the best-fit copula 
models. We choose appropriate models to analyze automo-
bile bodily injury claim data and make inferences.

In the following section, we introduce the mathematical 
form of the KC and LCC models. 

Khoudraji copula (KC) model:
Khoudraji copulas are a class of asymmetrical copulas 

first introduced by Khoudraji [29]. Later, Liebscher [30] 
defined its general form. They may model both positive 
and negative dependency, and a wide variety of dependency 
constructs can be captured by varying their parameters.

The mathematical model of a Khoudraji copula func-
tion  is defined as

  (2)

where ϕ = (α, β, θ), α, β ∈ (0,1), α ≠ 1/2, β ≠ 1/2, α + 
α− = 1, β + β−=1.

In Eq. (1), if C1 is independent copula C(u,v) = uv, 
and C2 is a symmetrical Archimedean copula family with 
a dependency parameter θ, Cα,β is called a Khoudraji cop-
ula. For β = 1 - α  one parameter Khoudraji copula families 
(KC1-model), 

  (3)

and for α ≠ β, two-parameter Khoudraji copula families 
(KC2-model)

  (4)

are expressed as in Eqs. (3) and (4), respectively. 
 
Linear convex combination (LCC) model: 
It is possible to create asymmetrical copulas using lin-

ear and convex combinations of the copulas. However, the 
resulting pattern remains a symmetrical copula when direct 
linear-convex combinations are produced with symmet-
ric copula functions. Using the method in Wu [40], basic 
copulas can be modified to include asymmetrical features. 
This method involves deriving a new asymmetric copula 
by modifying the basic copulas using a weighting function 



Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 1183−1193, August, 20241186

that allows for asymmetry. A new asymmetric copula can 
be derived using this methodology as follows:

  (5)

where C(.) is the n-dimensional base copula. 
An LCC copula can be constructed to capture the asym-

metric characteristics of a multivariate variable based on 
Eq. (6) as follows:

  (6) 

where . Thus, an asym-
metric copula can be constructed by linear convex combi-
nations of . There are many copula families that can be 
specified for base copula C. For instance, a bivariate copula 
C(u,v) according to Eq. (5) can be written as follows:

Thus, the constructed one-parameter (LCC1-model) 
and two-parameter (LCC2-model) asymmetric copulas 
by linear combination can be given in Eqs. (7) and (8), 
respectively.

  (7) 

  (8) 

Directional Dependence Measures
Directional dependence refers to the ability to measure 

the degree and direction of dependence between two or 
more variables. When the coefficient of association between 
variables is linear, it can be measured by the Spearman cor-
relation, whereas when it is nonlinear, it can be measured 
by the Spearman coefficient based on the copula, expressed 
as follows:

  (9) 

Therefore,  can be used to calculate the ratio of vari-
ables explaining each other. However, when there is asym-
metricity in the data structure, the directional dependence 
coefficients determined according to regression-based cop-
ula functions will not be the same relative to each other. 
Therefore, this situation will cause the ratio of the explained 
variance to be different.

Accordingly, when dependence is symmetric, the 
regression functions for U and V have the same linear 

form, and the same model can be used to predict both U 
and V. However, when the dependence is asymmetric, the 
regression functions for U and V will not be the same, and 
different models will be needed to estimate the regression 
functions for U and V separately. Detailed information on 
directional dependence can be found in Sungur [22, 23], 
Jung et al. [44], and Kim and Kim [45].

The directional dependence coefficients using the cop-
ula regression functions (in the directions of U to V (U → 
V) and V to U (V → U) can be obtained by an approximate 
calculation method as follows:

  (10) 

and 

  (11) 

where,

 and

 and

Φ is the parameter set.  and  are approx-
imately calculated copula regression functions over the 
pseudo- observations,  for the size of the 
pseudo-observation, S.

Simulation Study of Archimedean and Khoudraji Copula 
Models

A simulation study was conducted to examine the 
symmetrical and asymmetrical dependency structures. 
Archimedean copulas for symmetrical models and 
Khoudraji copulas for asymmetrical models are consid-
ered. First, dependency parameter values corresponding to 
various correlation values were obtained for the mentioned 
models (Table 1), and parameter estimates of 1000 data 
pairs produced with these parameters were made (Table 2). 
Additionally, the asymmetry test was applied to these sim-
ulated data using Cramer-von Misses statistics. As shown 
in Table 3, simulated data from symmetric models are sym-
metric (p-values > 0.05), while simulated data from asym-
metric models are asymmetric (p-values < 0.05). 

Contour plots showing symmetrical and asymmetrical 
dependency structures are visually presented in Figure 1 
for ρ = 0.4. These graphs show that the ones drawn for the 
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Archimedean copulas are symmetrical, and those drawn for 
the KC1 and KC2 models are irregular and asymmetrical.

The ,  and  values for the asymmetric KC1 
and KC2 models of the data pairs produced in different cor-
relations were calculated using equations (9), (10), and (11) 
and are presented in Table 4. In this table,  and  show 
the Spearman correlation values and coefficients of deter-
mination of the produced data, respectively. Here, it can be 
seen that the directional dependence values from V to U 
and from U to V are different from the values of . This 
indicates that  and values should be used instead 
of  because the dependency structures of the KC models 
are asymmetrical. Moreover, Jung et al. [44] showed that 
the directional dependence coefficients are theoretically 
different from  asymmetric models for some parameters 
of the generalized FGM copula family.

DATA ANALYSIS

The data contained 174 automobile bodily injury claims 
collected between 1993 and 1998 in Massachusetts and 
studied by Frees and Wang [43]. The data can be found 
in the CASdatasets package [42] of the R program under 
the name ‘usmassBI2’. Descriptive statistics of the data are 
given in Table 5, and a scatterplot of the data is presented 
in Figure 2. Here, AC represents the average claims per unit 
of exposure ($), and PPSM represents the population per 
square mile of the town.

To choose the most appropriate candidate models that 
can fit the data, an exchangeability test was performed on 
the data. The results given in Table 6 show that the data 
did not fit the copula families. The dependency structure 
of the data is asymmetric because the p-value (=0.01499) is 

Table 1. Parameter values of symmetric and asymmetric copulas for various correlations

ρ Clayton KC1-Clayton Frank KC1-Frank Gumbel KC1-Gumbel 

θ α θ θ α θ θ α θ
0.1 0.143 0.122 2.8 0.603 0.333 1.9 1.072 0.274 1.2
0.2 0.311 0.287 2.7 1.224 0.459 3.7 1.156 0.160 3.0
0.3 0.511 0.352 5.6 1.883 0.511 6.9 1.257  0.246 6.099
0.4 0.759  0.492 14.5 2.610 0.507 19.7 1.382  0.611 9.599

ρ Clayton KC2-Clayton Frank KC2-Frank Gumbel KC2-Gumbel

θ α β θ θ α β θ θ α β θ
0.2 0.311 0.4 0.6 1.9 1.224 0.4 0.7 3.4 1.156 0.2 0.4 3.8
0.4 0.759 0.6 0.9 2 2.610 0.9 0.9 3.1 1.382 0.6 0.9 1.7
0.6 1.505 0.8 0.9 2.9 4.466 0.7 0.9 8.5 1.755 0.7 0.8 3.1
0.8 3.185 0.9 0.9 7.1 7.902 0.9 0.9 13.8 2.581 0.9 0.9 4.1

Table 2. Parameter estimation results for data pairs generated by simulation (N =1000)

ρ Clayton KC1-Clayton Frank KC1-Frank Gumbel KC1-Gumbel

θ α θ θ α θ θ α θ

0.1 0.1397 0.1053 4.7777 0.0907 0.5827 0.8922 6.9387 0.0913 0.7191 0.1407 1.2546 0.0935
0.2 0.3356 0.2147 4.3232 0.2007 1.2279 0.3412 4.5981 0.2001 1.1743 0.1728 3.0878 0.2033
0.3 0.4927 0.3915 6.9374 0.2993 1.8870 0.5441 6.9271 0.2970 1.2605 0.2368 5.7554 0.3024
0.4 0.7326 0.4964 13.0285 0.4052 2.7652 0.5165 20.6832 0.3935 1.4015 0.6148 9.5974 0.4033

ρ Clayton KC2-Clayton Frank KC2-Frank Gumbel KC2-Gumbel

0.2 0.3387 0.3354 0.9999 1.6262 0.2044 1.2498 0.4036 0.9965 2.7880 0.2050 1.1670 0.2385 0.4178 3.3837 0.2074

0.4 0.7554 0.5809 0.9924 1.8154 0.3957 2.4613 0.7612 0.8330 3.9251 0.4183 1.3966 0.5867 0.8345 1.8024 0.3970

0.6 1.5020 0.7857 0.8652 2.9955 0.5936 4.5125 0.7183 0.9114 8.2398 0.6039 1.7922 0.7433 0.8660 2.6038 0.6050

0.8 3.1726 0.8895 0.8963 7.0759 0.7897 7.9359 0.9098 0.8739 14.5948 0.7998 2.5988 0.9206 0.8845 4.0058 0.7934
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Figure 1. Contour plots for the Archimedean copula (red), KC1 (blue), and KC2 (green) models (p=0.4 and N=1000).

Table 3. Asymmetry test results of simulated data from symmetric and asymmetric models: Cramer-von Misses statistics 
and p-values

Symmetric Archimedean models Asymmetric KC1 models

ρ Clayton Frank Gumbel ρ KC1-Clayton KC1-Frank KC1-Gumbel
0.1 0.024344

(0.6888)
0.02432
(0.7218)

0.048299
(0.1154)

0.1 0.077899
(0.02647)

0.092821
(0.008492)

0.089669
(0.004496)

0.2 0.020519
(0.7947)

0.013828
(0.9805)

0.018285
(0.8866)

0.2 0.07341
(0.02348)

0.080107
(0.01449)

0.42153
(0.0004995)

0.3 0.030133
(0.3921)

0.018385
(0.8536)

0.016769
(0.9066)

0.3 0.092927 
(0.005495)

0.05489
(0.04745)

0.54746
(0.0004995)

0.4 0.023138
(0.6119)

0.031925
(0.3322)

0.035001
(0.2143)

0.4 0.063067
(0.02048)

0.076384
(0.00649)

0.31175
(0.0004995)

Symmetric Archimedean models Asymmetric KC2 models

ρ Clayton Frank Gumbel ρ KC2-Clayton KC2-Frank KC2-Gumbel
0.2 0.0237

(0.7008)
0.0230 
(0.7068)

0.0462
(0.1234)

0.2 0.0866
(0.0085)

0.0739
(0.0245)

0.0787
(0.0145)

0.4 0.0170
(0.8417)

0.0255
(0.504)

0.0305
(0.3072)

0.4 0.1329
(0.0015)

0.0816
(0.0025)

0.0815
(0.0035)

0.6 0.0174
(0.6838)

0.0234
(0.4241)

0.0101
(0.9945)

0.6 0.0648
(0.0025)

0.0805
(0.0015)

0.0663
(0.0015)

0.8 0.0097
(0.9276)

0.0214
(0.1993)

0.0153
(0.515)

0.8 0.0372
(0.0195)

0.0339
(0.0245)

0.0338
(0.0335)
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Table 5. Descriptive statistics of automobile bodily injury claim data 

Mean Median Min Max St. D Skewness Kurtosis
AC 137.32 136.49 42.74 248.75 35.18 0.1708 0.2445
PPSM 801.74 593.67 119.56 4636.74 815.41 3.3309 12.4009

Table 4. Directional dependence coefficients of the asymmetric KC1 and KC2 models 

KC1-Clayton

0.1 0.0907 0.0082 0.1066 0.0114 0.0357 0.0161
0.2 0.2007 0.0400 0.1951 0.0380 0.0584 0.0241
0.3 0.2993 0.0896 0.3343 0.1117 0.1742 0.1449
0.4 0.4052 0.1642 0.3954 0.1563 0.1430 0.1244

KC1-Frank

0.1 0.0913 0.0083 0.1082 0.1170 0.0225 0.0376
0.2 0.2001 0.0400 0.2111 0.0445 0.0634 0.0100
0.3 0.2970 0.0882 0.2981 0.0889 0.0775 0.0867
0.4 0.3935 0.1548 0.4018 0.1614 0.0614 0.1058

KC1-Gumbel

0.1 0.0935 0.0087 0.0813 0.0066 0.0240 0.0259
0.2 0.2033 0.0413 0.2135 0.0456 0.0211 0.1393
0.3 0.3024 0.0914 0.2909 0.0846 0.0614 0.0895
0.4 0.4033 0.1626 0.3984 0.1587 0.1845 0.1938

KC2-Clayton

0.2 0.2044 0.0418 0.2232 0.0498 0.0335 0.0155
0.4 0.3957 0.1566 0.3987 0.1589 0.1964 0.0837
0.6 0.5936 0.3524 0.5783 0.3344 0.4404 0.5771
0.8 0.7897 0.6236 0.7905 0.6249 0.7191 0.8515

KC2-Frank

0.2 0.2050 0.0420 0.2120 0.0450 0.0357 0.0708
0.4 0.4183 0.1750 0.4044 0.1636 0.1365 0.0957
0.6 0.6039 0.3647 0.6097 0.3718 0.3584 0.4006
0.8 0.7998 0.6397 0.7965 0.6344 0.5570 0.6732

KC2-Gumbel

0.2 0.2074 0.0430 0.2250 0.0506 0.0538 0.0874
0.4 0.3970 0.1576 0.4053 0.1643 0.1897 0.0816
0.6 0.6050 0.3660 0.6126 0.3753 0.5773 0.4822
0.8 0.7934 0.6295 0.8007 0.6411 0.5764 0.6408
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smaller than 0.05. The test of goodness of fit for symmetri-
cal Archimedean copula families also supported this result.

Thus, we can choose candidate copula models from 
among asymmetric copulas. For this purpose, we use the 
asymmetric KC and LCC models defined by equations 
(3-4) and (7-8), respectively. We determine the best-fitting 
model with the AIC value given by

where p is the number of parameters and LL is the max-
imized log-likelihood. The model selection process accord-
ing to the directional dependency is as follows: First, the 

model with the smallest AIC value is considered. The model 
selection is then continued with the directional depen-
dency measures with the smallest and largest values of  
and . Finally, the two selected asymmetric models were 
tested with GOF (Sn-Cramer-von Mises) and the one with 
the lowest AIC value was selected as the best-fit model.

The parameter estimations, log-likelihood, and the val-
ues of Sn, p, and AIC for the asymmetric KC and LCC mod-
els were calculated and are shown in Tables 7 and 8. Here, 
the maximum pseudo-likelihood (MPL) method is used to 
obtain parameter estimates.

KC models are considered first because the AIC val-
ues of the KC models are approximately the same among 
themselves, and they are insignificant compared to the LCC 
models. The GOF test was performed on selected KC mod-
els, and it is seen in Table 7 that all models fit the data (p 
>0.05).

 The model selection process is then continued accord-
ing to the directional dependence coefficients. Models with 
the highest and lowest  and  values are deter-
mined, and it is seen in Table 9 that they correspond to 
the  and  models, respectively. Since more than one 
copula fits the data,  the model with the smallest AIC 
value (= -52.7114 from Table 7) is selected as the best-fit 
model. 

A comparison scatterplot between the original data and 
the simulated data from  the model is made to further 
check the suitability. For this purpose, their scatterplots are 
shown in Figure 3. It can be seen from the scatterplots that 
the simulated data and the original data fit each other very 
well.

Table 7. Estimated parameters, LL, Sn, p, and AIC values of KC models for automobile bodily injury claim data.

Model LL Sn p value AIC

25.9738 0.2853 0.7147 32.5540 0.02829 0.2486 -61.1081

33.9303 0.2828 0.7173 32.3130 0.03527 0.1286 -60.6260

2.98295 0.3188 0.6812 26.1288 0.02479 0.3114 -48.2575

19.1733 0.3341 0.8289 33.5462 0.02829 0.2543 -61.0924

30.4350 0.3164 0.8013 32.7218 0.03190 0.1400 -59.4436

2.2574 0.4511 0.9987 29.3557 0.02479 0.3171 -52.7114

Table 6. Parameter estimation summary of symmetric copula families for automobile bodily injury claim data (Sn: Cram-
er-von Mises test statistics)

Copula Family Parameter LL Sn p-value
Clayton 0.74011 20.53453 0.080170 0.00150
Frank 2.98366 18.34867 0.051319 0.00649
Gumbel 1.42846 20.28379 0.045947 0.02747

Figure 2. Scatterplot of automobile bodily injury claim 
data.
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Additionally, the values of , , and  the auto-
mobile bodily injury claim data in Tables 7 and 9 can be 
interpreted as follows for the best model chosen ( ). 
AC was considered the dependent variable in the data, 
and PPSM was the independent variable. When the rela-
tionship between them was accepted as linear, the coeffi-
cient of determination was found to be 0.1843 ( ) based 
on the known Spearman correlation. In other words, the 
explanation rate of AC with PPSM was 18.43%. When the 

dependency structure of these variables is modeled with 
copulas, this explanation rate is 18.975% ( ). When mod-
eled with asymmetric copulas, the disclosure rate according 
to the directional dependency measures was found to be 
21.725% ( ). These results show that the explanation 
ratio found according to the standard Spearman coeffi-
cient without considering dependence and asymmetricity 
is lower. Thus, the decision-maker will calculate a lower 
premium than it should be in the case of premium pricing, 
ignoring the asymmetric model for automobile claim data 
with an asymmetric dependency.

As a result, the advantage of the model selection 
method based on directional dependence is that it gives a 
decision-maker who wants to make actuarial calculations, 
such as premium pricing in the insurance field, the oppor-
tunity to make a more accurate calculation by considering 
the directional dependence coefficient.

CONCLUSION

Real data are not always symmetrical. In such cases, it 
is necessary to use asymmetric models for modeling. Using 
these asymmetric models, obtaining the desired probabil-
ities and statistical inferences will provide more accurate 
results. For our data, the first asymmetric tests were per-
formed, and it was found that the dataset was asymmetric. 
Then, using Clayton Frank and Gumbel copulas, asym-
metric models KC1, KC2, LCC1, and LCC2 were created. 
We used directional dependency coefficients to determine 
the model that best fits the dataset from among asymmet-
ric models. According to the directional dependency coef-
ficients and AIC, we concluded that the best model that 
fits our dataset is KC2-Gumbel. This modeling can have 
important practical implications for the insurance indus-
try, because it can provide more accurate estimates of risk 
factors and inform risk management and policy decisions. 
This is particularly important given the increasing impor-
tance of data-driven decision-making in the insurance 
industry and the need to accurately model risk factors to 
effectively manage risk. In addition, the use of Khoudraji 
copulas can be applied to other areas of insurance and risk 
management, where asymmetrically dependent data are 

Figure 3. Comparison of the scatterplot between the origi-
nal data and simulated data.

Table 8. Estimated parameters, LL, and AIC values of LCC models for automobile bodily injury claim data

Model LL AIC

2.9103 3.2858 - 0.2800 0.7200 - -165.8824 377.6481

4.1575 5.1835 - 0.1476 0.8524 - -178.8822 363.7643

2.0266 2.9032 - 0.3216 0.6784 - -160.7671 327.5343

2.3716 2.9671 3.2964 0.2889 0.2628 0.4483 -167.8495 345.6991

4.6796 5.3969 5.3969 0.1571 0.0291 0.8138 -170.3059 350.6118

1.7356 2.6574 3.0947 0.2919 0.4277 0.2804 -171.6882 353.3764

Table 9. Directional dependence coefficients of asymmetric 
copula models for automobile bodily injury claim data 
( )

Models

0.33027 0.10908 0.11718 0.13188

0.32924 0.10840 0.11550 0.13131

0.32404 0.10500 0.10619 0.12085

0.38979 0.15194 0.16472 0.18070

0.37266 0.13888 0.14915 0.16970

0.43560 0.18975 0.19208 0.21725
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common, such as modeling the joint distribution of insur-
ance claims across different lines of business.
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