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ABSTRACT

In this paper, the effect of a parallel plate waveguide's wall thickness on radar cross-section reduction (RCS) is
rigorously analyzed for H-polarization by using the Wiener-Hopf Technique, when the waveguide region is loaded
with dielectric material and terminated with a perfect electric conductor (PEC) plate. Transfer matrices are
incorporated into the analysis to account for the effect of different material layers through continuity relations. The
Fourier transforms of the diffracted field and the boundary conditions yield a modified scalar Wiener-Hopf
equation of the second kind (MWHE-2). The classical procedure to solve the MWHE-2 is applied and the
approximate expression of the diffracted far field is obtained. Numerical results are given by comparing with the
results available in the literature for the case of the wall thickness of the cavity not being considered.
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Dielektrik Malzeme Yiikli Paralel Plaka Dalga Kilavuzu Duvar
Kalinliginin RCS Azaltilmasina Etkisi

0z

Bu c¢alismada, paralel plaka dalga kilavuzunun duvar kalinligmin radar kesit alaninin azalmasma (RCS) etkisi,
dalga kilavuzu bolgesi dielektrik malzeme ile yiiklendiginde ve miikemmel iletken (PEC) bir levha ile
sonlandirildiginda H-polarizasyonu igin Wiener-Hopf Teknigi kullanilarak titizlikle analiz edilmistir. Siireklilik
bagintilar1 kullanilirken, farkli malzeme katmanlarmin etkisini hesaba katmak i¢in transfer matrisleri analize dahil
edilir. Kirinan alanin Fourier doniigiimiiniin ve sinir kosullarinin kullanilmasi, ikinci tiirden degistirilmis bir skaler
Wiener-Hopf denklemini (MWHE-2) verir. MWHE-2'yi ¢6zmek icin klasik prosediir uygulanir ve kirinima
ugrayan uzak alanm yaklasik ifadesi elde edilir. Sayisal sonuglar, literatiirde mevcut olan paralel plaka dalga
kilavuzunun duvar kalinligmin dikkate alinmadigr durumdaki sonuglarla karsilastirilarak verilmistir.

Anahtar Kelimeler: Radar kesit alant azaltma, Wiener-Hopf Teknigi, Dalga kilavuzunun duvar kalinligi
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. INTRODUCTION

Reducing and predicting the radar cross-section (RCS) of objects or targets is a critical and important
subject in electromagnetic wave scattering studies. Previously, scattering and diffraction properties of
some simple geometric elements like edges, cylinders, spheres, plates, and shells have been analyzed to
understand how to predict or reduce the RCS of complex objects such as vehicles or aircraft [1-9]. An
important geometry to investigate is the open-ended parallel plate waveguide cavity, which forms a
model for duct systems like jet engine intakes and many microwave elements such as filters, antennas,
and transmission lines. There are a variety of papers studying two-dimensional or three-dimensional
cavity problems using numerical or high-frequency ray techniques [10-14], however, the results may
not apply to arbitrary cavity sizes.

The Wiener-Hopf technigue has been used for a wide range of problems including finite or semi-infinite
planar and cylindrical structures since it is a rigorous and efficient way of studying wave scattering and
diffraction problems with canonical geometries [6, 15, 16]. The Wiener-Hopf technique can also be used
with the mode matching method, which gives rise to the modified Wiener-Hopf equation that helps us
analyze the effect of the thickness of the target and stack of dielectric layers. In previous studies,
Kobayashi et al. used the Wiener-Hopf technique to conduct a rigorous RCS analysis of various two-
dimensional cavities created by finite parallel-plate waveguides [16-20] and semi-infinite parallel-plate
waveguides [16, 21-27], however, they didn’t take into account the wall thickness of the parallel plates.
Furthermore, the approach in [16-22] and [25, 26] results in a more sophisticated and extensive analysis
each time they add a new dielectric material layer to the waveguide region.

—dy —d; —d3—dy —ds

Figure 1. Geometry of the investigated problem

The paper is organized as follows. In Section Il, the authors of this study examine the scattering that
results from a thick parallel plate waveguide cavity, as shown in Figure 1, loaded with different numbers
of layers of dielectric material in the case of H-polarization. As seen in Figure 1, the numbers 1, 2, 3, 4,
5 denote the number of layers of dielectric material. Constitutive parameter of the layer jth is &;, u;
where j=1,2,...,5. By applying the Fourier transform technique to the scattered field components and
the related boundary conditions, the problem reduces to a modified matrix Wiener-Hopf equation
(WHE), but there is no general method to factorize an arbitrary matrix that appears in the WHE. Instead,
incorporating a series of normal modes in the waveguide region for each dielectric layer, we obtain
transfer matrices along with scalar modified Wiener-Hopf equation of the second kind. The solution
contains infinitely many unknown constants that satisfy an infinite system of linear algebraic equations.
A numerical solution of this system is presented in Section Ill, which compares the results of [25] for
the same dielectric parameters and aperture sizes while taking into account the wall thickness of the
waveguide. The paper concludes with a discussion of the effect of the wall thickness and the material
properties of the dielectric layers in the cavity region.

In this study, time dependence is assumed as e~** where w is the angular frequency, and is suppressed
throughout the paper.
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1. ANALYSIS

We consider the diffraction by a cavity formed by two thick semi-infinite PEC plates as shown in Figure
1 for an H,-polarized plane wave. As seen in Figure 2 (a) and (b), one can proceed to decompose the
incident wave into odd and even excitations to determine the scattered field. It is possible to show that
the configurations in Figures 2 (a) and (b) are identical to those in Figures 2 (c) and (d), respectively, by
using the image bisection principle. The odd and even excitations will be discussed separately in the
sections that follow.

(@) (b)

(©) (d)

Figure 2. Equivalent problems (a) Asymmetric (odd) excitation. (b) Symmetric (even) excitation. (c) Equivalence
to (a). (d) Equivalence to (b).

A. ODD EXCITATION

First, we will look at the configuration shown in Figure 2(a), which corresponds to the odd excitation
case. Since the field is not symmetrical about the plane y = 0 in this particular case, the total electric
field for x € (—oo, ) (electric wall) must vanish.

For analysis, the total field can be expressed as follows:

ut +u” +uf, y > b, x € (—, )
ul(x,y) = uy i, 0<y<a-dj<x<-djq,j=12..5 1)
ug, a<y<bx>0
Here, u! is the incident field given by
HZi — ui(x’ y) — e—ik(xcos ¢o+y sin qbo), (2&)
and u” is the field reflected from the plane y = b, namely

ur(x, y) — _e—ik(xcos¢>0—(y—2b) sin ¢¢) (2b)

with k = w./gopg IS the free-space wave number and ¢, is the angle of the incident field. The total
field satisfies the two-dimensional Helmholtz equation
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[i+:—;+k2]uo(x,y) =0, )

dx2

and is determined to satisfy the following boundary conditions and continuity relations:

U =0, x<0 (42)
TG =0  x<0 (4b)
up;(x,0)=0, x<0 (4c)
uf(x,00=0, x>0 (4d)
ul(x,b) — ug(x,b) = —2e " k(xcosdotbsingo) x> (4e)
ujg,(—=dy,y) =0, 0<y<a (4f)
ug,j(_dj+1')’) = ug,j+1(_dj+1IY)l 0<y<a (49)
é%ug,j(_djﬂr)’) = i%u(z),jﬂ(_djﬂ:)d: 0<y<a (4h)
u35(0,y) =u3(0,y), 0<y<a (4)

10
d ——u3:(0,y), 0<y<
—uf(0,y) ={ &5 0x uz5(0.) y=a

- @)

0, a<y<b

Since uf (x,y) satisfies Helmholtz equation in the region y > b, x € (—, ), its Fourier transform
with respect to x satisfies

[dd—;z + (k2 - aZ)] Fo(a,y) =0 (52)
with

Fola,y) = F{(a,y) + F2(a,y) (5b)
where

Fo(ay) =+ [57 uf (x, y)e™™dx (50)

By considering the asymptotic behaviors of u?(x,y) for x -» +oo

0(e™**), x 5 —oo
O(e—ikxcos¢>0)' x>0

ui (x,y) = { (6)

we can show that F{?(a,y) and F°(a,y) are regular functions of a« in the half-planes
Im(a) > Im(k cos ¢py) and Im(a) < Im(k), respectively. The general solution of (5a) that satisfies
the radiation condition for y — oo, gives
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Fo(a,y) + F°(a,y) = A°(a)e K@ 0-b),

()

Here, K(a) = Vk? — a? is the square root function defined in the complex a-plane cut along a = k to
a=k+icanda = —ktoa = —k — ioo, as can be seen in Figure 3, such that K(0) = k. From (4a),
we get F°(a, b) = 0 in the Fourier transform domain, and the derivative of (7) with respect to y at

y = b, one obtains
Fo(a,b) = iK(a)A°(a)

() denotes the derivative with respect to y.

JIm(a)
A
L]
a, o"
a,e o)k
> L~
- L
® kcosg,
5 » Re(a)
> Lt
"""""" - kW—a
L]
]
’_an

Figure 3. Brunch-cuts and integration lines in the complex plane

(8)

In the region x > 0, 0 < y < b, ug(x,y) satisfies the Helmholtz equation and its half-range Fourier

transform gives
d2
[d—yz + [K(a)]z] G, y) =f°(y) +ag®(y)
with
o) = —u3 300,y),  g°(y) =—iug(0,y).

G4 (a,y) is defined by

G{(a,y) =f ud(x,y)e'*dx .
0

The general solution of (9a) satisfying the boundary condition at y = 0 gives

sinKy
KM°(a)

b
G{(a,y) = {Ff(a, b) — f [f°(t) + ag®(t)]cosK(b —t) dt}

K( )j [f(t) + ag®(t)]sinK(y —t)dt

(%)

(9b)

(9c)

(10a)
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with
M°(a) = cos Kb. (10b)

Although the left-hand side of (10a) is regular in the upper half-plane 3m{a} > Im{—k}, the regularity
of the right-hand side is violated by the presence of simple poles occurring at @ = a;, which are zeros
of M°(a), satisfying

2m+ D

M°(ap) =0, K2 =K(ap) = T

m=0,12, .. (11)

These poles can be eliminated by imposing that their residues are zero. This gives

. b
F2(ap, b) = Esin Kab (fim + aggm) (12a)
where
o
g f f og sin K2t dt (12b)
m

Taking into account (7), (8), (10a), (12b) and evaluating the resultant integral, one obtains the MWHE-
2 valid in the strip Im(k cos ¢y) < Im(a) < Im(k) ,

%‘Ff(“"’)*%*z%”gm)% (132)
with

N°(a) = M°(a) K@D, (13b)
N°(a) is the kernel function of (13a) and factorized as [27]

N°(a) = N2(a)N2(a) (14a)
N?(a) = N°(—a) (14b)

where

N?(a) = Vcos kb exp{ tha (1 —C+1In (Zkb) + ln)}

y {szl (a +K>} 1—[(1 4 a ) {wzb}
exp - n X . exp mn

(14c)

with € = 0.57721566 ... being Euler’s constant. WHE in (13a) is solved by following the classical
procedure and one gets

F{(a,b)

N aETa = F{(a,b), (15a)

where
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—ikb sin ¢y k(1 — cos¢g) N2(k cos ¢o)

F2(a, b) = —2ie

(a —kcos ¢g) 15b
. i (3 — a,98) N9 (ag) K+, sinKgb (150)
= 2a5, (a+ap) '

Consider now the waveguide region x < 0,0 < y < a . Since the waveguide region has more than one
material layer, u; ;(x,y) should be expressed separately for each layer. The field in each layer can be
given as

uy ;i(x,y) = Z [b;’l'jeiﬁgrfx + cg,je_iﬁgri"] sinyly, j=12,..5 (16a)
n=0
2n+ D
0= = 16b
n za Y n Oﬁlﬁzl ( )
Brj= |k —¥3)? (16¢)

where k; = k. [e;u;, j denotes the jth layer.

The field ug,(x,y) valid in the region x € (—dy,—d;) and satisfying the boundary condition at
x = —d, can be written as follows:

u84(x,y) = ) by o B Cx + dy)siny. (17)

n=0

When we consider the continuity relations (4g) and (4h) between the dielectric layers and substitute the
field expressions u3 ;(x, y) into them, we get

TP by 1 = T22Xq 2 (18a)
T Xnj-1 = T)Xn =345, (18h)

where we define

b? .
o] — nj
Xnj = [ 0 ] (18c¢)
Cnj
cos 33,1((11 —dy)
T =| Bai . (18d)
- sin By 1(dy — d3)
&
e—iﬁrol,j—ldj eiﬁg,j—ldj
o . =|ipl._; _. iByi_q .
T]—l.] ﬁn,] 1e_lﬁ701'f—1dj _ ﬂn,j 13133,1'—1011' (186)
&j-1 &j-1
e~ Pnjd) etPnidi
o __ |- .
T = |10 ,-ip2ja; _1Bni ig2a; | (18f)
&'j gj
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The relation between by ; and the vector x7 5 can be formulated as
bO
Xps = [CZ'S] = T°b}, (19)
n,5
The transfer matrix T? is obtained as

TO = (T¢s) Ts (T8a) T (T85) T95 (T5)  T7 (20)

and the nth column of T can be expressed as [t{, t5,]7. Substituting (19) into the continuity relations
(4i) and (4j), we may write

o)

a
(e + 65081 = ) ighlim (212)
m=0
b N 1RO o o o o
Efr = Z l.Bn,S(tln - th)bn,llnr (Zlb)
n=0
where
KO
Im = —( 57— (K0)2 cos K asinyyga. (21c)

By substituting @ = a3 in (15) and using (12a), we get infinitely many linear systems of equations with
an infinite number of unknowns that give the constants £, and g, as follows:

B(fn +angn) sinkKgb ip-ikbsing, JVk(1 = cos ¢py) N2(k cos ¢g)
2i Ni(ap) [k +ag (af — k cos ¢) -
i 22
N z (fin — amgm) N{(aq )\ k + af, sinKp), b
Zam (an + am)
n= 0'1'2' oo,

B. EVEN EXCITATION

The solution for even excitation is obtained similar to the one for odd excitation. All the boundary and
continuity conditions remain valid for the even excitation case, except (4b) and (4d), which are to be
changed as

7]
@u; i(x,0) =0, x<0 (23a)

—u3 $(x,0) = x > 0. (23b)

In this situation, MWHE-2 is obtained

Fé¢(a,b 2ie~ikb sindo cos K& b
+(a,b) —F¢(a,b) =

K2Ne(a) 7" (a—kcosdg) Z(fm-}_agm)w (24)
2337



with

Né(a) = K sinkKb eK(@Pb (25a)
_(b/2, m=*0
m_{ LTy (25b)
mn
Kn=Klap)=—, m=012.. (25¢)
fni] _1 fb FEO) s ke i d
gal = o ) L2 cos Kt dt (25d)
N€(a) is the kernel function of (24) and factorized as [27]
N¢(a) = Né(a)NE(a) (26a)
N¢(a) = N¢(—a) (26b)
where
Ne(a) =[Sk {“’—“(1 C+1 (2—”) +i)}
HO= T P "kp) 712
. (26¢)
ibK  (a+K iab
oY [T(1 o ()
mm
m=1
WHE is solved by following classical steps and one gets
F¢(a,b) 0
= = 27a
KZNf(a) +(a: b) ( )
with
Fe(a,b) = —2ie-ibsingo k(1 — cos ¢po)NE(k cos ¢pg)
’ (a0 — k cos ¢g)
(& — afugh) (k + ag)Ng(af,) cos Kb (270)
3
2a8, (a +ag)
F{ (a5, b) = py cos Kb (ff + afgy) (270)

Similar to the odd excitation case, in the waveguide region0 <y < a,x < 0, ug,j(x, y) should be
expressed separately for each layer and can be given as

[ee)

uz ;(x,y) = Z [b,ﬁ,jeiﬁﬁj" + cﬁlje_iﬁﬁlfx] COSYLY, j=12,..,5 (28a)
n=0
nm
‘V‘)f = 7’ n= 011121 (28b)
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pey = [k2 -2,

(28c)

where k; = k./g;u;, j denotes the jth layer. When u3 , (x, y) is replaced at the boundary condition at

x = —d, and one gets

uz,(x,y) = Z bs i sinBf 1 (x +dy) cosyry
n=0

(29)

Once we substitute the field expressions u; ;(x,y) into the continuity relations (4g) and (4h) for each

layer, we get
T rel,1 = szxfl,z
e e — e e { —
T %n -1 = Tj X J =345

J n,j’

where

e
e _ bn.j
Xn, j = e
Cn,j

cos By, 1(dy — dy)

Te — ‘Be
1 nl . e
- sin .Bn,l (dy —dy)
&1
s npe s ne
e_an,j—ldj elign,j—ldj
- ne - ne
TE , . = |iBy i e iBei 1 e
j—1,j n,j 1e_lﬁn,j—1dj _Fnj 1eli8n,j—1df
Ej—l ‘Sj—l
e e
e iBr,jd; elﬁn,jd]
e e
TS = |1 i e ﬁ i . pe
1] nJ e_lﬁn,jd]' J elﬁn]d]
& &

The relation between by, ; and the vector x;, 5 can be formulated as follows:
brs
xreL,S = [Ce' = Tebrel,l-
n,5
The transfer matrix T¢ for even excitation is obtained as

T® = (Tgs)_l Tf,s (Tf,4)_1 T§4 (Tfs)_l Tfs (sz)_le

(30a)

(30D)

(30c)

(30d)

(30e)

(30f)

(31)

(32)

and n'th column of T¢ can be expressed as [tf,, t5,]7. Substituting (31) into the continuity relations

(4i) and (4j), we may write

[o¢]
a
655 (Bhs = chs) = ) fi T
o m=0

b
igm 5= Z (bﬁ,s + Cﬁ,s) Ln

n=0

(33a)

(33b)
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where

e

m .
= m sin K¢ a cosy£a. (33c)

e
I nm

By replacing @ = af in (27a) and using (27¢), we get the following equations

(fi +angn)cosKzb

: ,—ikb sin ¢ k(1 — cos ¢po) N (—k cos ¢o)

= -2
Pr Né(ag) k+ag re (af — k cos ¢g)
O (S — abg) (k + ag)NE(ag,) cos Kb (34)
)
= 205, (af + at)

n=20,12,--.
C. ANALYSIS OF THE SCATTERED FIELD

The scattered field for odd and even excitations can be obtained by taking the inverse Fourier transform
of F°(a,y) and F¢(a, y), respectively

1 [ F2a,b)

0 - i[K(a)(y-b)-ax] 35a
U (x: )’) 27Tl K(a) e da ( )
L
1 [ F¢(a,b) .
e = _— | 222 pilk(@(-b)-ax]lg 35b
U (x: }’) 20Ti Z[ K(a) e a, ( )

where £ is a straight line parallel to the real axis lying in the strip Im(k cos ¢y) < Im(a) < Im(k).
The evaluation of the integrals in (35a) and (35b) by using the method of saddle-point technique yields

the asymptotic expression of u; (r, ¢) for the far field as follows

us(r,¢) + uf(r, ¢)

uy (r,¢) = 3 (36a)
with
—in/4 pikr
ud(r,¢) = Ners F?(—k cos ¢,b) N°(k cos (l))\/k(l——cosgi))\/F (36b)
—i3m/4 ikr
uf(r,¢p) = Nors Fe¢(=kcos¢,b) N¢(k cos ¢) k(1 — cos ¢) T (36¢)
where (7, ¢) cylindrical polar coordinates are defined by
x=rcos¢p, y—b=rsing. (36d)

2340



1. NUMERICAL RESULTS

This section focuses on the numerical results for the far-field backscattering properties of the cavities
for the RCS examples. The definition of the RCS is given per unit length in the literature as follows

2
o = lim <2nr ﬂ), (37)

r—0o0 |ui|2

where u; is the diffracted field and u! is the incident field defined by (36a) and (2a), respectively. The
method that is applied by incorporating the modal expressions of the field in the waveguide region for
each layer separately allows one the flexibility to choose the number of the dielectric layers for the
reduction of the RCS, easily. In addition, the results that are presented here show the importance of the
wall thickness of the cavity in the calculation of monostatic RCS which is calculated only in the opposite
direction of the incident field, and have been given for different wall thicknesses by comparing the
results presented in [25] for the same dielectric parameters.

Table 1. Characteristics of the materials that fill the cavity

Layer,j & K
1 3.14 +i10 1+i0
2 1.6 +i0.9 1+i0
3 1.4 4+i0.35 1+i0
4 24+i125 164019
5 1+i0 1+i0

The layer thicknesses are taken as equal to each other, namely t = d,, — d,,+1, n = 1,2,3,4 to compare
our results with [25]. The material properties are listed in Table 1 and the numerical results are derived
for four distinct cases: vacuum, one-layer, three-layer, and four-layer material loadings.

10

®0e0g
096000600000000600060006606060606060666660

o
T

|
|
I
|
|
|

Svees

Monostatic RCS (dB)

—6—ka=3.14| |
— & —ka=157
ka =314

-20

25 L . | . . . | !
0 5 10 15 20 25 30 35 40 45 50
Truncation number

Figure 4. The monostatic RCS versus the truncation number for ¢ = 60° (kb = ka + 0.314, d,/2a =1, kt =
0.628, three-layer material )

Figure 4 shows the stability of the results for the diffracted field with the truncation number, N, of the
infinite number of linear systems of equations. The scattered field becomes insensitive to the truncation
number when N>10 even for different waveguide dimensions.
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40 T T T T T T T
vacuum
30k one-layer | |
three-layer
four-layer
20 + = = =—vacuum T
= = = =one-layer
o — — —three-layer
~ 10 = — 1
%) = — — —four-layer
O
o
Q
©
k7]
[e]
c
(o]
=
-40 . . . . . s !
10 20 30 40 50 60 70 80
Incidence angle (deg)
Figure 5. Comparison of the results for different wall thicknesses, —— b/a=1, - - - b/a=1.2

The normalized monostatic RCS as a function of the incident angle ¢, is given in Figures 5 — 10. Figure
5 represents the effect of the wall thickness for the RCS calculation by comparing the results given in
[25] where the plates are considered very thin. Our results show that between around 15 to 45-degree
incidence angle, the RCS gets better. In addition, Figure 6 shows the variation of RCS for different wall
thicknesses that RCS increases or decreases up to 20 dB for different angles of incidence. Figures 7, 8,
9, and 10 are regenerated for the same dielectric parameters as in [25] to show the variation of RCS
when the wall thickness is taken into account.

40 T T T
b/a=1
T+ N hetlths bla=1.2
b/a=1.3
— — —b/a=1.45
20 - 1
o
3 10 |- -
(7] ~ -~
1$) F=.
x >
o 0 NS
s NS
1%} \ Sea
2 10t Vo= 1
[}
= \ 7
\/
20 F 1
30 F 1
_40 1 1 1 1 Il 1 1
10 20 30 40 50 60 70 80

Incidence angle (deg)

Figure 6. Monostatic RCS for one layer loading case. Properties of the structure are d, /2a = 1, ka = 3.14,
kt = 0.628
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Figure 7. Monostatic RCS for (a) ka = 3.14 (b) ka = 15.7 (c)ka =31.4(b/a=1.2,d,/2a =1, kt = 0.628
for all cases)
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V. CONCLUSION

In this paper, we analyzed the effect of the wall thickness on the radar cross-section of the material-
loaded planar waveguide which is terminated with a PEC plate to form a cavity. The scattering problem
is formulated as the solution of two uncoupled MWHE-2’s. These equations are solved by incorporating
the modal expansions of the field in the waveguide region to form a linear system of equations. As a
result, the scattered field is obtained after applying the inverse Fourier transform to two spectral
functions F°(a,y) and F¢(a, y). The analysis allows one to take into account the wall thickness of the
plates and the flexibility to change the number and the thickness of layers with different dielectric
parameters. The numerical results that are given to reflect the effect of wall thickness show that it is an
important parameter for RCS reduction studies. Depending on the cavity wall thickness, RCS might be
up to 20 dB higher or lower. In addition, it has been shown that when the number of the dielectric layers
increased, RCS gets better also for the case of thick cavity wall.
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