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ABSTRACT 
In this paper, the effect of a parallel plate waveguide's wall thickness on radar cross-section reduction (RCS) is 

rigorously analyzed for H-polarization by using the Wiener-Hopf Technique, when the waveguide region is loaded 

with dielectric material and terminated with a perfect electric conductor (PEC) plate. Transfer matrices are 

incorporated into the analysis to account for the effect of different material layers through continuity relations. The 

Fourier transforms of the diffracted field and the boundary conditions yield a modified scalar Wiener-Hopf 

equation of the second kind (MWHE-2). The classical procedure to solve the MWHE-2 is applied and the 

approximate expression of the diffracted far field is obtained. Numerical results are given by comparing with the 

results available in the literature for the case of the wall thickness of the cavity not being considered.  
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Dielektrik Malzeme Yüklü Paralel Plaka Dalga Kılavuzu Duvar 

Kalınlığının RCS Azaltılmasına Etkisi 
 

ÖZ 
Bu çalışmada, paralel plaka dalga kılavuzunun duvar kalınlığının radar kesit alanının azalmasına (RCS) etkisi, 

dalga kılavuzu bölgesi dielektrik malzeme ile yüklendiğinde ve mükemmel iletken (PEC) bir levha ile 

sonlandırıldığında H-polarizasyonu için Wiener-Hopf Tekniği kullanılarak titizlikle analiz edilmiştir. Süreklilik 

bağıntıları kullanılırken, farklı malzeme katmanlarının etkisini hesaba katmak için transfer matrisleri analize dahil 

edilir. Kırınan alanın Fourier dönüşümünün ve sınır koşullarının kullanılması, ikinci türden değiştirilmiş bir skaler 
Wiener-Hopf denklemini (MWHE-2) verir. MWHE-2'yi çözmek için klasik prosedür uygulanır ve kırınıma 

uğrayan uzak alanın yaklaşık ifadesi elde edilir. Sayısal sonuçlar, literatürde mevcut olan paralel plaka dalga 

kılavuzunun duvar kalınlığının dikkate alınmadığı durumdaki sonuçlarla karşılaştırılarak verilmiştir.   

 

Anahtar Kelimeler: Radar kesit alanı azaltma, Wiener-Hopf Tekniği, Dalga kılavuzunun duvar kalınlığı 
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I. INTRODUCTION 
 
Reducing and predicting the radar cross-section (RCS) of objects or targets is a critical and important 

subject in electromagnetic wave scattering studies. Previously, scattering and diffraction properties of 

some simple geometric elements like edges, cylinders, spheres, plates, and shells have been analyzed to 
understand how to predict or reduce the RCS of complex objects such as vehicles or aircraft [1-9]. An 

important geometry to investigate is the open-ended parallel plate waveguide cavity, which forms a 

model for duct systems like jet engine intakes and many microwave elements such as filters, antennas, 
and transmission lines. There are a variety of papers studying two-dimensional or three-dimensional 

cavity problems using numerical or high-frequency ray techniques [10-14], however, the results may 

not apply to arbitrary cavity sizes. 

 
The Wiener-Hopf technique has been used for a wide range of problems including finite or semi-infinite 

planar and cylindrical structures since it is a rigorous and efficient way of studying wave scattering and 

diffraction problems with canonical geometries [6, 15, 16]. The Wiener-Hopf technique can also be used 
with the mode matching method, which gives rise to the modified Wiener-Hopf equation that helps us 

analyze the effect of the thickness of the target and stack of dielectric layers. In previous studies, 

Kobayashi et al. used the Wiener-Hopf technique to conduct a rigorous RCS analysis of various two-

dimensional cavities created by finite parallel-plate waveguides [16-20] and semi-infinite parallel-plate 
waveguides [16, 21-27], however, they didn’t take into account the wall thickness of the parallel plates. 

Furthermore, the approach in [16-22] and [25, 26] results in a more sophisticated and extensive analysis 

each time they add a new dielectric material layer to the waveguide region.  
 

 
 

Figure 1. Geometry of the investigated problem 

 

The paper is organized as follows. In Section II, the authors of this study examine the scattering that 
results from a thick parallel plate waveguide cavity, as shown in Figure 1, loaded with different numbers 

of layers of dielectric material in the case of H-polarization. As seen in Figure 1, the numbers 1, 2, 3, 4, 

5 denote the number of layers of dielectric material. Constitutive parameter of the layer 𝑗th is 𝜀𝑗 , 𝜇𝑗  

where j=1,2,…,5. By applying the Fourier transform technique to the scattered field components and 

the related boundary conditions, the problem reduces to a modified matrix Wiener-Hopf equation 

(WHE), but there is no general method to factorize an arbitrary matrix that appears in the WHE. Instead, 
incorporating a series of normal modes in the waveguide region for each dielectric layer, we obtain 

transfer matrices along with scalar modified Wiener-Hopf equation of the second kind. The solution 

contains infinitely many unknown constants that satisfy an infinite system of linear algebraic equations. 
A numerical solution of this system is presented in Section III, which compares the results of [25] for 

the same dielectric parameters and aperture sizes while taking into account the wall thickness of the 

waveguide. The paper concludes with a discussion of the effect of the wall thickness and the material 
properties of the dielectric layers in the cavity region. 

 

In this study, time dependence is assumed as 𝑒−𝑖𝜔𝑡
 where 𝜔 is the angular frequency, and is suppressed 

throughout the paper. 
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II. ANALYSIS 
 

We consider the diffraction by a cavity formed by two thick semi-infinite PEC plates as shown in Figure 

1 for an 𝐻𝑧-polarized plane wave. As seen in Figure 2 (a) and (b), one can proceed to decompose the 

incident wave into odd and even excitations to determine the scattered field. It is possible to show that 
the configurations in Figures 2 (a) and (b) are identical to those in Figures 2 (c) and (d), respectively, by 

using the image bisection principle. The odd and even excitations will be discussed separately in the 

sections that follow. 
 

 
Figure 2. Equivalent problems (a) Asymmetric (odd) excitation. (b) Symmetric (even) excitation. (c) Equivalence 

to (a). (d) Equivalence to (b). 
 

A. ODD EXCITATION 

 
First, we will look at the configuration shown in Figure 2(a), which corresponds to the odd excitation 

case. Since the field is not symmetrical about the plane y = 0 in this particular case, the total electric 

field for 𝑥 ∈ (−∞, ∞)   (electric wall) must vanish. 

 
For analysis, the total field can be expressed as follows: 

 

𝑢𝑜(𝑥, 𝑦)  = {

𝑢𝑖 + 𝑢𝑟 + 𝑢1
𝑜 , 𝑦 > 𝑏, 𝑥 ∈ (−∞, ∞)  

𝑢2,𝑗
𝑜  , 0 < 𝑦 < 𝑎, −𝑑𝑗 < 𝑥 < −𝑑𝑗+1, 𝑗 = 1,2, … ,5

𝑢3
𝑜 , 𝑎 < 𝑦 < 𝑏, 𝑥 > 0

 (1) 

 

Here, 𝑢𝑖 is the incident field given by 
 

𝐻𝑧
𝑖 = 𝑢𝑖(𝑥, 𝑦) = 𝑒−𝑖𝑘(𝑥 cos 𝜙0+𝑦 sin 𝜙0), (2a) 

 

and 𝑢𝑟  is the field reflected from the plane 𝑦 = 𝑏, namely 

 

𝑢𝑟(𝑥, 𝑦) = −𝑒−𝑖𝑘(𝑥 cos 𝜙0−(𝑦−2𝑏) sin 𝜙0) (2b) 

 

with 𝑘 = 𝜔√𝜀0𝜇0 is the free-space wave number and 𝜙0  is the angle of the incident field. The total 

field satisfies the two-dimensional Helmholtz equation 
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[
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 + 𝑘2] 𝑢𝑜(𝑥, 𝑦) = 0,  (3) 

 
and is determined to satisfy the following boundary conditions and continuity relations: 

 
𝜕

𝜕𝑦
𝑢1

𝑜(𝑥, 𝑏) = 0, 𝑥 < 0 (4a) 

 
𝜕

𝜕𝑦
𝑢2,𝑗

𝑜 (𝑥, 𝑎) = 0, 𝑥 < 0 (4b) 

 

𝑢2,𝑗
𝑜 (𝑥, 0) = 0, 𝑥 < 0 (4c) 

 

𝑢3
𝑜(𝑥, 0) = 0, 𝑥 > 0 (4d) 

 

𝑢1
𝑜(𝑥, 𝑏) − 𝑢3

𝑜(𝑥, 𝑏) = −2𝑒−𝑖𝑘(𝑥 cos 𝜙0+𝑏 sin 𝜙0), 𝑥 > 0 (4e) 

 

𝑢2,1
𝑜 (−𝑑1, 𝑦) = 0, 0 < 𝑦 < 𝑎 (4f) 

 

𝑢2,𝑗
𝑜 (−𝑑𝑗+1 , 𝑦) = 𝑢2,𝑗+1

𝑜 (−𝑑𝑗+1 , 𝑦), 0 < 𝑦 < 𝑎 (4g) 

 
1

𝜀𝑗

𝜕

𝜕𝑥
𝑢2,𝑗

𝑜 (−𝑑𝑗+1 , 𝑦) =
1

𝜀𝑗+1

𝜕

𝜕𝑥
𝑢2,𝑗+1

𝑜 (−𝑑𝑗+1, 𝑦), 0 < 𝑦 < 𝑎  (4h) 

 

𝑢2,5
𝑜 (0, 𝑦) = 𝑢3

𝑜(0, 𝑦), 0 < 𝑦 < 𝑎 (4i) 

 

𝜕

𝜕𝑥
𝑢3

𝑜(0, 𝑦) = {

1

𝜀5

𝜕

𝜕𝑥
𝑢2,5

𝑜 (0, 𝑦), 0 < 𝑦 < 𝑎

0, 𝑎 < 𝑦 < 𝑏

 (4j) 

 

Since 𝑢1
𝑜(𝑥, 𝑦) satisfies Helmholtz equation in the region 𝑦 > 𝑏, 𝑥 ∈ (−∞, ∞), its Fourier transform 

with respect to 𝑥 satisfies 

 

[
𝑑2

𝑑𝑦2
+ (𝑘2 − 𝛼2)] 𝐹𝑜(𝛼, 𝑦) = 0 (5a) 

 
with 

 

𝐹𝑜(𝛼, 𝑦) = 𝐹+
𝑜(𝛼, 𝑦) + 𝐹−

𝑜(𝛼, 𝑦) (5b) 

 

where 

 

𝐹+
𝑜(𝛼, 𝑦) = ± ∫ 𝑢1

𝑜(𝑥, 𝑦)𝑒𝑖𝛼𝑥𝑑𝑥
±∞

0
 . (5c) 

 

By considering the asymptotic behaviors of 𝑢1
𝑜(𝑥, 𝑦) for 𝑥 → ±∞  

 

𝑢1
𝑜(𝑥, 𝑦) = {

𝒪(𝑒−𝑖𝑘𝑥), 𝑥 → −∞

𝒪(𝑒−𝑖𝑘𝑥 cos 𝜙0), 𝑥 → ∞
 , (6) 

 

we can show that 𝐹+
𝑜(𝛼, 𝑦) and 𝐹−

𝑜(𝛼, 𝑦) are regular functions of 𝛼 in the half-planes                       

ℑ𝑚(𝛼) > ℑ𝑚(𝑘 cos 𝜙0) and ℑ𝑚(𝛼) < ℑ𝑚(𝑘), respectively. The general solution of (5a) that satisfies 

the radiation condition for 𝑦 → ∞, gives  
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𝐹+
𝑜(𝛼, 𝑦) + 𝐹−

𝑜(𝛼, 𝑦) = 𝐴𝑜(𝛼)𝑒𝑖𝐾(𝛼)(𝑦−𝑏). (7) 

 

Here, 𝐾(𝛼) = √𝑘2 − 𝛼2  is the square root function defined in the complex α-plane cut along 𝛼 = 𝑘 to 

𝛼 = 𝑘 + 𝑖∞ and 𝛼 = −𝑘 to 𝛼 = −𝑘 − 𝑖∞, as can be seen in Figure 3, such that 𝐾(0) = 𝑘. From (4a), 

we get �̇�−
𝑜(𝛼, 𝑏) = 0 in the Fourier transform domain, and the derivative of (7) with respect to 𝑦 at      

𝑦 = 𝑏, one obtains 

 

�̇�+
𝑜(𝛼, 𝑏) = 𝑖𝐾(𝛼)𝐴𝑜(𝛼) (8) 

 

( ̇ ) denotes the derivative with respect to 𝑦.  

 

 
 

Figure 3. Brunch-cuts and integration lines in the complex plane 

 

In the region 𝑥 > 0, 0 < 𝑦 < 𝑏, 𝑢3
𝑜(𝑥, 𝑦) satisfies the Helmholtz equation and its half-range Fourier 

transform gives  

 

[
𝑑2

𝑑𝑦2
+ [𝐾(𝛼)]2] 𝐺+

𝑜(𝛼, 𝑦) = 𝑓𝑜(𝑦) + 𝛼𝑔𝑜(𝑦) (9a) 

 

with 
 

𝑓𝑜(𝑦) =
𝜕

𝜕𝑥
𝑢3

𝑜(0, 𝑦), 𝑔𝑜(𝑦) = −𝑖𝑢3
𝑜(0, 𝑦). (9b) 

 

𝐺+
𝑜(𝛼, 𝑦) is defined by 

 

𝐺+
𝑜(𝛼, 𝑦) = ∫ 𝑢3

𝑜(𝑥, 𝑦)𝑒𝑖𝛼𝑥𝑑𝑥
∞

0

 . (9c) 

 

The general solution of (9a) satisfying the boundary condition at 𝑦 = 0 gives 

 

𝐺+
𝑜(𝛼, 𝑦) =

sin 𝐾𝑦

𝐾𝑀𝑜(𝛼)
{�̇�+

𝑜(𝛼, 𝑏) − ∫ [𝑓𝑜 (𝑡) + 𝛼𝑔𝑜(𝑡)] cos 𝐾(𝑏 − 𝑡) 𝑑𝑡
𝑏

0

}

+
1

𝐾(𝛼)
∫ [𝑓𝑜 (𝑡) + 𝛼𝑔𝑜(𝑡)] sin 𝐾(𝑦 − 𝑡) 𝑑𝑡

𝑦

0

 (10a) 

 

𝑘 

−𝑘 

ℜ𝔢(𝛼) 

ℑ𝔪(𝛼) 

ℒ− 

𝑘 cos 𝜙0  

ℒ+ 

ℒ 

−𝛼1 

−𝛼𝑛 

𝛼1 

𝛼𝑛 

0 
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with 

 

𝑀𝑜(𝛼) = cos 𝐾𝑏. (10b) 

 

Although the left-hand side of (10a) is regular in the upper half-plane ℑ𝑚{𝛼} > ℑ𝑚{−𝑘}, the regularity 

of the right-hand side is violated by the presence of simple poles occurring at 𝛼 = 𝛼𝑚
𝑜  which are zeros 

of 𝑀𝑜(𝛼), satisfying   

 

𝑀𝑜(𝛼𝑚
𝑜 ) = 0, 𝐾𝑚

𝑜 = 𝐾(𝛼𝑚
𝑜 ) =

(2𝑚 + 1)𝜋

2𝑏
, 𝑚 = 0,1,2, … (11) 

 

These poles can be eliminated by imposing that their residues are zero. This gives 
 

�̇�+
𝑜(𝛼𝑚

𝑜 , 𝑏) =
𝑏

2
sin 𝐾𝑚

𝑜 𝑏 (𝑓𝑚
𝑜 + 𝛼𝑚

𝑜 𝑔𝑚
𝑜 ) (12a) 

 
where 

 

[
𝑓𝑚

𝑜

𝑔𝑚
𝑜 ] =

2

𝑏
∫ [

𝑓𝑜(𝑡)

𝑔𝑜(𝑡)
] sin 𝐾𝑚

𝑜 𝑡 𝑑𝑡
𝑏

0

 (12b) 

 

Taking into account (7), (8), (10a), (12b) and evaluating the resultant integral, one obtains the MWHE-

2 valid in the strip ℑ𝑚(𝑘 cos 𝜙0) < ℑ𝑚(𝛼) < ℑ𝑚(𝑘) , 

 

𝐹+
�̇�(𝛼, 𝑏)

𝑖𝐾(𝛼)𝑁𝑜(𝛼)
− 𝐹−

𝑜(𝛼, 𝑏) = −
2𝑖𝑒−𝑖𝑘𝑏 sin 𝜙0

(𝛼 − 𝑘 cos 𝜙0)
+ ∑ (𝑓𝑚

𝑜 + 𝛼𝑔𝑚
𝑜 )

sin 𝐾𝑚
𝑜 𝑏

𝐾2 − (𝐾𝑚
𝑜 )2

∞

𝑚=0

 (13a) 

 

with 

 

𝑁𝑜(𝛼) = 𝑀𝑜(𝛼) 𝑒𝑖𝐾(𝛼)𝑏 . (13b) 

 

𝑁𝑜(𝛼) is the kernel function of (13a) and factorized as [27] 
 

𝑁𝑜(𝛼) = 𝑁+
𝑜(𝛼)𝑁−

𝑜(𝛼) (14a) 

 

𝑁+
𝑜(𝛼) = 𝑁−

𝑜(−𝛼) (14b) 

 

where 

 

𝑁+
𝑜(𝛼) = √cos 𝑘𝑏  exp {

𝑖𝑏𝛼

𝜋
(1 − 𝐶 + ln (

𝜋

2𝑘𝑏
) + 𝑖

𝜋

2
)} 

                  × exp {
𝑖𝑏𝐾

𝜋
ln (

𝛼 + 𝐾

𝑘
)} ∏ (1 +

𝛼

𝛼𝑚
) exp {

𝑖𝛼𝑏

𝑚𝜋
}

∞

𝑚=1

 

(14c) 

 

with 𝐶 = 0.57721566 … being Euler’s constant. WHE in (13a) is solved by following the classical 

procedure and one gets 
 

�̇�+
𝑜(𝛼, 𝑏)

𝑖𝑁+
𝑜(𝛼)√𝑘 + 𝛼

= �̃�+
𝑜(𝛼, 𝑏), (15a) 

 

where 
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�̃�+
𝑜(𝛼, 𝑏) = −2𝑖𝑒−𝑖𝑘𝑏 sin 𝜙0

√𝑘(1 − cos 𝜙0) 𝑁−
𝑜(𝑘 cos 𝜙0)

(𝛼 − 𝑘 cos 𝜙0)
 

                      + ∑
(𝑓𝑚

𝑜 − 𝛼𝑚
𝑜 𝑔𝑚

𝑜 )

2𝛼𝑚
𝑜

𝑁+
𝑜(𝛼𝑚

𝑜 )√𝑘 + 𝛼𝑚
𝑜  sin 𝐾𝑚

𝑜 𝑏

(𝛼 + 𝛼𝑚
𝑜 )

∞

𝑚=0

. 

(15b) 

 

Consider now the waveguide region 𝑥 < 0, 0 < 𝑦 < 𝑎 . Since the waveguide region has more than one 

material layer, 𝑢2,𝑗
𝑜 (𝑥, 𝑦) should be expressed separately for each layer. The field in each layer can be 

given as 

 

𝑢2,𝑗
𝑜 (𝑥, 𝑦) = ∑ [𝑏𝑛,𝑗

𝑜 𝑒𝑖𝛽𝑛,𝑗
𝑜 𝑥 + 𝑐𝑛,𝑗

𝑜 𝑒−𝑖𝛽𝑛,𝑗
𝑜 𝑥]

∞

𝑛=0

sin 𝛾𝑛
𝑜𝑦 ,  𝑗 = 1,2, … ,5 (16a) 

 

𝛾𝑛
𝑜 =

(2𝑛 + 1)𝜋

2𝑎
, 𝑛 = 0,1,2, … (16b) 

 

𝛽𝑛,𝑗
𝑜 = √𝑘𝑗

2 − (𝛾𝑛
𝑜)2 (16c) 

 

where 𝑘𝑗 = 𝑘√𝜀𝑗𝜇𝑗 , 𝑗 denotes the 𝑗th layer. 

 

The field 𝑢2,1
𝑜 (𝑥, 𝑦) valid in the region  𝑥 ∈ (−𝑑1, −𝑑2) and satisfying the boundary condition at          

𝑥 = −𝑑1 can be written as follows: 

 

𝑢2,1
𝑜 (𝑥, 𝑦) = ∑ 𝑏𝑛,1

𝑜 cos 𝛽𝑛,1
𝑜 (𝑥 + 𝑑1)

∞

𝑛=0

sin 𝛾𝑛
𝑜𝑦. (17) 

 

When we consider the continuity relations (4g) and (4h) between the dielectric layers and substitute the 

field expressions 𝑢2,𝑗
𝑜 (𝑥, 𝑦) into them, we get 

 

𝐓1
𝑜𝑏𝑛,1

𝑜 = 𝐓2,2
𝑜 𝐱𝑛,2

𝑜   (18a) 

 

𝐓𝑗−1,𝑗
𝑜 𝐱𝑛,𝑗−1

𝑜 = 𝐓𝑗,𝑗
𝑜 𝐱𝑛,𝑗

𝑜 , 𝑗 = 3,4,5, (18b) 

 
where we define 

 

𝐱𝑛,𝑗
𝑜 = [

𝑏𝑛,𝑗
𝑜

𝑐𝑛,𝑗
𝑜 ] (18c) 

 

𝐓1
𝑜 = [

cos 𝛽𝑛,1
𝑜 (𝑑1 − 𝑑2)

−
𝛽𝑛,1

𝑜

𝜀1
sin 𝛽𝑛,1

𝑜 (𝑑1 − 𝑑2)
] (18d) 

 

𝐓𝑗−1,𝑗
𝑜 = [

𝑒−𝑖𝛽𝑛,𝑗−1
𝑜 𝑑𝑗 𝑒𝑖𝛽𝑛,𝑗−1

𝑜 𝑑𝑗

𝑖𝛽𝑛,𝑗−1
𝑜

𝜀𝑗−1
𝑒−𝑖𝛽𝑛,𝑗−1

𝑜 𝑑𝑗 −
𝑖𝛽𝑛,𝑗−1

𝑜

𝜀𝑗−1
𝑒𝑖𝛽𝑛,𝑗−1

𝑜 𝑑𝑗
] (18e) 

 

𝐓𝑗,𝑗
𝑜 = [

𝑒−𝑖𝛽𝑛,𝑗
𝑜 𝑑𝑗 𝑒𝑖𝛽𝑛,𝑗

𝑜 𝑑𝑗

𝑖𝛽𝑛,𝑗
𝑜

𝜀𝑗
𝑒−𝑖𝛽𝑛,𝑗

𝑜 𝑑𝑗 −
𝑖𝛽𝑛,𝑗

𝑜

𝜀𝑗
𝑒𝑖𝛽𝑛,𝑗

𝑜 𝑑𝑗
]. (18f) 
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The relation between 𝑏𝑛,1
𝑜  and the vector 𝐱𝑛,5

𝑜  can be formulated as 

 

𝐱𝑛,5
𝑜 = [

𝑏𝑛,5
𝑜

𝑐𝑛,5
𝑜 ] =  𝐓𝑜𝑏𝑛,1

𝑜  (19) 

 

The transfer matrix 𝐓𝑜 is obtained as 
 

𝐓𝑜 = (𝐓5,5
𝑜 )

−1
 𝐓4,5

𝑜  (𝐓4,4
𝑜 )

−1
 𝐓3,4

𝑜  (𝐓3,3
𝑜 )

−1
 𝐓2,3

𝑜  (𝐓2,2
𝑜 )

−1
𝐓1

𝑜 (20) 

 

and the 𝑛th column of 𝐓𝑜 can be expressed as [𝑡1𝑛
𝑜 𝑡2𝑛

𝑜 ]𝑇 . Substituting (19) into the continuity relations 

(4i) and (4j), we may write 
 

𝑎

2
(𝑡1𝑟

𝑜 + 𝑡2𝑟
𝑜 )𝑏𝑟,1

𝑜 = ∑ 𝑖𝑔𝑚
𝑜 𝐈𝑟𝑚

𝑜

∞

𝑚=0

 (21a) 

 

𝑏

2
𝑓𝑟

𝑜 = ∑ 𝑖𝛽𝑛,5
𝑜 (𝑡1𝑛

𝑜 − 𝑡2𝑛
𝑜 )𝑏𝑛,1

𝑜 𝐈𝑛𝑟
𝑜

∞

𝑛=0

 (21b) 

 
where 

 

𝐈𝑛𝑚
𝑜 =

𝐾𝑚
𝑜

(𝛾𝑛
𝑜)2 − (𝐾𝑚

𝑜 )2
cos 𝐾𝑚

𝑜 𝑎 sin 𝛾𝑛
𝑜𝑎. (21c) 

 

By substituting 𝛼 = 𝛼𝑛
𝑜 in (15) and using (12a), we get infinitely many linear systems of equations with 

an infinite number of unknowns that give the constants 𝑓𝑛
𝑜  and 𝑔𝑛

𝑜 as follows: 

 

𝑏

2𝑖

(𝑓𝑛
𝑜 + 𝛼𝑛

𝑜𝑔𝑛
𝑜)

𝑁+
𝑜(𝛼𝑛

𝑜)

sin 𝐾𝑛
𝑜𝑏

√𝑘 + 𝛼𝑛
𝑜

= −2𝑖𝑒−𝑖𝑘𝑏 sin 𝜙0
√𝑘(1 − cos 𝜙0) 𝑁−

𝑜(𝑘 cos 𝜙0)

(𝛼𝑛
𝑜 − 𝑘 cos 𝜙0)

+ ∑
(𝑓𝑚

𝑜 − 𝛼𝑚
𝑜 𝑔𝑚

𝑜 )

2𝛼𝑚
𝑜

𝑁+
𝑜(𝛼𝑚

𝑜 )√𝑘 + 𝛼𝑚
𝑜  sin 𝐾𝑚

𝑜 𝑏

(𝛼𝑛
𝑜 + 𝛼𝑚

𝑜 )
,

∞

𝑚=0

 (22) 

 

𝑛 = 0,1,2, ⋯ . 

 

B. EVEN EXCITATION 

 
The solution for even excitation is obtained similar to the one for odd excitation. All the boundary and 
continuity conditions remain valid for the even excitation case, except (4b) and (4d), which are to be 

changed as 

 
𝜕

𝜕𝑦
𝑢2,𝑗

𝑒 (𝑥, 0) = 0, 𝑥 < 0 (23a) 

 
𝜕

𝜕𝑦
𝑢3

𝑒(𝑥, 0) = 0, 𝑥 > 0. (23b) 

 

In this situation, MWHE-2 is obtained 
 

𝐹+
�̇�(𝛼, 𝑏)

𝐾2𝑁𝑒(𝛼)
− 𝐹−

𝑒(𝛼, 𝑏) = −
2𝑖𝑒−𝑖𝑘𝑏 sin 𝜙0

(𝛼 − 𝑘 cos 𝜙0)
+ ∑ (𝑓𝑚

𝑒 + 𝛼𝑔𝑚
𝑒 )

cos 𝐾𝑚
𝑒 𝑏

𝐾2 − (𝐾𝑚
𝑒 )2

∞

𝑚=0

 (24) 
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with 

 

𝑁𝑒(𝛼) = 𝐾 sin 𝐾𝑏  𝑒𝑖𝐾(𝛼)𝑏 (25a) 

 

𝑝𝑚 = {
𝑏/2, 𝑚 ≠ 0

𝑏, 𝑚 = 0
 (25b) 

 

𝐾𝑚
𝑒 = 𝐾(𝛼𝑚

𝑒 ) =
𝑚𝜋

𝑏
, 𝑚 = 0,1,2, … (25c) 

 

[
𝑓𝑚

𝑒

𝑔𝑚
𝑒 ] =

1

𝑝𝑚
∫ [

𝑓𝑒(𝑡)

𝑔𝑒(𝑡)
] cos 𝐾𝑚

𝑒 𝑡 𝑑𝑡
𝑏

0

 (25d) 

 

𝑁𝑒(𝛼) is the kernel function of (24) and factorized as [27] 

 

𝑁𝑒(𝛼) = 𝑁+
𝑒(𝛼)𝑁−

𝑒(𝛼) (26a) 

 

𝑁+
𝑒(𝛼) = 𝑁−

𝑒(−𝛼) (26b) 

 

where 

 

𝑁+
𝑒(𝛼) = √

sin 𝑘𝑏

𝑘
exp {

𝑖𝑏𝛼

𝜋
(1 − 𝐶 + ln (

2𝜋

𝑘𝑏
) + 𝑖

𝜋

2
)} 

                    × exp {
𝑖𝑏𝐾

𝜋
ln (

𝛼 + 𝐾

𝑘
)} ∏ (1 +

𝛼

𝛼𝑚
) exp {

𝑖𝛼𝑏

𝑚𝜋
}

∞

𝑚=1

. 

(26c) 

 

WHE is solved by following classical steps and one gets 

 

𝐹+
�̇�(𝛼, 𝑏)

𝐾2𝑁+
𝑒(𝛼)

= �̃�+
𝑒(𝛼, 𝑏) (27a) 

 

with 

 

�̃�+
𝑒(𝛼, 𝑏) = −2𝑖𝑒−𝑖𝑘𝑏 sin 𝜙0

𝑘(1 − cos 𝜙0)𝑁−
𝑒(𝑘 cos 𝜙0)

(𝛼 − 𝑘 cos 𝜙0)
 

                      + ∑
(𝑓𝑚

𝑒 − 𝛼𝑚
𝑒 𝑔𝑚

𝑒 )

2𝛼𝑚
𝑒

(𝑘 + 𝛼𝑚
𝑒 )𝑁+

𝑒(𝛼𝑚
𝑒 ) cos 𝐾𝑚

𝑒 𝑏

(𝛼 + 𝛼𝑚
𝑒 )

∞

𝑚=0

 

(27b) 

 

𝐹+
�̇�(𝛼𝑛

𝑒 , 𝑏) = 𝑝𝑛 cos 𝐾𝑛
𝑒𝑏 (𝑓𝑛

𝑒 + 𝛼𝑛
𝑒𝑔𝑛

𝑒) (27c) 

 

Similar to the odd excitation case, in the waveguide region 0 < 𝑦 < 𝑎, 𝑥 < 0, 𝑢2,𝑗
𝑜 (𝑥, 𝑦) should be 

expressed separately for each layer and can be given as 

 

𝑢2,𝑗
𝑒 (𝑥, 𝑦) = ∑ [𝑏𝑛,𝑗

𝑒 𝑒𝑖𝛽𝑛,𝑗
𝑒 𝑥 + 𝑐𝑛,𝑗

𝑒 𝑒−𝑖𝛽𝑛,𝑗
𝑒 𝑥]

∞

𝑛=0

cos 𝛾𝑛
𝑒𝑦 ,  𝑗 = 1,2, … ,5 (28a) 

 

𝛾𝑛
𝑒 =

𝑛𝜋

𝑎
, 𝑛 = 0,1,2, … (28b) 
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𝛽𝑛,𝑗
𝑒 = √𝑘𝑗

2 − (𝛾𝑛
𝑒)2 . (28c) 

 

where 𝑘𝑗 = 𝑘√𝜀𝑗𝜇𝑗 , 𝑗 denotes the 𝑗th layer. When 𝑢2,1
𝑒 (𝑥, 𝑦) is replaced at the boundary condition at 

𝑥 = −𝑑1 and one gets 

 

𝑢2,1
𝑒 (𝑥, 𝑦) = ∑ 𝑏𝑛,1

𝑒 sin 𝛽𝑛,1
𝑒 (𝑥 + 𝑑1)

∞

𝑛=0

cos 𝛾𝑛
𝑒𝑦 (29) 

 

Once we substitute the field expressions 𝑢2,𝑗
𝑒 (𝑥, 𝑦) into the continuity relations (4g) and (4h) for each 

layer, we get 
 

𝐓1
𝑒𝑏𝑛,1

𝑒 = 𝐓2,2
𝑒 𝐱𝑛,2

𝑒   (30a) 

 

𝐓𝑗−1,𝑗
𝑒 𝐱𝑛,𝑗−1

𝑒 = 𝐓𝑗,𝑗
𝑒 𝐱𝑛,𝑗

𝑒 , 𝑗 = 3,4,5 (30b) 

 

where 

 

𝐱𝑛,𝑗
𝑒 = [

𝑏𝑛,𝑗
𝑒

𝑐𝑛,𝑗
𝑒 ] (30c) 

 

𝐓1
𝑒 = [

cos 𝛽𝑛,1
𝑒 (𝑑1 − 𝑑2)

−
𝛽𝑛,1

𝑒

𝜀1
sin 𝛽𝑛,1

𝑒 (𝑑1 − 𝑑2)
] (30d) 

 

𝐓𝑗−1,𝑗
𝑒 = [

𝑒−𝑖𝛽𝑛,𝑗−1
𝑒 𝑑𝑗 𝑒𝑖𝛽𝑛,𝑗−1

𝑒 𝑑𝑗

𝑖𝛽𝑛,𝑗−1
𝑒

𝜀𝑗−1
𝑒−𝑖𝛽𝑛,𝑗−1

𝑒 𝑑𝑗 −
𝑖𝛽𝑛,𝑗−1

𝑒

𝜀𝑗−1
𝑒𝑖𝛽𝑛,𝑗−1

𝑒 𝑑𝑗
] (30e) 

 

𝐓𝑗,𝑗
𝑒 = [

𝑒−𝑖𝛽𝑛,𝑗
𝑒 𝑑𝑗 𝑒𝑖𝛽𝑛,𝑗

𝑒 𝑑𝑗

𝑖𝛽𝑛,𝑗
𝑒

𝜀𝑗
𝑒−𝑖𝛽𝑛,𝑗

𝑒 𝑑𝑗 −
𝑖𝛽𝑛,𝑗

𝑒

𝜀𝑗
𝑒𝑖𝛽𝑛,𝑗

𝑒 𝑑𝑗
] (30f) 

 

The relation between 𝑏𝑛,1
𝑒  and the vector 𝐱𝑛,5

𝑒  can be formulated as follows: 

 

𝐱𝑛,5
𝑒 = [

𝑏𝑛,5
𝑒

𝑐𝑛,5
𝑒 ] =  𝐓𝑒𝑏𝑛,1

𝑒 . (31) 

 

The transfer matrix 𝐓𝑒 for even excitation is obtained as  
 

𝐓𝑒 = (𝐓5,5
𝑒 )

−1
 𝐓4,5

𝑒  (𝐓4,4
𝑒 )

−1
 𝐓3,4

𝑒  (𝐓3,3
𝑒 )

−1
 𝐓2,3

𝑒  (𝐓2,2
𝑒 )

−1
𝐓1

𝑒 (32) 

 

and 𝑛′th column of 𝐓𝑒 can be expressed as [𝑡1𝑛
𝑒 𝑡2𝑛

𝑒 ]𝑇. Substituting (31) into the continuity relations 

(4i) and (4j), we may write 

 

𝑖𝛽𝑛,5
𝑒

𝑎

2
(𝑏𝑛,5

𝑒 − 𝑐𝑛,5
𝑒 ) = ∑ 𝑓𝑚

𝑒

∞

𝑚=0

𝐼𝑛𝑚
𝑒  (33a) 

𝑖𝑔𝑚
𝑒

𝑏

2
= ∑(𝑏𝑛,5

𝑒 + 𝑐𝑛,5
𝑒 )

∞

𝑛=0

𝐼𝑚𝑛
𝑒  (33b) 
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where 

 

𝐼𝑛𝑚
𝑒 =

𝐾𝑚
𝑒

(𝐾𝑚
𝑒 )2 − (𝛾𝑛

𝑒)2
sin 𝐾𝑚

𝑒 𝑎 cos 𝛾𝑛
𝑒𝑎. (33c) 

 

By replacing 𝛼 = 𝛼𝑛
𝑒  in (27a) and using (27c), we get the following equations 

 

𝑝𝑛

(𝑓𝑛
𝑒 + 𝛼𝑛

𝑒𝑔𝑛
𝑒)

𝑁+
𝑒(𝛼𝑛

𝑒)

cos 𝐾𝑛
𝑒𝑏

𝑘 + 𝛼𝑛
𝑒 = −2𝑖𝑒−𝑖𝑘𝑏 sin 𝜙0

𝑘(1 − cos 𝜙0)𝑁+
𝑒(−𝑘 cos 𝜙0)

(𝛼𝑛
𝑒 − 𝑘 cos 𝜙0)

+ ∑
(𝑓𝑚

𝑒 − 𝛼𝑚
𝑒 𝑔𝑚

𝑒 )

2𝛼𝑚
𝑒

(𝑘 + 𝛼𝑚
𝑒 )𝑁+

𝑒(𝛼𝑚
𝑒 ) cos 𝐾𝑚

𝑒 𝑏

(𝛼𝑛
𝑒 + 𝛼𝑚

𝑒 )

∞

𝑚=0

 (34) 

 

𝑛 = 0,1,2, ⋯ . 

 

C. ANALYSIS OF THE SCATTERED FIELD 
 

The scattered field for odd and even excitations can be obtained by taking the inverse Fourier transform 

of 𝐹𝑜(𝛼, 𝑦) and 𝐹𝑒(𝛼, 𝑦), respectively 

 

𝑢1
𝑜(𝑥, 𝑦) =

1

2𝜋𝑖
∫

�̇�+
𝑜(𝛼, 𝑏)

𝐾(𝛼)
ℒ

𝑒𝑖[𝐾(𝛼)(𝑦−𝑏)−𝛼𝑥]𝑑𝛼 (35a) 

 

𝑢1
𝑒(𝑥, 𝑦) =

1

2𝜋𝑖
∫

�̇�+
𝑒(𝛼, 𝑏)

𝐾(𝛼)
ℒ

𝑒𝑖[𝐾(𝛼)(𝑦−𝑏)−𝛼𝑥]𝑑𝛼, (35b) 

 

where ℒ is a straight line parallel to the real axis lying in the strip ℑ𝑚(𝑘 cos 𝜙0) <  ℑ𝑚(𝛼) <  ℑ𝑚(𝑘). 

The evaluation of the integrals in (35a) and (35b) by using the method of saddle-point technique yields 

the asymptotic expression of 𝑢1 (𝑟, 𝜙) for the far field as follows 

 

𝑢1 (𝑟, 𝜙) =
𝑢1

𝑒(𝑟, 𝜙) + 𝑢1
𝑜(𝑟, 𝜙)

2
 (36a) 

 
with 

 

𝑢1
𝑜(𝑟, 𝜙) =

𝑒−𝑖𝜋/4

√2𝜋
�̃�+

𝑜(−𝑘 cos 𝜙 , 𝑏) 𝑁−
𝑜(𝑘 cos 𝜙)√𝑘(1 − cos 𝜙)

𝑒𝑖𝑘𝑟

√𝑘𝑟
 (36b) 

 

𝑢1
𝑒(𝑟, 𝜙) =

𝑒−𝑖3𝜋/4

√2𝜋
�̃�+

𝑒(−𝑘 cos 𝜙 , 𝑏) 𝑁−
𝑒(𝑘 cos 𝜙) 𝑘(1 − cos 𝜙) 

𝑒𝑖𝑘𝑟

√𝑘𝑟
 (36c) 

 

where (𝑟, 𝜙)  cylindrical polar coordinates are defined by 
 

𝑥 = 𝑟 cos 𝜙 ,      𝑦 − 𝑏 = 𝑟 sin 𝜙 .   (36d) 
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III. NUMERICAL RESULTS 
 

This section focuses on the numerical results for the far-field backscattering properties of the cavities 

for the RCS examples. The definition of the RCS is given per unit length in the literature as follows 
 

𝜎 = lim
𝑟→∞

(2𝜋𝑟
|𝑢1|2

|𝑢𝑖|2
), (37) 

 

where 𝑢1 is the diffracted field and 𝑢𝑖 is the incident field defined by (36a) and (2a), respectively. The 

method that is applied by incorporating the modal expressions of the field in the waveguide region for 

each layer separately allows one the flexibility to choose the number of the dielectric layers for the 

reduction of the RCS, easily. In addition, the results that are presented here show the importance of the 
wall thickness of the cavity in the calculation of monostatic RCS which is calculated only in the opposite 

direction of the incident field, and have been given for different wall thicknesses by comparing the 

results presented in [25] for the same dielectric parameters. 
 

Table 1. Characteristics of the materials that fill the cavity 

Layer,𝒋 𝜺𝒋 𝝁𝒋 

1 3.14 + 𝑖10 1 + 𝑖0 

2 1.6 + 𝑖0.9 1 + 𝑖0 

3 1.4 + 𝑖0.35 1 + 𝑖0 

4 2.4 + 𝑖1.25 1.6 + 𝑖1.9 

5 1 + 𝑖0 1 + 𝑖0 

 

The layer thicknesses are taken as equal to each other, namely 𝑡 = 𝑑𝑛 − 𝑑𝑛+1, 𝑛 = 1,2,3,4 to compare 

our results with [25]. The material properties are listed in Table 1 and the numerical results are derived 
for four distinct cases: vacuum, one-layer, three-layer, and four-layer material loadings.  

 

 
 

Figure 4. The monostatic RCS versus the truncation number for 𝜙 = 60° (𝑘𝑏 = 𝑘𝑎 + 0.314, 𝑑1/2𝑎 = 1, 𝑘𝑡 =
0.628, three-layer material ) 

 

Figure 4 shows the stability of the results for the diffracted field with the truncation number, N, of the 

infinite number of linear systems of equations.  The scattered field becomes insensitive to the truncation 
number when N>10 even for different waveguide dimensions.  
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Figure 5. Comparison of the results for different wall thicknesses,  b/a=1,  b/a=1.2 

 

The normalized monostatic RCS as a function of the incident angle 𝜙0 is given in Figures 5 – 10. Figure 

5 represents the effect of the wall thickness for the RCS calculation by comparing the results given in 

[25] where the plates are considered very thin. Our results show that between around 15 to 45-degree 
incidence angle, the RCS gets better. In addition, Figure 6 shows the variation of RCS for different wall 

thicknesses that RCS increases or decreases up to 20 dB for different angles of incidence. Figures 7, 8, 

9, and 10 are regenerated for the same dielectric parameters as in [25] to show the variation of RCS 
when the wall thickness is taken into account. 

 

 
 

Figure 6. Monostatic RCS for one layer loading case. Properties of the structure are 𝑑1/2𝑎 = 1, 𝑘𝑎 = 3.14, 

𝑘𝑡 = 0.628 
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(a) 

 
(b) 

 
(c) 

Figure 7. Monostatic RCS for (a) ka = 3.14  (b) ka = 15.7  (c) ka = 31.4 ( 𝑏/a = 1.2, d1/2a = 1, kt = 0.628 

for all cases) 
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(a) 

 
(b) 

 
(c) 

Figure 8. Monostatic RCS for (a) ka = 3.14  (b) ka = 15.7  (c) ka = 31.4 (𝑏/a = 1.2, d1/2a = 3, kt = 0.628, 

for all cases) 
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(a) 

 
(b) 

 
(c) 

Figure 9. Monostatic RCS for (a) ka = 3.14  (b) ka = 15.7  (c) ka = 31.4 (𝑏/a = 1.2, d1/2a = 1, kt = 1.255 

for all cases) 
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(a) 

 
(b) 

 
(c) 

Figure 10. Monostatic RCS for (a) ka = 3.14 (b) ka = 15.7  (c) ka = 31.4 (𝑏/a = 1.2, d1/2a = 3, kt = 1.255  
for all cases) 
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IV. CONCLUSION 
 

In this paper, we analyzed the effect of the wall thickness on the radar cross-section of the material-

loaded planar waveguide which is terminated with a PEC plate to form a cavity. The scattering problem 
is formulated as the solution of two uncoupled MWHE-2’s. These equations are solved by incorporating 

the modal expansions of the field in the waveguide region to form a linear system of equations. As a 

result, the scattered field is obtained after applying the inverse Fourier transform to two spectral 

functions 𝐹𝑜(𝛼, 𝑦) and 𝐹𝑒(𝛼, 𝑦). The analysis allows one to take into account the wall thickness of the 
plates and the flexibility to change the number and the thickness of layers with different dielectric 

parameters. The numerical results that are given to reflect the effect of wall thickness show that it is an 

important parameter for RCS reduction studies. Depending on the cavity wall thickness, RCS might be 
up to 20 dB higher or lower. In addition, it has been shown that when the number of the dielectric layers 

increased, RCS gets better also for the case of thick cavity wall.  
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