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Abstract 

Magnetic Resonance Imaging (MRI) is a widely used imaging technique for examining brain tissues and diagnosing various 
conditions. However, MRI images often contain noise caused by factors such as equipment limitations, environmental 
conditions, patient movement, and magnetic field interference. This noise can obscure critical details, making accurate 
diagnosis and treatment planning challenging. In this study, the focus is on the removal of Rician noise from MRI images. 
To address this challenge, two 3D autoencoder models, named M-UNet+ResNet and M-UNet+DenseNet, were developed. 
These models are based on an enhanced UNet architecture that integrates dense and residual connections, aimed at 
improving noise reduction capabilities. The models were trained using T1 and T2-weighted MRI images from the IXI 
dataset, incorporating noise levels varying from 3% to 15%. Their performance was evaluated using metrics such as peak 
signal-to-noise ratio, structural similarity index measure, and mean absolute error. The results demonstrated that both 
models effectively reduced noise across various levels, with M-UNet+ResNet generally outperforming M-UNet+DenseNet. 
Notably, M-UNet+ResNet achieved PSNR values of 38.72 dB and 37.04 dB, and SSIM values of 0.82 and 0.81 in the IXI-HH-
T2 and IXI-Guys-T2 datasets, respectively, indicating its strong capability in preserving image quality. This study concludes 
that incorporating residual connections in DL models enhances their ability to remove noise from MRI images, offering a 
solution for maintaining the integrity of medical images in clinical settings. 
Keywords: Noise removal, Magnetic resonance imaging, Deep learning, Residual connection, UNet 

MANYETIK REZONANS GÖRÜNTÜLEMEDE GÜRÜLTÜ GIDERME IÇIN 3D 
DERIN ÖĞRENME MODELI 

Özet 

Manyetik Rezonans Görüntüleme (MRI), beyin dokularını incelemek ve çeşitli durumları teşhis etmek için yaygın olarak 
kullanılan bir görüntüleme tekniğidir. Ancak, MRI görüntüleri genellikle cihaz kısıtlamaları, çevre koşulları, hasta hareketi 
ve manyetik alan girişimi gibi faktörlerin neden olduğu gürültüleri içerir. Bu gürültü kritik ayrıntıları gizleyebilir ve doğru 
tanı ve tedavi planlamasını zorlaştırabilir. Bu çalışmada, MRI görüntülerinden Rician gürültüsünün giderilmesine 
odaklanılmıştır. Bu zorluğun üstesinden gelmek için M-UNet+ResNet ve M-UNet+DenseNet adlı iki 3B otokodlayıcı modeli 
geliştirilmiştir. Bu modeller, gürültü azaltma yeteneklerini iyileştirmeyi amaçlayan yoğun ve kalıntı bağlantıları entegre 
edilerek geliştirilmiş bir UNet mimarisine dayanmaktadır. Modeller, %3 ila %15 arasında değişen gürültü seviyelerine 
sahip IXI veri setinden T1 ve T2 ağırlıklı MRI görüntüleri üzerinde eğitilmiştir. Modellerin performansları, tepe sinyal-
gürültü oranı, yapısal benzerlik indeksi ölçümü ve ortalama mutlak hata gibi ölçütler kullanılarak değerlendirilmiştir. 
Sonuçlar, her iki modelin de çeşitli seviyelerde gürültüyü etkili bir şekilde azalttığını ve M-UNet+ResNet'in genel olarak M-
UNet+DenseNet'ten daha iyi performans gösterdiğini göstermiştir. Özellikle, M-UNet+ResNet, IXI-HH-T2 ve IXI-Guys-T2 
veri setlerinde sırasıyla 38,72 dB ve 37,04 dB PSNR değerlerine ve 0,82 ve 0,81 SSIM değerlerine ulaşmış olup, bu da modelin 
görüntü kalitesini korumadaki güçlü kabiliyetini göstermektedir. Bu çalışma, DL modellerine kalıntı bağlantılar eklemenin, 
MRI görüntülerinden gürültüyü giderme yeteneklerini ve klinik ortamlarda tıbbi görüntülerin bütünlüğünü korumak için 
bir çözüm sunduğu sonucuna varmıştır. 
Anahtar Kelimeler: Gürültü giderimi, Manyetik rezonans görüntüleme, Derin öğrenme, Artık bağlantı, UNet 
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1. Introduction 

Medical imaging techniques are crucial for the early 
diagnosis of diseases and the effective execution of 
treatments. Various techniques are used to visualize 
structures and functions within the brain, with Magnetic 
Resonance Imaging (MRI) being one of the most 
commonly employed methods [1-4]. Noise removal is a 
fundamental step in numerous computer vision 
applications, including image processing and medical 
imaging. In MRI, various types and levels of noise can 
occur during image acquisition or transmission, which 
may decrease image quality and cause distortion. For this 
reason, noise can impede the accurate interpretation of 
the disease and the determination of appropriate 
treatment. 

In the literature, many methods have been proposed to 
remove noise in digital images [5]. Noise removal 
techniques can typically be categorized into conventional 
methods and those based on deep learning (DL), which is 
the focus of this study. Local smoothing methods in the 
spatial plane and basic filters in the frequency plane are 
commonly used for noise removal. However, these 
traditional filters cannot preserve the fine structures, 
details, and textures in the image, which can lead to 
information loss in MRI images. For this reason, Buades 
and colleagues [6] developed the Non-Local Means 
(NLM) filter, which takes advantage of the redundancy of 
information in the image. Dabov et al. [7] introduced the 
block-matching and 3D filtering (BM3D) method, which 
is an adaptation of the NLM algorithm. The performance 
of the BM3D filter decreases when the noise in the image 
gradually increases, and distortions may occur after 
filtering, especially in flat regions. Manjón et al [8] 
adapted the NLM filter to remove noise in MRI images by 
tuning the optimum parameters of the filter. In their 
study, Krissian and Aja-Fernández [9] developed a 
method based on estimating the standard deviation of 
noise to remove noise. This method combines local linear 
minimum mean square error filters applied to the Rician 
noise distribution with the anisotropic diffusion filter 
proposed by Perona and Malik [10]. While the noise 
removal of the method is successful it requires tuning of 
parameters such as the standard deviation of the 
Gaussian kernel used in filtering. 

Traditional methods used to remove noise in MRI images 
have some challenges and parameters that need to be 
tuned. These challenges include determining the optimal 
window size, avoiding unwanted residuals after noise 
removal, low success in high-noise images, lack of detail 
preservation, and difficulty in parameter optimization 
[11]. To overcome these challenges, DL-based noise 
removal methods have been proposed in recent years. DL 
techniques consume fewer resources, can adapt to 
variable noise types, and are easy to use in clinical 
settings [12].  

When examining the DL models proposed for noise 
removal in the literature [13], they can be categorized 

into Convolutional Neural Network (CNN), Generative 
Adversarial Network (GAN), and autoencoder-based 
models. 

CNN-based denoising methods are used to remove 
different types of noise, especially Gaussian and Rician, 
using CNN, which is one of the widely used DL models in 
image analysis. Zhang et al. [14] proposed the Denoising 
CNN (DnCNN) model to reduce Gaussian noise. In the 
model, batch normalization (BN) was used at the output 
of each layer, and performance was improved through 
residual learning and regularization. Jiang et al. [15] 
proposed two DL models consisting of multi-channel and 
residual-connected convolutional blocks to reduce 
Rician noise in MRI images. By adapting the DnCNN 
model to MRI images, MCDnCNNg models were 
developed for images with unknown noise levels, and 
MCDnCNNs models were developed for images with 
known noise levels. Li et al. [16] reduced noise by 
combining two ResNet models in the RicianNet model, 
where the first ResNet model lacked BN blocks while the 
second had them. Wu et al. [17] introduced the 
3DParallel-RicianNet model, incorporating residual 
dilated convolution (DCR) and residual depthwise 
separable convolution (DSCR) modules to prevent 
volumetric feature loss and extract more local 
information from brain structures. In this context, the 
reviewed studies demonstrate the significant benefits of 
residual connections and BN layers in noise removal. 

GAN-based denoising methods utilize the GAN model, 
which relies on the competition between a generator and 
a discriminator to produce clean images from noisy input 
images. Li et al. [18] suggested the conditional GAN 
(CGAN) model. Input images of the generator were 
obtained by adding gradient information to the noise 
vector. Ran et al. [19] proposed the 3D residual-
connected Wasserstein GAN (RED-WGAN) architecture 
for reducing Rician noise in MRI images while preserving 
structures in the images. The model employed an 
optimization function that combines mean squared error 
(MSE), VGG, and Wasserstein errors for updating weight 
and bias values. When examining GAN-based denoising 
methods, challenges such as mode collapse and vanishing 
gradients between the generator and discriminator 
networks can occur during the learning process which 
may result in noisy images. 

Autoencoder-based denoising methods rely on 
autoencoder models, which compress the input image to 
obtain high-level features and then aim to reconstruct 
clean images using these features. The autoencoder 
model, which is the focus of this study, is widely used in 
noise removal while preserving structural features and 
shows successful performance. Gondara [20] reduced 
noise in medical images using the CNN-DAE model 
containing convolutional blocks and achieved high SSIM 
values. Bermudez et al. [21] removed Gaussian noise in 
2D MRI images with a residual-linked autoencoder 
network and achieved better performance than the 
SUSAN technique in FSL (FMRIB Software Library). 
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Tripathi et al. [22] proposed the CNN-DMRI model 
containing residual links between the encoder and 
decoder to reduce Rician noise and obtained high PSNR 
values for a 15% noise rate. Yang et al. [23] proposed a 
DL model based on Multilayer Perceptron (MLP) and 
autoencoder to reduce noise in 3D MRI images with small 
lesions and obtained high-performance results.  

In this study, we aimed to eliminate Rician noise from 
MRI images, facilitating precise medical image analysis in 
clinical contexts and ensuring accurate disease diagnosis 
and treatment. For this reason, a dataset was first created 
by adding noise at different levels to T1 and T2 weighted 
MRI images from the IXI dataset (http://brain-
development.org/ixi-dataset/). This dataset was used to 
train and test the two modified DL models developed by 
adding residual and dense connections to the UNet model 
in the study. The performance of DL models was 
evaluated with the structural similarity index measure 
(SSIM), peak signal-to-noise ratio (PSNR), and mean 
absolute error (MAE) metrics. 

The remainder of the paper is structured as follows: 
Section 2 explains the materials and the proposed deep-
learning methods. Section 3 presents the results 
obtained from the proposed methods and discusses 
these findings compared with similar studies in the 
literature. Finally, Section 4 covers the conclusions and 
potential directions for future research. 

2. Material and Methods  

In this section, the details of two DL models that are 
modified from the 3D UNet architecture for noise 
removal in 3D MRI images are provided. Additionally, 
information regarding the dataset used for training and 
testing these models is presented. This section also 
includes a comprehensive explanation of the 
performance metrics utilized to evaluate the models, as 
well as details regarding the Rician noise applied to the 
MRI images. 

2.1. Dataset 

The publicly available IXI dataset (http://brain-
development.org/ixi-dataset/) was used for training and 
testing the developed DL models. The IXI dataset 
contains approximately 600 MRI images of healthy 
individuals in T1 and T2 weighted NIFTI(.nii) format, 
gathered from three different hospitals (Guys, HH: 
Hammersmith, and IOP: Institute of Psychiatry). The 
number of IOP samples in the dataset is limited and 
therefore cannot meet the data requirement for 
generalizing a problem in the DL model. For this reason, 
following similar approaches in the literature, DL models 
were trained and tested separately only the T1 and T2 
weighted 3D MRI images from Guys and HH hospitals. 

The T1 and T2-weighted MRI images were divided into 
80% for training and 20% for testing. The original images 
served as the ground truth for the output of the DL model. 
The resolutions of images in the dataset vary, with 
dimensions of 256×256×150 and 256×256×146. To 

ensure compatibility with DL models, all images 
underwent preprocessing during runtime, involving 
zero-padding to standardize the resolution to 
256×256×160. The noisy images, which are the input to 
the network, were created by adding Rician noise at rates 
of 3%, 5%, 7%, 9%, 11%, 13%, and 15% to the original 
images. Rician noise addition was implemented using the 
add_noise() function available in the dipy library 
(https://dipy.org/documentation/1.1.1./reference/dipy.si
ms/#dipy.sims.voxel.add_noise).  

2.2. Rician Noise 

MRI images contain varying levels of noise caused by a 
range of factors, including random fluctuations, 
physiological processes, differences in magnetic 
susceptibilities between adjacent tissues, body 
movements, and environmental conditions. Different 
types of noise, such as Rician noise in MRI, can distort 
image contrast during image acquisition or transmission, 
leading to erroneous diagnoses [24]. Rician noise refers 
to the discrepancy between the actual image intensities 
and the observed data. [25-26]. Rician noise in the MR 
image is as shown in Equation (1).  

𝑌 = 𝐴 + 𝑁     (1) 

Where Y is the image with added noise, A is the original 
image, and N denotes the Rician noise added to the 
original image. The primary purpose of denoising is to 
remove Rician noise, particularly preserving structural 
details with minimal impact on the original image (A). 
The Rician noise is modeled as shown in Equation (2) 
[26]. 

𝑝𝑀(𝑀) =
𝑀

𝜎2 𝑒−(𝑀2−𝐴2) 2𝜎2⁄ 𝐼0(
𝐴.𝑀

𝜎2 )                                        (2) 

In Equation 2, I0 denotes the zero-order Bessel function, 
σ is the standard deviation of Gaussian noise, M 
represents the relevant pixel value of the noisy image, 
and A is the pixel value in the original image at the same 
location. 

2.3. 3D Deep Learning Model 

The UNet architecture consists of the encoder segment, 
which condenses the input image into smaller feature 
maps, and the decoder segment, which converts these 
feature maps back into the input image dimensions, as 
shown in Fig. 1. Residual connections bridging the two 
segments facilitate the network in capturing finer details. 
Fig. 1 illustrates the general framework of the UNet 
architecture [27]. 
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Figure 1. The framework of the UNet architecture [27]  

In this study, a DL model was proposed for removing 
Rician noise in MRI images using the UNet architecture, 
known for denoising, segmentation, and image 
enhancement [28]. The UNet model was modified to 
operate on 3D volumetric MRI images. Fig. 2 illustrates 
the 3D architecture of the proposed model, named M-
UNet. In the M-UNet architecture, ResNet50 [29] and 
DenseNet121 [30] layers were inserted into the latent 
layer between the encoder and decoder blocks of the 
traditional UNet, allowing for more compression of 
features with residual or dense connections [31-35].  

As shown in Fig. 2, the encoder section of the M-UNet 
model comprises four 3D encoder layers. Each of these 
blocks executes 3D convolution, batch normalization 
(BN), Leaky ReLU activation, and max pooling 
operations. The convolution operation is employed to 
detect features in the image using filters. This process 
involves sliding filters of various sizes (e.g., 3x3, 5x5, 7x7) 
across all pixels of the image, resulting in the creation of 
feature maps. Feature maps are regions where specific 
characteristics of the filter are identified. BN is utilized to 
normalize the values within the feature maps, thereby 
enhancing their consistency. Non-linear activation 
functions (such as Leaky ReLU, ReLU, sigmoid, softmax, 
etc.) are essential in deep learning to introduce non-
linear real-world features to the network. ReLU zeros out 
the negative values of neurons while retaining the 
positive values as they are. In contrast, Leaky ReLU 
preserves the negative values by multiplying them with a 
small slope while retaining the positive values as they 
are. Leaky ReLU addresses the dead neuron and gradient 
vanishing problems associated with negative values in 
ReLU. The pooling layer reduces the dimensions of the 
feature maps, thus decreasing the number of parameters. 
The primary goal here is to preserve significant 
information while reducing the size. In commonly used 
max pooling and average pooling, the maximum or 
average value within the window slid over the feature 
map is taken, respectively, to reduce the size [28].  

As shown in Fig. 2, the decoder section of the M-UNet 
model consists of four 3D decoding layers. Each of these 
layers performs 3D transposed convolution 
(Conv3DTranspose), the addition of features from the 
encoding block, 3D convolution, batch normalization 
(BN), and Leaky ReLU operations. The transposed 
convolution layer enables the reconstruction of higher-
resolution features from the encoded features by 
multiplying the input data with filter values. The addition 
layer combines the features from the encoding layer, 
received via skip connections, with those obtained 
through transposed convolution, thereby optimizing the 
gradient flow between layers.  In the final decoder layer, 
a single-filter 3D convolution is applied with a sigmoid 
activation function, resulting in an output image that 
matches the volumetric dimensions of the input image 
[28]. 

2.4. Performance Metrics 

In the study, the similarity between the real images and 
the noise-free images obtained by the DL model was 
determined using PSNR, SSIM, and MAE metrics.  

PSNR is determined based on the relationship between 
the maximum value of the image and MSE, as outlined in 
Equation (1).  

𝑃𝑆𝑁𝑅 = 10. log10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                                       (1) 

𝑀𝑆𝐸 =  
1

𝑚× 𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0                    

Where 𝐼 and 𝐾 represent the original and the noise-free 
image, respectively, while 𝑚 and 𝑛 denote the width and 
height of the images.  

SSIM determines the structural similarity and perceptual 
image quality between images by comparing their 
luminance, contrast, and structural features, as described 
in Equation (2). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+ 𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                        (2)                 

Here x and y are the images being compared, and the 
values 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦, and 𝜎𝑥𝑦 represent the mean of pixel 
intensities, standard deviation, and covariance of the 
images, respectively. 

MAE is obtained by calculating the absolute difference 
between the predicted and the actual values, as detailed 
in Equation (3).   

𝑀𝐴𝐸 =  
1

𝑚 𝑛
∑ ∑ |𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)|𝑛−1

𝑗=0
𝑚−1
𝑖=0         (3)                                           

3. Experimental Results  

In the IXI open dataset, 3D T1 and T2 MRI images from 
Guys and HH hospitals were divided into training and 
testing datasets with an 80% to 20% split for the DL 
models. The testing data were also utilized as validation 
data to prevent the networks from overfitting. Rician 
noise was added to the images at levels of 3%, 5%, 7%, 
9%, 11%, 13%, and 15%. The noisy images served as 
inputs, while the original images served as outputs for 
the DL models.  



Rukiye Karakis, Tugba Topdag 
Noise Removal in Magnetic Resonance Imaging Using 3D Deep Learning Model 

 

35 

 

 

 
Figure 2.  Proposed 3D M-UNet architecture for noise-removal [28]. 

The models were implemented and analyzed using 
Python 3.9, along with the Keras and Tensorflow 
libraries. The analysis of the BM4D filter [7, 36] was 
conducted using the MATLAB development 
environment. The experiments were carried out on a 
system equipped with an NVIDIA RTX A6000 48 GB GPU, 
an Intel i9-12900KS @ 3.40 GHz CPU, and 64 GB of RAM. 
The Adam optimization algorithm, in conjunction with 
dropout and L2 regularization, was used to update the 
free parameters, including weights and biases, and to 
prevent overfitting. The learning rate, momentum 
coefficient, and weight decay were set to 0.001, 0.8, and 
0.00001, respectively. The models were trained for 50 
epochs with a batch size of 4. 

The following subsections present the performance of 3D 
UNet-based DL models in denoising T1 and T2-weighted 
images from the IXI-Guys and IXI-HH datasets, across 
varying levels of noise. Additionally, a discussion is 
provided on the comparison of these models' 
performance with similar studies in the literature, 
highlighting both their strengths and limitations in the 
context of noise reduction. 

3.1.  Results for the IXI-Guys Dataset 

Table 1 presents the performance results of the M-UNet, 
which has been modified with ResNet and DenseNet in its 
latent layers, for noisy T1 and T2-weighted test MRI 
images from the IXI-Guys dataset. For T1-weighted 
images, the M-UNet+ResNet model's PSNR values ranged 
from 40.52 at 3% noise to 34.17 at 15% noise, while SSIM 
values decreased from 0.95 to 0.88. Similarly, the M-

UNet+DenseNet model showed a decline in PSNR from 
40.23 to 34.26 and SSIM from 0.95 to 0.85.  

In T2-weighted images, the M-UNet+ResNet model 
demonstrated a higher starting PSNR of 47.90 at 3% 
noise, decreasing to 38.72 at 15% noise, with SSIM values 
dropping from 0.95 to 0.82. The M-UNet+DenseNet 
model followed a similar trend, with PSNR values 
decreasing from 47.37 to 38.20 and SSIM from 0.95 to 
0.85. Overall, T2-weighted images exhibited higher initial 
PSNR and SSIM values compared to T1-weighted images, 
indicating potentially better baseline image quality. 
Additionally, the M-UNet+ResNet model generally 
outperformed the M-UNet+DenseNet model in 
maintaining higher PSNR and SSIM values across varying 
noise levels, though the differences were modest. 

Fig. 3 shows the loss values (binary cross-entropy) 
calculated by the DL models for different noise levels. As 
observed in Figures 3, the loss values of the DL models 
increased as the noise level rises. Fig. 4 illustrates the 
axial slice of a T2-weighted test MRI image from the IXI-
Guys dataset along with images with added noise levels 
of 5%, 9%, and 15%. It also includes the predicted images 
obtained using the M-UNet+ResNet and M-
UNet+DenseNet models. The results indicated that while 
the performance of both models in removing different 
noise levels was comparable, the M-UNet+ResNet model 
performed slightly better overall. 
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Table 1. Performance results for noisy T1 & T2-weighted test MRI images from the IXI-Guys dataset. 

Noise 
Ratio 

T1-weighted MRI images T2 weighted MRI images 

M-UNet+ResNet M-UNet+DenseNet M-UNet+ResNet M-UNet+DenseNet 

PSNR(dB*) SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE 

3% 40.52 0.95 0.007 40.23 0.95 0.008 47.90 0.95 0.005 47.37 0.95 0.005 

5% 37.66 0.90 0.010 37.74 0.94 0.010 42.92 0.91 0.008 43.64 0.91 0.008 

7% 36.78 0.90 0.011 37.16 0.92 0.011 42.78 0.92 0.009 40.33 0.88 0.011 

9% 36.47 0.92 0.012 35.16 0.90 0.014 41.47 0.88 0.011 40.83 0.87 0.012 

11% 35.64 0.91 0.013 35.21 0.90 0.013 41.07 0.88 0.013 39.77 0.83 0.015 

13% 34.57 0.88 0.015 34.69 0.89 0.014 40.46 0.87 0.015 39.64 0.84 0.016 

15% 34.17 0.88 0.015 34.26 0.88 0.015 38.72 0.82 0.018 38.20 0.85 0.017 

Average 36.54 0.91 0.012 36.35 0.91 0.012 42.19 0.89 0.011 41.40 0.88 0.012 

SD** 2.14 0.02 0.002 2.13 0.02 0.002 2.89 0.04 0.004 3.11 0.04 0.004 

              *dB: decibel, **SD: standard deviation  

(a)     (b) 

Figure 3. Loss values computed for T1 & T2-weighted MRI images in the IXI-Guys dataset. 

 

Figure 4. Original T2-weighted MRI axial slice from the 
IXI-Guys dataset, (a) noisy image, (b) M-UNet+ResNet 

prediction, (c) M-UNet+DenseNet prediction. 

3.2. Results for the IXI-HH Dataset  

Table 2 provides the performance metrics for the M-UNet 
models on noisy T1 and T2-weighted test MRI images 
from the IXI-HH dataset. As the noise ratio increases, 
both models exhibited a decline in PSNR and SSIM values, 
indicating a reduction in image quality, while MAE values 
increased, reflecting higher prediction errors.  

For T1-weighted images, the PSNR for the M-
UNet+ResNet model decreased from 42.35 dB to 34.74 
dB and the SSIM from 0.96 to 0.85, whereas the M-
UNet+DenseNet model showed similar trends with PSNR 
dropping from 42.48 dB to 34.85 dB and SSIM from 0.96 
to 0.84. In the case of T2-weighted images, the M-
UNet+ResNet model's PSNR decreased from 46.71 dB to 
37.04 dB and SSIM from 0.96 to 0.81, while the M-
UNet+DenseNet model's PSNR dropped from 46.72 dB to 
34.93 dB and SSIM from 0.96 to 0.78.  

Figure 5 illustrates the loss values calculated by the 
models across various noise levels, showing that these 
values generally escalate as the noise level intensifies. It 
was observed that the error values produced by the 
models were particularly high for the noise levels of 13% 
and 15%, compared to the other noise levels. 

 

 

 

0,214

0,215

0,216

0,217

0,218

0,219

0,220

0,221

0,222

3 % 5 % 7 % 9 % 1 1 % 1 3 % 1 5 %

DenseNet

ResNet

0,134

0,136

0,138

0,140

0,142

0,144

0,146

0,148

0,150

3 % 5 % 7 % 9 % 1 1 % 1 3 % 1 5 %

DenseNet

ResNet



Rukiye Karakis, Tugba Topdag 
Noise Removal in Magnetic Resonance Imaging Using 3D Deep Learning Model 

 

37 

 

Table 2. Performance results for noisy T1 & T2-weighted test MRI images from the IXI-HH dataset. 

Noise 

Ratio 

T1-weighted MRI images T2-weighted MRI images 

M-UNet+ResNet M-UNet+DenseNet M-UNet+ResNet M-UNet+DenseNet 

PSNR(dB*) SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE 

3% 42.35 0.96 0.005 42.48 0.96 0.005 46.71 0.96 0.004 46.72 0.96 0.004 

5% 39.78 0.93 0.008 39.90 0.93 0.008 45.80 0.94 0.006 44.68 0.94 0.006 

7% 38.76 0.92 0.009 38.53 0.92 0.009 42.23 0.91 0.008 41.69 0.88 0.009 

9% 37.23 0.87 0.011 37.56 0.89 0.010 40.86 0.90 0.009 40.68 0.88 0.011 

11% 35.82 0.88 0.012 37.27 0.90 0.010 40.34 0.88 0.011 38.34 0.85 0.013 

13% 36.18 0.87 0.012 35.76 0.87 0.012 39.19 0.88 0.012 37.35 0.82 0.017 

15% 34.74 0.85 0.014 34.85 0.84 0.015 37.04 0.81 0.017 34.93 0.78 0.020 

Mean 37.84 0.90 0.010 38.05 0.90 0.010 41.74 0.90 0.009 40.63 0.87 0.011 

SD** 2.63 0.03 0.003 2.56 0.00 0.003 3.48 0.04 0.004 4.14 0.06 0.005 

                   *dB: decibel, **SD: standard deviation 

   (a)      (b) 

Figure 5. Loss values computed for T1 & T2 weighted MRI images in the IXI-HH dataset. 

 

Figure 6. Original T1-weighted MRI axial slice from the 
IXI-HH, (a) noisy images, (b) M-UNet+ResNet prediction, 

(c) M-UNet+DenseNet prediction. 

Figure 6 shows the axial slice of a T1-weighted test MRI 
image from the IXI-HH dataset, along with images with 

added noise levels of 5%, 9%, and 15%, and the 
corresponding predictions obtained using M-
UNet+ResNet and M-UNet+DenseNet.  Overall, the M-
UNet+ResNet model had slightly better image quality 
metrics than the M-UNet+DenseNet model, despite both 
showing a similar decline in performance as noise levels 
increase. 

In Figure 7, Grad-CAM activation maps were provided to 
demonstrate the models' explainability between the 
predicted and ground truth outputs. As noise levels 
increased, the results from DenseNet showed less 
effective noise targeting, with more diffused activations. 
In contrast, at lower noise levels, both models produced 
comparable results. M-UNet+ResNet generally showed 
more concentrated and focused activations, targeting 
noise effectively in specific regions while preserving 
structural details. This indicated its superior 
performance in denoising and maintaining image quality. 
On the other hand, M-UNet+DenseNet had a broader 
approach with less localized noise reduction. 
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Figure 7. Grad-CAM activation maps of DL models for 
various noise levels, a) noisy image, b) M-
UNet+DenseNet, c) M-UNet+ResNet.  

3.3. Literature Comparison 

Table 3 compares the PSNR values obtained for noise 
removal using different DL models on the IXI dataset, 
including the proposed M-UNET+ResNet and M-
UNET+DenseNet models. As the noise levels in the 
images increase, particularly at 11%, 13%, and 15%, the 
performance metrics decrease compared to lower noise 
levels. This is because higher noise levels make it difficult 
to distinguish the structures in the images from the noise, 
leading to significant losses in essential structures during 
the noise removal process. As seen in Table 3, the highest 
PSNR results reported in the literature were achieved 
using the MCDnCNNs model proposed by Zhang et al. 
[14], with a value of 31.62 dB for the 15% noise level. The 
RED-WGAN model [19], tested on both the IXI-HH-T1 

and IXI-HH-T2 datasets, achieves PSNR values of only 
29.55 dB and 29.79 dB at 15% noise. 

In contrast, the proposed M-UNet+ResNet model showed 
PSNR values between 42.35 dB and 34.74 dB on the HH-
T1 dataset, and between 46.71 dB and 37.04 dB on the 
HH-T2 dataset. This indicated strong performance, 
particularly for lower noise levels, with a slight decline as 
noise increased. Similarly, the M-UNet+DenseNet model 
performed comparably, with PSNR values ranging from 
42.48 dB to 34.85 dB for HH-T1 and from 46.72 dB to 
34.94 dB for HH-T2. In addition, the proposed models 
have achieved better results compared to the traditional 
3D-UNet in terms of PSNR values at various noise levels, 
as can seen in Table 3. 

Table 3. Comparison of PSNR values for the proposed 
DL models with existing literature 

DL model DS* 3% 5% 7% 9% 11% 13% 15% 

MCDnCNNg 

[14] 

HH-T1 39.38 37.12 35.40 33.86 32.54 31.10 29.96 

MCDnCNNs 

[14] 

HH-T1 40.47 37.82 36.20 34.71 33.56 32.57 31.62 

RED-WGAN 

[19] 

HH-T1 36.52 34.46 33.03 33.03 32.14 30.60 29.55 

RED-WGAN 

[19] 

HH-T2 38.57 36.22 34.57 33.09 31.91 30.76 29.79 

UNET-3D HH-T1 42.02 39.90 38.34 37.69 37.20 34.14 34.08 

UNET-3D HH-T2 46.42 45.31 42.67 39.61 40.22 38.52 34.82 

M-UNET+ 

ResNet 

HH-T1 42.35 39.78 38.76 37.23 35.83 36.18 34.74 

M-UNET+ 

DenseNet 

HH-T1 42.48 39.90 38.53 37.56 37.27 35.77 34.85 

M-UNET+ 

ResNet 

HH-T2 46.71 45.80 42.23 40.86 40.34 39.19 37.04 

M-UNET+ 

DenseNet 

HH-T2 46.72 44.68 41.69 40.68 38.34 37.35 34.94 

*DS: dataset 

Table 4 presents the performance results of the M-UNET 
models compared to the BM4D filter [7, 36], which is 
commonly used for noise removal in MRI images. The 
analyses were conducted under the same conditions 
using the test data employed for evaluating the DL 
models. According to Table 4, both proposed models 
outperformed the BM4D filter in terms of PSNR values. 
According to Tables 3 and 4, the M-UNET+ResNet and M-
UNET+DenseNet models, which have been modified with 
residual connections, demonstrate generally high 
performance in noise removal. In this context, the results 
indicated that the M-UNET+ResNet model, in particular, 
outperformed existing methods in the literature, 
effectively preserving structural details in the images. 
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Table 4. Comparison of PSNR values between the BM4D 
filter and the proposed DL models 

DS* Method 3% 5% 7% 9% 11% 13% 15% Mean SD** 

G
u

y
s-

T
1

 

BM4D 31.43 27.71 24.99 22.88 21.15 19.68 18.41 23.75 4.63 

M-UNET 
+ResNet 

40.52 37.66 36.78 36.47 35.64 34.57 34.17 36.54 2.14 

M-UNET 
+Dense 
Net 

40.23 37.74 37.16 35.16 35.21 34.69 34.26 36.35 2.13 

G
u

y
s-

T
2

 

BM4D 31.57 27.58 24.74 22.55 20.77 19.28 17.99 23.50 22.34 

M-UNET 
+ResNet 

47.90 42.92 42.78 41.47 41.07 40.46 38.72 42.19 2.89 

M-UNET 
+Dense 
Net 

47.37 43.64 40.33 40.83 39.77 39.64 38.20 41.40 3.11 

H
H

-T
1

 

BM4D 32.03 27.86 24.97 22.76 20.97 19.46 18.17 23.75 4.92 

M-UNET 
+ResNet 

42.35 39.78 38.76 37.23 35.83 36.18 34.74 37.84 2.63 

M-UNET 
+Dense 
Net 

42.48 39.90 38.53 37.56 37.27 35.76 34.85 38.05 2.56 

H
H

-T
2

 

BM4D 32.09 27.73 24.76 22.51 20.70 19.18 17.87 23.55 5.04 

M-UNET 
+ResNet 

46.71 45.80 42.23 40.86 40.34 39.19 37.04 41.74 3.48 

M-UNET 
+Dense 
Net 

46.72 44.68 41.69 40.68 38.34 37.35 34.93 40.63 4.14 

*DS: dataset, **SD= standard deviation 

The comparison of models in terms of average prediction 
time was performed on the HH-T2 test data. Accordingly, 
the number of trainable parameters for the M-
UNET+ResNet and M-UNET+DenseNet models are 
2,088,925 and 6,920,009, respectively. The average 
prediction times for the M-UNET+ResNet, M-
UNET+DenseNet models, and the BM4D filter are 3.10 
seconds (±0.04), 4.02 seconds (±0.05), and 21.80 
seconds (±0.67), respectively. The M-UNET+ResNet 
model is more efficient than the M-UNET+DenseNet and 
the BM4D filter, offering faster prediction times and 
fewer trainable parameters, making it the better choice 
for computationally efficient applications. 

Although the developed model demonstrated high 
performance, the study has certain limitations. First, the 
experiments used the IXI dataset, a robust and diverse 
dataset containing various T1 and T2-weighted MRI 
images from different hospitals and devices to enhance 
the model's generalization capability. However, this 
choice may still limit the generalizability of the results 
when applying the model to datasets with different 
acquisition parameters. Second, the models were 
specifically designed for 3D MRI images, leaving their 
performance on 2D MRI images or other imaging 
modalities unexplored. However, it should be noted that 
3D models can achieve better performance due to the 
benefit of neighborhood relationships in the depth 
direction. Additionally, the denoising performance may 
vary when applied to MRI images obtained under 
different scanning conditions or noise characteristics, as 
the models were trained using synthetic noise levels. 
While BM4D was used as a baseline filter for comparison, 

it is important to acknowledge that every filtering 
method has its limitations. However, as shown in Table 
4, the proposed models demonstrated notable 
effectiveness in preserving structural details and 
reducing noise, highlighting their potential to address 
some of the challenges associated with traditional noise 
removal techniques. 

4. Conclusion 

Noise reduction from medical images has become 
recently essential for the accurate diagnosis of diseases. 
This study discusses traditional and DL methods for 
noise removal and evaluates the success of developed DL 
models. A DL architecture similar to the UNet was 
designed, featuring an autoencoder structure with the 
encoder, decoder, and middle latent layers containing 
dense and residual layers from pre-trained ResNet50 and 
DenseNet121 models. These modifications resulted in 
the creation of two methods, M-UNET+ResNet and M-
UNET+DenseNet. The performance of these proposed 
models was evaluated across different noise levels using 
quality metrics such as PSNR, SSIM, and MAE, and they 
were compared to methods found in the literature. The 
proposed models were trained to remove varying noise 
levels, ranging from 3% to 15%, added to the IXI-Guys 
and IXI-HH T1 and T2 MRI images. Generally, M-
UNET+ResNet showed superior results compared to M-
UNET+DenseNet in IXI-HH-T2 and IXI-Guys-T2 datasets, 
while both models produced similar results in IXI-HH-T1 
and IXI-Guys-T1 datasets. T2-weighted images 
performed better than T1-weighted images overall. This 
may be due to the different characteristics and 
applications of T1 and T2-weighted images, where T1-
weighted images provide high soft tissue contrast and 
spatial resolution, useful for anatomical details, while T2-
weighted images highlight pathological changes and 
fluids in the brain. The proposed architectures achieved 
higher PSNR and SSIM values than existing noise removal 
approaches in the literature, indicating that DL models 
with residual connections can significantly enhance 
performance in noise removal. Future research could 
explore the success of specially designed DL models with 
residual connections and custom blocks for noise 
removal, using different loss functions to better preserve 
structural details. Additionally, since patient data were 
not used in this study, the effectiveness of noise removal 
could be tested on medical images from patients with 
lesions. 
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