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 In wireless communication systems, multi-carrier systems are used to use the 

limited frequency band in the most efficient way and thus increase spectral 

efficiency, allowing for high-speed data transmission. In this study, the 

Universal Filtered Multi-Carrier (UFMC) technique is considered a multi-

carrier system that minimizes the intra-channel interference problem by 

dividing the bandwidth into many sub-bands and filtering only the lower 

sidebands in addition to high-speed data transmission. In addition, in this 

study, symbol detection in UFMC systems is carried out by taking advantage 

of the learning ability of deep learning methods, flexibility to solve non-

linear problems, and reducing hardware load by using fewer parameters and 

parallel processing capabilities. The proposed LSTM and CNN-based deep 

learning methods provide lower Bit Error Rate (BER) values even at low 

Signal-to-Noise Ratio (SNR) levels than traditional symbol detection 

algorithms and significantly increase the system's symbol detection 

performance under difficult channel conditions. In this way, the spectral 

efficiency and overall communication performance of UFMC systems are 

improved. 
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 Kablosuz haberleşme sistemlerinde, sınırlı frekans bandını en verimli şekilde 

kullanmak ve böylece spektral verimliliği artırmak, yüksek hızlı veri 

iletimine olanak sağlamak için çoklu taşıyıcılı sistemler kullanılır. Bu 

çalışmada, yüksek hızlı veri iletiminin yanı sıra bant genişliğini birçok alt 

banda bölerek ve yalnızca alt yan bantları filtreleyerek kanal içi girişim 

sorununu en aza indiren bir çoklu taşıyıcı sistemi olan Evrensel Filtreli Çoklu 

Taşıyıcı (UFMC) tekniği ele alınmıştır. Ayrıca bu çalışmada, derin öğrenme 

yöntemlerinin öğrenme yeteneğinden, doğrusal olmayan problemleri çözme 

esnekliğinden ve daha az parametre ve paralel işleme kabiliyetleri kullanarak 

donanım yükünü azaltmasından yararlanılarak UFMC sistemlerinde sembol 

tespiti gerçekleştirilmiştir. Önerilen LSTM ve CNN tabanlı derin öğrenme 

yöntemleri, düşük Sinyal-Gürültü Oranı (SNR) seviyelerinde bile geleneksel 

sembol tespit algoritmalarından daha düşük Bit Hata Oranı (BER) değerleri 

sağlar ve sistemin sembol tespit performansını zorlu kanal koşulları altında 

önemli ölçüde artırır. Bu şekilde, UFMC sistemlerinin spektral verimliliği ve 

genel iletişim performansı iyileştirilmiştir. 
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1. INTRODUCTION 

Recently there has been a significant increase in mobile data traffic. In the future, with the increasing number of 

intelligent and similar human-centered devices, as well as the widespread use of the Internet of Things technology, 

mobile internet will become an important part of our lives. This situation is also accelerating the development of 

next and new-generation communication technologies. In addition to meeting mobile user needs, the integration 

of Internet of Things (IoT) technology and the seamless provision of communication between objects depend on 

the development of next-generation wireless communication systems that offer high data rates and spectral 

efficiency.[1]  

One of the important problems of wireless communication systems is their sensitivity to multipath fading. The 

ability to resist multipath fading and at the same time provide high-speed data transmission makes multicarrier 

systems preferred for wireless data transmission. In this context, the Orthogonal Frequency Division Multiplexing 

(OFDM) technique forms the basis of many high-speed communication systems. However, OFDM systems are 

sensitive to time-frequency shifts and multipath delays, and the Cyclic Prefix (CP) used to alleviate these problems 

reduces the spectral efficiency of the system. In addition, OFDM's use of square waveforms can lead to the 

formation of wide sidebands and data corruption when synchronization between subcarriers is not provided [2]. 

To eliminate the mentioned drawbacks of the OFDM system, the use of Universal Filtered Multicarrier (UFMC) 

waveform is recommended in next-generation communication systems. Unlike OFDM, in the UFMC technique, 

the bandwidth is split into numerous subbands, and the subbands containing multiple carriers are filtered. As a 

result, instead of filtering the entire band, only the subbands are filtered, reducing distortions even further and 

eliminating potential inter-carrier interference (ICI). Additionally, since this technique does not require CP unlike 

OFDM, it provides higher spectral efficiency, enabling faster data transmission [3-5].  

In wireless communication systems, estimating the channel state response is critical for the correct reception of 

transmitted symbols [6-22]. Traditional algorithms used for symbol detection require full knowledge of the channel 

model and its parameters. However, in some cases, especially when the channel model is quite complex or not 

well understood, the performance of traditional algorithms decreases. Additionally, channel state information 

(CSI), which refers to knowing the instantaneous parameters of the channel model, can mitigate the disruptive 

effects of the channel at the receiver [6-7]. Therefore, traditional techniques based on the channel model require 

the estimation of instantaneous CSI. However, this process not only brings an additional overhead that reduces the 

transmission speed, but also significantly degrades the symbol detection performance in case of incorrect CSI 

estimation [8].  

The estimation of channel inpulse response and data detection rely on classic estimation algorithms such as Least 

Squares (LS), Minimum Mean Square Error (MMSE), Least Square Error (LMS), and Maximum Likelihood (ML). 

Although the MMSE algorithm used in channel estimation has high performance, its practicality in real-time 

circuits is limited due to the requirement for statistical channel data, which is challenging to acquire during real-

time data transmission. While the use of the LS algorithm is easy, its performance is inadequate in fading channels, 

which reduces its usefulness [6-7].  Additionally, even though the ML algorithm outperforms the other techniques, 

its computing increases in direct proportion to the number of antennas in the system when a multiple antenna 

configuration is employed. Therefore, the usability of this algorithm will be limited for MIMO systems [9].  

In recent years, deep learning neural networks have attracted considerably of interest as a potential solution for 

challenging problems in engineering [6-18]. Deep learning focuses on the ability to learn using mathematical 

models called artificial neural networks, which essentially attempt to mimic biological neural networks.  This 

technique involves deep learning models, often referred to as multilayered neural networks. These models are 

capable of learning complex patterns and features on data at a hierarchical level. Deep learning can perform more 

complex tasks than previous machine learning approaches because these models can be optimized to solve 

problems by processing large and diverse data sets [23-27]. 

The deep learning process includes two phases which are the training phase of the model and the inference phase 

of the model. The training phase involves the feeding of the model with a large number of data instances and 

weight update; the inference phase involves prediction of new instances that the model has not encountered before 

[10-27]. Thus, the ability of deep learning neural networks to learn, the ability to process data in parallel, the low 

hardware requirements and the ability to solve nonlinear problems make these methods applicable in many fields. 

Besides, deep learning techniques are able to revolutionize the communication technologies by enhancing their 

intelligence, security and efficiency in tackling wireless communication challenges like symbol detection and 

channel estimation [10-18].  

Deep learning-based communication systems have become the focus of research due to their ability to decipher 

the relationship between channel inputs and outputs without using an explicit channel model, demonstrating 

superior performance not only in symbol detection but also in channel estimation. Furthermore, since these 

techniques are not dependent on the channel model, they can work efficiently even in cases where the model is 

unknown or the parameters cannot be estimated exactly [10,11]. When we consider to the literature, in [11], the 

performance of a signal detector designed with convolutional neural networks was compared with succesive 

interference cancellation (SIC), yielding a better symbol error rate.  Studies in [12,13] have shown that deep 

learning neural networks outperform LS and MMSE methods in terms of bir error rate (BER) performance. In the 

study in [14], a feedback structure based on the receiver's Signal-to-Noise Ratio (SNR) information was created 
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at the receiver side of MIMO systems to learn channel coefficients using deep learning. Also in [15], a type of 

deep learning called long short-time (LSTM) deep learning was proposed for OFDM systems. Investigating 

NOMA systems is another area where deep learning neural networks have been used for symbol detection [16,17]. 

However, while most studies on channel estimation in UFMC systems in the literature focus on traditional 

methods, only a few involve deep learning techniques [18-21]. In [18], pilot tone-assisted channel estimation in 

UFMC systems was investigated, demonstrating the applicability of classical channel estimation methods in 

UFMC, while [19] introduced a new channel estimation method for the uplink of multi-user UFMC systems. In 

another study, traditional channel estimation algorithms in UFMC systems based on comb-type pilot tones were 

compared, and the optimization problem of pilot signals was formulated in closed form [20]. 

The DL-based detector proposed for symbol detection in UFMC systems was provided in [21]. The proposed 

system's performance was evaluated in comparison to that of OFDM systems based on DL and signal detection 

performed using conventional channel estimation methods. The results of these studies clearly demonstrate that 

deep learning neural networks are highly successful at detecting symbols in multicarrier systems. 

In this paper, deep learning techniques are employed to enhance the capability of UFMC systems in dynamic 

environments and to address the limitations of conventional symbol detection and channel estimation techniques. 

Conventional methods assume complete knowledge of the channel model and its parameters, and thus may be less 

effective in scenarios with complex or unknown channel conditions. In this scenario, deep learning-based methods 

are advantageous because they can learn the relationships between the channel inputs and outputs in a more robust 

manner without the need for a channel model. These methods can be adjusted to the changes in channel conditions 

through artificial neural networks and give a better detection of the symbols. In the case of UFMC systems, deep 

learning techniques improve the symbol detection and channel estimation that enhances the spectral efficiency 

thus improving the data transmission rates and offers better performance in various channel environments 

including the multipath fading channel. In this paper, the focus is on the use of deep learning algorithms in order 

to improve the performance of UFMC systems that can be used in wireless communication systems in order to 

transmit reliable and high-quality data. 

2. MATERIAL-METHOD 

2.1. UFMC System Model 

Figure 1 illustrates the configuration of the receiver and transmitter in the UFMC system. When generating UFMC 

signals, the information bits are initially modulated using quadrature amplitude modulation (QAM). Following 

this, the complete QAM symbol vector band is subdivided into NB distinct sub-bands, each of which has a specific 

dimension and does not overlap. The QAM symbols separated into multiple sub-bands are subjected to the N-point 

inverse fast Fourier Transform (IFFT). This process yields the expression of the ith subband in time-space (Eq.1). 

𝑥𝑖(𝑘) =  
1

√𝑁
∑ 𝑋𝑖(𝑛)𝑒𝑗2𝜋𝑛𝑘/𝑁𝑁−1

𝑛=0 ,  0 ≤ 𝑘 ≤ 𝑁 − 1,      1 ≤ 𝑖 ≤ 𝑁𝐵  (1) 

Here,  𝑋𝑖(𝑛) is defined as the signal in the frequency space on the ith subband. Additionally, 𝑛, 𝑁, and 𝑁𝐵 denote 

subcarrier indexes, number of subcarriers, and number of subbands, respectively. Subband signals obtained after 

the IFFT process are filtered using a finite impulse response (FIR) filter. Eventually, the filtered signals are 

collected and the transmitted UFMC signal is 

𝑤(𝑘) = ∑ 𝑤𝑖(𝑘)
𝑁𝐵
𝑖=1 , 0 ≤ 𝑘 ≤ 𝑁 + 𝐿 − 1                                                                                                               (2) 

obtained by the formula. Here, 𝑤𝑖(𝑘) indicates the filtered signal in the ith subband, while L indicates the filter 

length. The 𝑤𝑖(𝑘) is obtained after the filtering process is applied: 

𝑤𝑖(𝑘) =  𝑥𝑖(𝑘) ∗  𝑓𝑖(𝑘),   0 ≤ 𝑘 ≤ 𝑁 + 𝐿 − 1,   1 ≤ 𝑖 ≤ 𝑁𝐵     (3) 

is found by the convolution process. Here, 𝑓𝑖(𝑘) shows the impulse response of the FIR filter used in the ith 

subband to filter the signal 𝑥𝑖(𝑘). 

As depicted in the figure above, the signal processing steps implemented at the receiver end of UFMC system are 

explained. First, the received UFMC signal r(k) is first converted from sequential to parallel form (S/P). At this 

stage, the length of signal is increased up to 2N this is done in the time domain by a process known as padding. 

Expanding the signal to 2N is very important in order to get a better and more precise signal processing and 

representations in frequency domain. This extension leads to the capability of calculating more frequency 

components during FFT process and thus improves the spectral resolution [20]. Then, a 2N-point FFT process is 

applied on the extended signal to get the frequency domain signal. The 2N complex signal components are obtained 

in the form of R(k) vector after the application of FFT process. In this vector only the even placed samples are 

taken and the odd ones are dropped, this is done to get a higher frequency of resolution and better modelling of 

channel effects. The chosen samples are further processed by a frequency domain equalization in order to remove 

the channel distortion and to improve the signal to noise ratio. This equalization process carried out in the 

frequency domain helps in reducing the impairment common with UFMC systems including multipath fading and 

channel distortion. The vector signal at the receiver end is given as X(n) and it contains the symbol information 
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and the demodulator takes this vector and convert it from parallel form to the sequential form. The QAM 

demodulator enables the detection of the original data bits. This process is crucial to enhance the signal detection 

of UFMC systems to improve their performance. Taking the signal to 2N at the receiver end enhances the 

performance of wireless communication systems in that channel estimation and symbol detection is enhanced. 

This method enhances the symbol detection efficiency particularly under different channel conditions thus 

improving the efficiency of UFMC systems [20]. 

 

 
Figure 1. UFMC System Model. 

Considering these, the extension of the UFMC signal to 2N at the receiver end and the FFT process are deemed as 

two important signal processing steps. These processes are intended for ensuring the high level of symbol detection 

accuracy and the minimizing of channel effects. The employment of the signal extension and the FFT is useful in 

combating against the effects of spectral leakage and multipath fading which are normal in multi-carrier systems. 

Nonlinear compensation, frequency domain equalization and QAM demodulation facilitate the removal of 

distortions that may have occurred during transmission and extraction of the original data bits. Thus, these methods 

used in UFMC systems are quite effective to enhance the performance of the state-of-the-art wireless 

communication systems. 

2.2. Convolutional Neural Network (CNN) 

A deep learning technique known as CNN is designed based on the visual perception mechanisms of biological 

organisms. It is a feed-forward and multi-layer approach. CNN is extensively utilized in various domains, 

including pattern recognition, classification, and data prediction. Moreover, it is highly successful in signal 

detection and channel estimation within wireless communication systems. The CNN algorithm employs a multi-

layered approach to analyze images or data, utilizing the complete dataset or its features. The traditional CNN 

architecture usually contains five primary layers: input layer, convolution layer, pooling layer, normalization layer, 

and output layer. The convolution layer is employed to determine the characteristics of the provided input. By 

evaluating the availability of the network in the pooling layer, the network's parameters and computational 

workload are decreased. Ultimately, the classification procedure is executed within the normalization layer [22, 

23]. 

In each dataset, n convolution filters are employed in the convolution and pooling layer of the CNN structure to 

extract n feature vectors.  All feature vectors are collected in the X matrix as shown in Eq. (4). 

𝑋 = 𝑅𝑒𝐿𝑈(𝑑𝑎𝑡𝑎, 𝐴𝑛) (4) 

Here, the information received from the input layer involves several image sequences (𝐴1, 𝐴2, … , 𝐴𝑛). ReLU, on 

the other hand, functions as a non-linear activation function working on neurons. The convolution layer consists 

of a, 𝑊𝑧 ∈ 𝑅𝑑𝑥𝑠filter. Here s is the step size of the filter and d is the feature vector size n. The feature vector created 

by the filter is obtained as shown in Eq. (5). 

𝑉 = 𝑓(𝑐𝑜𝑛𝑣(𝑋. 𝑊𝑧) + 𝑏) (5) 

Here, b is a vector indicating the function's intersection point, which is utilized to carry out the linear classification. 
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The output of the convolution layer is subsampled with the help of the pooling layer. In pooling, the commonly 

used technique is applying a maximum operation to the outcomes of each filter. In Eq. (6), the pooling layer output 

value is obtained. 

𝑋̃ = (max{𝑉}) (6) 

Through the utilization of maximum pooling, minimum values are not given to the network and the processing 

load on the upper layers is reduced. The generated 𝑋̃ feature vector is then transmitted to the normalization layer. 

In conclusion, by preventing breaks or powerful responses that may occur in the feature vector, the normalization 

layer reduces the error rate during the classification process [24]. 

2.3. Long Short-Term Memory (LSTM) 

LSTM is a special type of Recurrent Neural Network (RNN). LSTM is a distinct variant of Recurrent Neural 

Network (RNN). LSTM has the capacity to learn long-term dependencies and stores critical information for 

extended periods. LSTM, which has three types of gate terminals: input gate, forget gate, and output gate, creates 

a new channel between the input and output and ensures that the error value coming from different layers is kept 

constant by backpropagation. On the other hand, the entry gate selects information that needs to be stored, while 

the forget gate selects information that does not need to be stored. The gates which resemble a neuron structure, 

have a network structure that performs the activation function. Therefore, incoming data contains the capability to 

be stored or deleted based on a determined weight. These weights are calculated as the network iterates during the 

learning phase. Through the utilization of this network architecture, the system acquires the ability to receive, 

store, or delete incoming data [25]. 

In the LSTM network, it is first decided which input data will be passed through the network. This decision is 

made by the sigmoid layer called the forget gate. As indicated in Equation (7), the sigmoid layer contains 

information about how much of each input data will be passed by giving values between 0 and 1 [25]. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑊𝑓𝑐𝑡−1 + 𝑏𝑓)               (7) 

Here, 𝑓𝑡, ℎ𝑡, and 𝑐𝑡 show the forgetting gate, hidden layer output, and memory information at time t, respectively, 

while 𝑥𝑡 gives the number of input features. Additionally, 𝑏𝑓 represents the amount of deviation and 𝑊𝑓 represents 

the weight matrix. In the next step, it is decided which new data will be stored. In this step, which is carried out in 

two stages, firstly, the information about which data will be updated is examined with the sigmoid layer, as shown 

in Eq. (8), and in the second step, the new values vector is created as in Eq. (9) using the tanh layer. The status 

update is performed by combining these two statements [26]. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑊𝑖𝑐𝑡−1 + 𝑏𝑖) (8) 

𝑐̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐)   (9) 

The memory update process is shown in Eq. (10). 

𝑐𝑡 = 𝑓𝑐𝑡−1 + 𝑖𝑡𝑐̂𝑡 (10) 

In conclusion, as shown in Eq. (11) and Eq. (12), a sigmoid layer is run again to decide which states of the network 

will be output, while the decision information given by the tanh layer is obtained as output [26]. 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑊𝑜𝑐𝑡−1 + 𝑏𝑜)    (11) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) (12) 

Here, the term 𝑜𝑡  refers to the output. 

3. SIMULATION RESULTS 

In this section, the performances of CNN and LSTM networks, which are deep learning methods, have been 

compared with classical algorithms LS and LMMSE algorithms used in symbol detection. In order to demonstrate 

the performance of the proposed deep learning networks in UFCM systems, evaluations have been conducted 

based on the BER criteria in transmission scenarios of Rican and Rayleigh fading channel models at SNR values 

ranging from 0 to 30 dB. 

Rician and Rayleigh fading channels are channels that are characterised by multipath propagation in wireless 

communication and present a major challenge to symbol detection. In Rician fading channel, the direct Line-of-

Sight (LOS) path is available along with multipath paths. This channel model in general has a better stability 

because a lot of the signal power is contained in the LoS component. In contrast, Rayleigh fading channel 

represents an environment where the LoS component is absent and the amplitude and phase of the signals reach 

the receiver randomly due to the interference of the waves reflected and refracted by the surrounding obstacles; 

this causes the signal power to be more variable and creates a more complex structure for symbol detection. It has 

been stated in the literature that Rician channels have a more stable structure than Rayleigh channels due to 

completely random phase and amplitude changes due to the LoS component [14, 15]. 
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Figure 2 and Figure 3 compare the performances of various symbol detection algorithms (LS, LMMSE, CNN and 

LSTM) under these two different channel conditions. In Figure 2, under Rician fading channel conditions, the 

LSTM algorithm exhibits superior performance by providing lower BER compared to traditional methods (LS and 

LMMSE) and the CNN algorithm. It can be observed that the conventional techniques LS and LMMSE algorithms 

have high BER values in low SNR conditions and are unsuitable for such difficult channel conditions. The LS 

algorithm has the highest BER values, and the performance is poor particularly at low SNR level. Although the 

LMMSE algorithm is better than LS algorithm, it does not offer satisfactory performance under Rician channel 

conditions. On the other hand, CNN and LSTM based techniques offer lower BER results in every SNR level 

indicating a better performance under challenging and dynamic environment including Rician fading channels. 

Specifically, the BER performance of LSTM algorithm is the best among all the algorithms considered in this 

paper. Here, when the BER is 10-1, the SNR gain offered by the LSTM algorithm is 14 dB more than the LS 

algorithm and is 2 dB more than the CNN algorithm which is the next best performing. At BER value of 10-2, the 

LSTM algorithm has a 7. It can be seen that the proposed algorithm achieves 5 dB better SNR gain than the 

LMMSE algorithm and a 2. The proposed method achieves 5 dB better SNR gain than the CNN algorithm. Also, 

when SNR value is 20 dB, it is seen that the BER difference between LSTM and LS algorithms is higher than the 

10-1 ratio. From these results, it can be seen that LSTM has the ability to capture the dependencies in the time series 

data and the changes in the channel characteristics. On the same note, the CNN model offers accurate symbol 

detection despite the low SNR due to the model’s capacity to learn the spatial features of the signal. 

  
Figure 2. BER-SNR values of the estimators over 

Rician Fading Channels. 

Figure 3. BER-SNR values of the estimators over 

Rayleigh Fading Channels. 

To illustrate the performance of the symbol detectors under poor channel conditions, the transmission scenarios in 

Rayleigh channel conditions were depicted in Figure 3. The conventional schemes LS and LMMSE depicted in 

the figure do not yield good results when the channel is severe with high BER and low SNR. LS reduction has the 

highest BER values and proves that the system performance is poor at low SNR values. Although LMMSE 

program is better than LS, still it is not very efficient in Rayleigh channel conditions. On the other hand, the deep 

learning based models CNN and LSTM offer better BER performance for the complex and variable, as in the case 

of Rayleigh fading channel, with the provision of lower BER in all SNR bands. 

Of all the proposed results, the LSTM programs especially give the minimum BER values and give the highest 

probability of symbol detection. From the Figure 3, it can be seen that there is no decline in the performance of 

LSTM even when the channel is noisy. This is because LSTM transition is able to learn the distortions in the data 

flow in the time series and the channel characteristics and thus in most cases including the difficult ones such as 

Rayleigh fading channels, it produces better results than the other channels. For instance, when the BER value is 

10-2, LSTM boosting has a 2 dB better SNR gain than CNN, 4 dB better than LMMSE, and 12 dB better than LS 

illumination. This proves that the use of LSTM technology is more effective in terms of BER than the conventional 

techniques and the CNN technology. This comparison shows that random changes in the signal's amplitude and 

phase make it harder to find symbols in Rayleigh fading channels. The LSTM algorithm, on the other hand, has 

lower BER values than both CNN and traditional algorithms under both channel types. These gains can be 

attributed to the LSTM algorithm’s capacity to learn the dependencies in time series data and its ability to adapt 

to changes in channel properties effectively. 

It can be observed from the both figures that deep learning techniques and especially LSTM outperform classical 

techniques for the Rician and Rayleigh fading channels. This scenario demonstrates the potency and the need to 

apply deep learning-based algorithms in enhancing the symbol detection efficiency. The effectiveness of deep 

learning methods stems from the fact that these methods are able to learn from the data representations that are not 

easily discernable to the human eye. As for LSTM, for instance, it has the ability of capturing long term 

dependencies in time series data, which makes it produce a good performance even in the presence of channel 

variability. The repetitive structure of LSTM enhances the model’s capability to cope with changes in the channel 

conditions and thus improve the symbol detection. Moreover, the deep learning methods do not necessarily require 
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the knowledge of the channel model as is the case with traditional algorithms and this makes the deep learning 

methods to be quite useful even under unknown or complicated channel conditions. Therefore, the results of this 

study indicate that deep learning techniques can enhance the overall performance of wireless communication 

systems by enhancing the reliability and precision of symbol detection, particularly in conditions of multipath 

fading or in situations where spectral efficiency is of paramount importance. 

4. CONCLUSIONS 

In this study, the suitability of LSTM and CNN deep learning architectures to enhance symbol detection in UFMC 

systems was compared and discussed in details. The numerical results derived indicate that both deep learning 

methods deliver better performance than conventional methods. In particular, the BER of the LSTM model was 

the lowest and even in the complex channel conditions and variable SNR, it was 30-50% lower than the BER of 

the traditional LS and LMMSE algorithms. This can be attributed to LSTM’s ability to learn data dependencies 

and channel features for a certain period of time. Therefore, the adaptive nature of LSTM makes it very ideal for 

the dynamic and fading environments. 

On the other hand, the proposed CNN model was able to learn the spatial features from the given images for 

symbol detection and showed relatively better results than all the other models for low SNR levels. Based on the 

results of the study, the CNN method showed a BER improvement of 20-40% over conventional methods which 

enhanced the detection of the signal and the minimisation of the channel interference. Both models enhance the 

performance of symbol detection in various channel conditions thereby enhancing the spectral efficiency and data 

transmission rate of UFMC systems. The numerical results from this work reveal that LSTM and CNN are viable 

and efficient tools for the detection of symbols in UFMC systems. 

These results confirm that deep learning-based methods, especially LSTM and CNN, are powerful tools to improve 

the performance of symbol detection under variable channel conditions. LSTM’s capacity to learn dependencies 

and channel variations in time series data and CNN’s ability to model the spatial properties of the signal make 

both methods superior in difficult channel conditions. Therefore, deep learning methods are expected to be more 

widely used in future wireless communication systems. 
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