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Introduction 

Due to its many benefits, including high energy density, 

power density, extended service life, lack of memory 

effect, and others, lithium-ion batteries have been widely 

used in new energy vehicles and portable electronics since 

the 1990s [1]. Recent years have seen a fast development 

of lithium (Li)-based metal batteries, such as Li-ion 

batteries, Li-S batteries, and Li-air batteries, due to the 

expanding uses of portable devices, electric cars, and smart 

grids. Power Li batteries must have high energy density in 

order to extend the operating mileage of applications like 

electric automobiles [2]. Despite its many benefits, 

consumers firmly believe that better lithium-ion batteries 

will eventually be produced since the current generation of 

these batteries is unable to fully meet business demands. In 

the realm of new energy vehicles, an optimal battery should 

possess not only exceptional cycle performance, high-rate 

capabilities, and a broad operating temperature range, but 

also exceptional safety performance [3]. To create batteries 

that are more affordable, denser, lighter, more powerful, 

and have a larger storage capacity, battery producers are 

always experimenting with novel chemistries. Presently, 

LIB technology has the best energy density among all 

innovative storage methods. For this reason, due to the 

many beneficial features of lithium-ion batteries, their use 

is critical for areas such as energy and production. It's 

remarkable how characteristics like quick charging and a 

temperature operating window between −50 °C and 125 °C 

can be fine-tuned thanks to the huge range of cell designs 

and chemicals. Other advantages of Li-ion batteries are 

their low self-discharge rate, lengthy lifespan, and high 

cycling performance, they can often withstand hundreds of 

charging and discharging cycles [4]. The usual temperature 

range of 20 to 60 °C is sufficient for lithium-ion batteries 

(LIBs) to store energy and function efficiently; however, 

below zero, performance drastically decreases [5]. Even at 

-40 °C, the most frost-resistant batteries continue to 

function, although their capacity drops to around 12%. 

Moreover, cycling at low temperatures speeds up LIB 

aging, which makes long-term battery use in cold climates 

restricted [6]. 

In addition to EVs, LIBs are widely used in a variety of 

portable consumer electronics products and energy storage 

facilities. However, cold temperatures significantly impair 

LIBs' functioning. The discharge capacity of LIBs rapidly 

decreases below 0°C, and they are unable to fulfill the low-

temperature standards necessary for electronic gadgets and 

electric vehicles to operate normally. A study. found that 

at temperatures below -10°C, LIBs lose the most energy 
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ABSTRACT 

 
In this study, the temperature estimation of lithium-ion batteries is proposed by the Chaos Particle Swarm 

Algorithm-Unscented Kalman Filter (UKF). 18650-type lithium-ion batteries are widely used in electric 
vehicles due to their compact design and long life. The accurate estimation of the temperature parameter 

of these batteries is critical for reasons such as balancing the performance and predicting chemical 

degradation. Therefore, in this study, the temperature parameter estimation of an 18650-type lithium-ion 
battery is made by UKF-based methods. Due to the intensive and mathematical processing load of the 

UKF method, the parameter values are determined by Chaos Particle Swarm Optimization (PSO) methods, 

and their estimation performances are compared. The parameter values such as alpha, kappa, and R matrix 
of the UKF method are determined by Particle Swarm Optimization (PSO), Chaos Particle Swarm 

Optimization (CPSO), Comprehensive Learning Particle Swarm Optimization (CLPSO), and 

hyperparameter values determined by trial and error. The hyperparameter values obtained from these four 
different methods were applied to the UKF method separately, and their estimation performances were 

compared. The CPSO-UKF method became the most successful method by reaching an accuracy of 

99.99228% in estimation according to the R2 metric. The success of the proposed method is also given 

with other regression metrics. 
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and capacity [7]. The parameters of lithium-ion batteries 

are very important for the safe use of batteries under 

different temperature conditions. Since the temperature 

parameters of lithium-ion batteries cannot be determined 

reliably and healthily, critical problems such as incorrect 

prediction of battery life and energy management arise. 

Estimation methods for lithium-ion battery parameters are 

similar. For this reason, many studies have been conducted 

in the literature on this issue. For real-world Battery 

Management System (BMS) [8], [9] applications, it was 

presented a particle filter-based co-estimation approach for 

state of charge (SOC) [10] and state of heath (SOH) [11] 

based on the mathematically complicated P2D model, 

which has a time-delayed response [12]. A chaotic firefly-

particle filtering technique was developed, which mimics 

the way in which fireflies naturally interact with one 

another by using light to achieve particle optimization. In 

order to perform high-precision SOC and SOH co-

estimations, it discovers a new optimal solution by 

chaotically mapping a set of particles to distinct solution 

spaces [13]. For the purpose of co-estimating the SOC and 

SOH of lithium-ion batteries, a study was given that 

suggested a backpropagation neural network-dual 

extended Kalman filter (DEKF) technique based on the 

limited memory recursive least squares (LMRLS) 

algorithm. By accounting for the coupling impact between 

SOC and SOH, the backpropagation neural network is 

utilized to perform synergistic estimation, which enhances 

the tracking accuracy of the DEKF technique [14]. An 

adaptive extended H-infinity filtering approach using a 

particle swarm optimization network was reported in a 

study. This method creatively makes use of the monitoring 

of the battery's aging characteristics in terms of capacity 

and power fading for SOC and SOH estimates [15]. 

Since lithium-based batteries have an important place 

today, their importance is increasing in the future due to 

more consistent use of energy. As a result of the literature 

research, together with the importance of the above-

mentioned issue and the problems that arise, it has been 

concluded that the temperature estimation of lithium-ion 

batteries is very important. In addition, it has been 

concluded that this problem has not been solved while 

determining the hyperparameter values of the UKF method 

with trial-and-error methods while determining the 

parameters of lithium-based batteries. For this reason, in 

this study, a solution has been provided to this problem by 

determining the hyperparameter values with the PSO, 

CPSO, and CLPSO methods in the UKF method while 

estimating the parameters of 18650-type lithium-ion 

batteries. In this study, the temperature parameter 

estimation performances of the PSO-UKF, CPSO-UKF, 

and CLPSO-UKF methods of the 18650-type lithium-ion 

battery have been compared and presented. The 

hyperparameter values of the UKF method have been 

determined successfully with all optimization methods, 

and it has yielded more successful results than the 

traditional UKF. The obtained results have been presented 

with many graphics and regression estimation metrics that 

can be applied in real life. 

Material and Method 

In this study, the dataset was edited using the MATLAB 

program. The obtained edited dataset was used to estimate 

temperature using the Python programming language on a 

computer running the Ubuntu operating system. The 

necessary codes for optimization and filtering were edited, 

and the results were recorded. 

 

Experimental Data 

The battery data used in this study was taken from another 

study published in 2023 [16]. In the experimental study 

conducted in the related study, a total of 25 LIBs were used 

for the test. 5 cells were tested for each SOH condition. An 

RPT was performed on each LIB when aged to 100%, 95%, 

90%, 85%, and 80% SOH values through electrical 

cycling. To measure the retained energy capacity, the LIBs 

were stored in a thermal chamber at 25 °C. They were left 

for one hour to equilibrate. Then, each LIB was charged to 

4.2 V using the C/3 constant current profile, at which point 

the LIB was held at this voltage and charged in constant 

voltage (CV) mode until the value of the charge current 

decreased to C/20. SOH is defined as the ratio of the cell's 

measured energy capacity at a particular cycle number to 

its measured energy capacity at the time of its first 

measurement. The energy capacity of the cell as measured 

at a specific number of cycles is expressed by its current 

capacity. In the relevant dataset, 90% SOH means that the 

battery capacity maintains 90% of its original capacity after 

certain cycles. For this reason, although there is no fixed 

cycle number for each SOH level, when the dataset is 

examined, it is seen that the SOH value is 90.80% in 120 

cycles and 95.06% in 60 cycle numbers for a battery cell. 

The relevant SOH formula is given in Equation 1 [16]. 

Current  

𝑆𝑂𝐻 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 x 100  (1) 

 

The characteristics of the battery used in this study are 

given in Table 1 [17]. 

Table 1. Lithium-ion battery specifications 

Parameter Details 

Nominal Voltage 3.63 V 

Standard Charge 

Constant current   0.3C (1,455mA) 

Constant voltage   4.2V 

End current (Cut off)  50mA 

Weight 68.0 ± 1.0 g 

Energy Nominal 18.20Wh 



DUJE (Dicle University Journal of Engineering) 15:4 (2024) Page 817-825 

 

819 
 

 

The column data of the dataset used in this study is 

visualized in Figure 1. It is observed that the voltage value 

and capacity of the battery increase while charging with 

constant current, and the temperature value also increases. 

The dataset is rearranged to consist of four columns. The 

temperature column is the row estimated by the UKF 

method. 

 

 

Chaos Particle Swarm Optimization 

Both the quality of the solution and the PSO algorithm's 

rate of convergence depend on how the particle swarm is 

initialized. Since there is no previous information 

available, random initialization is often used to establish 

the position and velocity of the particles during the particle 

swarm initialization step. While particle swarms with 

random distributions are somewhat successful, certain 

particles may slow down the algorithm's convergence 

 

Figure 1. Dataset properties 
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because they are too distant from the best answer. In the 

chaotic attraction domain, chaotic motion takes place in a 

variety of states while maintaining the necessary 

unpredictability of particle group initiation. A 

comparatively frequent occurrence in nonlinear systems is 

chaos. The law claims that it can traverse all states within 

a certain range and is ergodic and intrinsically random. 

Equation 2 presents the mapping relationship for a typical 

chaotic system, which is the logistic mapping [18]. 

𝑧𝑖+1 = 𝜇𝑧𝑖(1 − 𝑧𝑖), 𝑧𝑖ϵ(0,1] (2) 

In this case, the control variable is 𝜇. The logistic map 

becomes fully chaotic at 𝜇 = 4, and the resultant chaotic 

variable 𝑧𝑖 exhibits superior ergodicity. 

The logistic chaotic map's bifurcation diagram is seen in 

Figure 2. 

 

Figure 2. CPSO search [18] 

During the search, the particle swarm can be distributed via 

the chaotic map to a random value in the interval [0, 1]. 

Nevertheless, as Figure 1 illustrates, the particles are more 

widely distributed in the region of 0 and 1 via the 

conventional chaotic mapping procedure in Equation 1. 

Because of this, the chaotic distribution is not uniform, 

which makes it impossible for the particles to be distributed 

evenly in the [0, 1] interval during the chaotic search 

process [18]. 

 

 

Unscented Kalman Filter 

When used on a linear model, the Kalman filter is one 

specific kind of recursive Bayesian filter. For use with non-

linear models, the extended Kalman filter (EKF) and 

unscented Kalman filter (UKF) are improvements over the 

Kalman filter. Although the UKF performs better in non-

linear systems and small observed data regimes than the 

EKF, it should be emphasized that it is more 

computationally costly. Developed originally by Julier and 

Uhlman, the UKF is a flexible filter suitable for 

complicated non-linear systems. It makes use of the notion 

of unscented transformation to approximate the statistics of 

non-linear systems that are reasonably complicated. In the 

unscented transformation, a set of sample points is selected 

deterministically in order to mimic the statistical features 

of a random variable. It refers to these as sigma points. To 

perform the non-linear transformation, each sigma point is 

propagated across the non-linear systems. The statistical 

characteristics of the modified random variable are 

represented by these transformed sets of points [19]. Sigma 

points are used in the unscented transformation, as shown 

in Figure 3. 

 

Figure 3. Unscented transformation 
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C represents the updated sigma points, b represents the 

production of symmetric sigma points around the mean, 

and a represents the a priori data. 

KF theory is currently widely applied in various high-tech 

industries, including tracking, guiding, military 

applications, agriculture, and defense. A discrete linear 

time-varying system is given by Equation 3 and Equation 

4. 

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) + 𝑒(𝑘) (3) 

𝑦(𝑘) = 𝐶(𝑘)𝑥(𝑘) + 𝜀(𝑘) (4) 

 

The time step in this case is 𝑘, and the system status, 

control, and output variables are, respectively, 𝑥∈𝑅𝑛, 𝑏∈𝑅𝑟, 

and 𝑦∈𝑅𝑚. Process noise (𝑒) and measurement noise (𝜀) are 

uncorrelated and normally distributed zero-mean white 

noise sequences; 𝑄 and 𝑅 are the variances of 𝑒 and 𝜀, 

respectively. 𝐴, 𝐵, and 𝐶 are matrices with appropriate 

dimensions.  

The UKF method based on unscented transformation (UT) 

was proposed by Julier [20]. UKF adheres to the KF 

structure; however, it expands and maps the Sigma point 

set in a nonlinear manner by projecting the state at the next 

moment. It has three benefits: first, it eliminates the need 

for the laborious computation of the complex nonlinear 

function's Jacobian matrix; second, it ensures the nonlinear 

system's universal adaptability; and third, the noise of the 

Gaussian distribution is reduced as a result of the Gaussian 

distribution's expanding Sigma point set. It specifies the 

UKF-based filtering procedure for the nonlinear time-

varying system shown in Equation 5 and Equation 6. 

𝑥(𝑘 + 1) = 𝑓(𝑘, 𝑥(𝑘), 𝑢(𝑘)) + 𝑒(𝑘) (5) 

𝑦(𝑘) = ℎ(𝑘, 𝑥(𝑘)) + 𝜀(𝑘) (6) 

 

First, UT is used to determine the 2𝑛+1 Sigma sampling 

points and the weights that correlate to them. In this case, 

symmetric distribution sampling with UT is used. The 

situation is given in Equation 7. 

 

𝑋(𝑖)(𝑘 + 1|𝑘) = 𝑓[𝑘, 𝑋(𝑖)(𝑘|𝑘), 𝑢(𝑘)] (7) 

 

Then, the estimation results and covariance matrix of the 

system state variables are obtained as in Equation 8 and 

Equation 9. 

 

�̂�(𝑘 + 1|𝑘) = ∑ 𝑤(𝑖)𝑋(𝑖)(𝑘 + 1|𝑘)

2𝑛

𝑖=0

 (8) 

𝑃(𝑘 + 1|𝑘) = ∑ 𝑤(𝑖)[�̂�(𝑘 + 1|𝑘)

2𝑛

𝑖=0

− 𝑋(𝑖)(𝑘 + 1|𝑘)][�̂�(𝑘 + 1|𝑘)

− 𝑋(𝑖)(𝑘 + 1|𝑘)] 𝑇 + 𝑄 

 

(9) 

To get 2n + 1 predicted observations Y, UT is used once 

more to construct a fresh set of Sigma points and 

accompanying weights based on the anticipated values. 

These values are then inserted into the nonlinear 

measurement function. This situation is given in Equation 

10. 

𝑌(𝑖)(𝑘 + 1|𝑘) = ℎ[𝑘, 𝑋(𝑖)(𝑘 + 1|𝑘)] (10) 

 

The update step is given in Equation 11, Equation 12 and 

Equation 13. 

𝐾(𝑘 + 1) = 𝑃𝑥𝑘𝑦𝑘
𝑃𝑦𝑘𝑦𝑘

−1  (11) 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘)
+ 𝐾(𝑘 + 1)[𝑦(𝑘 + 1)

− �̂�(𝑘 + 1|𝑘)] 
(12) 

𝑃(𝑘 + 1|𝑘 + 1) = 𝑃(𝑘 + 1|𝑘) − 𝐾(𝑘
+ 1)𝑃𝑥𝑘𝑦𝑘

𝐾𝑇(𝑘 + 1) 
(13) 

 

P is the variance, k+1 is time, and f(∗) and h(∗) are the 

nonlinear function parameters [21]. The prediction metrics 

used in this study are given in Equation 22, Equation 23, 

Equation 24. Y is the true value, �̅�  is the mean of the true 

value and 𝑦𝑡
𝑖  is the predicted value [22]. 

𝑀𝑆𝐸 =
1

𝑇
∑(𝑦 − 𝑦𝑡

𝑖)2

𝑇

𝑡=1

 (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑦 − 𝑦𝑡

𝑖)2

𝑇

𝑡=1

 (15) 

𝑀𝐴𝐸 =
1

𝑇
∑|𝑦 − 𝑦𝑡

𝑖|

𝑇

𝑡=1

 (16) 

𝑅2 =
∑(𝑦𝑡

𝑖 − 𝑦)2

∑(�̅� − 𝑦)2
 (17) 
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Results 

It is critical that the temperature estimation of the lithium-

ion battery is done by unscented Kalman filter-based 

methods. In this study, the hyperparameter values of the 

Unscented Kalman Filter Method are determined quickly 

by PSO and improved PSO methods, and then the battery 

temperature estimation is made. Table 2 shows the results 

found by PSO optimization and its derivatives for the 

sought parameter values of the UKF method in this study. 

The population number was determined as 50 for all 

optimization methods. 

In Figure 4, the exploration and exploitation processes in 

the C-PSO method are presented graphically and the 

process of searching for a suitable solution in the 

optimization method is visualized. It is seen that the 

optimization method successfully achieved the stage of 

reaching a suitable solution by establishing a balanced 

search for the two concepts. 

 

 

Figure 4. Hyperparameter search process of the CPSO-

UKF method. 

Table 3 shows the estimation success of the methods 

obtained by applying the hyperparameter values found by  

the optimization methods for the UKF method. When the 

lowest error was evaluated according to the MAE metric, 

the CPSO-UKF method made the least error with a value 

of 0.0000368. The UKF method was the method that made 

the most errors in prediction compared to the other 

methods. The PSO-UKF method made less error in 

Method MSE RMSE MAE R2 

UKF 0.0172722 0.1314238 0.0012692 0.9463256 

PSO-UKF 0.0000251 0.0050155 0.0000370 0.9999218 

CPSO-UKF 0.0000248 0.0049817 0.0000368 0.9999228 

CLPSO-UKF 0.0001376 0.0117342 0.0000871 0.9995721 

 

 Alpha              Kappa                 R 

Method Search Area Found Search Area Found Search Area Found 

PSO 0.0001-0.1 0.0780940 0- 20 6.2504753 0.1-100 0.1006981 

C-PSO 0.0001-0.1 0.0515949 0- 20 2.2726251 0.1-100 0.0000771 

CL-PSO 0.0001-0.1 0.0656085 0- 20 19.0 0.1-100 0.2455204 

 

 Table 2. Found hyperparameter by optimization method 

Table 3. Estimation results of UKF methods 
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prediction than the CLPSO-UKF method, with a value of 

0.005013% according to the MAE metric. In Figure 5, a 

detailed comparison of the real value and the estimated 

values of the CPSO-UKF method is made. The CPSO-

UKF method made a very small error in prediction from 

the real value with a value of 0.002482% according to the 

MSE metric. The temperature of the lithium-ion battery 

was successfully estimated using the Unscented Kalman 

Filter method. 

All methods achieved more successful results than the 

normal UKF method. The CPSO -UKF method was the 

most successful method in temperature estimation with a 

value of 99.99228% according to the R2 metric. The PSO-

UKF method achieved more successful results than the 

standard UKF method. The CLPSO-UKF method achieved 

0.03497% less success according to the R2 metric than the 

PSO-UKF method. 

Figure 5 provides the actual temperature value, and the 

temperature estimate by the using CPSO-UKF method. It 

is seen that the difference between the estimated value and 

the actual value is very small. 

 

Conclusion 

As the use of lithium-based batteries increases day by day, 

the improvement of energy consumption and performance 

of these batteries has become critical. In this study, 

temperature estimation of an 18650-type lithium-ion 

battery was made with UKF-based methods. Since the 

hyperparameter determination process is long and tiring, 

alpha, kappa, and R matrix values, which are among the 

most important hyperparameter values of the UKF method, 

were determined with PSO, CPSO, and CLPSO methods. 

In the hyperparameter search process, the population 

number was set as 50 for all optimization methods. By 

applying the obtained hyperparameter values to the UKF 

method, the lithium battery temperature estimation 

performances of the UKF, PSO-UKF, CPSO-UKF, and 

CLPSO-UKF methods were compared. All methods based 

on PSO optimization achieved more successful results 

compared to the standard UKF method. According to all 

experiments, the CPSO-UKF method was suggested as the 

most successful method with the least estimation error with 

a value of 0.49817% according to the RMSE metric. The 

process of finding the appropriate solution and the 

temperature estimation process of the proposed method 

were presented with different visuals and estimation 

metrics, and their success was presented. The author is 

considering using metaheuristic optimization methods in 

the lithium battery-based parameter estimation process 

with the particle filter method in future studies. 
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