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   Abstract 
 

Temperature measurement is critical in many aspects such as system safety, quality control, energy 

saving, and system performance.    In industrial applications, temperature control is vital to prevent 

equipment from overheating and ensure worker safety. In energy management, energy savings are 

achieved by increasing the efficiency of heating, cooling, and air conditioning systems. Preventing 

overheating of electronic devices prolongs the performance and lifetime of these devices. In the health 

sector, temperature measurement is required for patient monitoring and correct operation of medical 

devices. In addition, in scientific research and the development of new technologies, temperature control 

is indispensable for the accuracy and reliability of experiments. In this context, temperature 

measurement is an essential component of maintaining operational excellence and safety standards in 

many industries.  

In this study, ambient temperature measurement is performed with an STM32F407VG microcontroller 

using an LM35 temperature sensor. The response of the LM35 temperature sensor is noisy due to light, 

radiation, high-frequency signals, etc. The noise from the sensor measurements was minimized by a 

Kalman filter design. These noises can be reduced by software or hardware filters. Hardware filters 

increase the system cost. In this study, a Kalman filter, which is one of the software filters, was used. A 

comparison between the Kalman filter and the alpha-beta filter has shown that the Kalman filter is more 

reliable and faster for dynamic systems.  Experimental results show that the filter works very well. 
 

 

 

1. Introduction* 

 

Today, with the Internet of Things (IoT), the 

development of embedded systems has accelerated [1]. 

Temperature measurement is critical in many industrial, 

commercial, and home applications. Temperature sensors 

measure temperature and these are divided into two types: 

analog and digital sensors. Analog sensors produce an 

analog output voltage proportional to the temperature and 

an analog-to-digital converter (ADC) is required for this 

output voltage. Digital temperature sensors, on the other 

hand, measure temperature directly using a microcontroller 

without the need for an analog-digital converter. 

Temperature is a fundamental parameter in many chemical, 

biological, and physical processes. However, sensor data 

can often be affected by environmental noise and other 

factors [2, 3]. These noises can adversely affect the accuracy 

of temperature measurements. Inaccurate temperature 

measurement due to noise causes deviations from the actual 
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temperature value and adversely affects the reliability and 

accuracy of the system. Noisy data can cause incorrect 

inputs to control systems. This leads to undesirable 

responses and unstable behavior in the system. As a result 

of continuous adjustments made by control systems, outputs 

can become oscillatory and unstable. Inaccurate temperature 

measurements can unnecessarily cause heating and cooling 

systems to operate, resulting in wasted energy and increased 

operating costs. In addition, the continuous operation of 

systems causes wear and tear on equipment, increasing 

maintenance costs. Inaccurate temperature measurements in 

critical systems can lead to system failures and potentially 

dangerous situations. For example, in industrial processes, 

overheating or cooling risks can occur. In health and safety 

applications, noisy data can cause dangerous situations. In 

this context, it is crucial to apply appropriate filtering 

techniques to improve the accuracy and reliability of data 

from temperature sensors. Kalman filter stands out as an 

effective method for correcting noisy data and improves the 

system's overall performance. A review of the literature 
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reveals that expensive and specialized sensors are typically 

employed to attain high accuracy and resolution [4, 5]. In 

addition, these expensive sensors will produce output with 

special communication (serial communication), which will 

cause negativities such as the software becoming more 

complex and not being able to produce instantaneous 

responses due to its slow operation compared to the sensor 

used in this study [6, 7]. 

In this study, the data obtained from a low-cost LM35 

temperature sensor is read by an STM32F407VG 

microcontroller. The Kalman and Alpha-Beta filters are 

applied to these data, and the performance differences, 

especially in sudden temperature changes, are investigated 

experimentally. While various filter approaches on IoT-

based temperature measurement systems have been 

discussed in the literature [8], there is an absence of 

comprehensive optimization of the covariance matrices (Q 

and R) of the Kalman filter or a detailed comparison of 

Kalman and Alpha-Beta filters in these studies. In the 

present research, both filters are tested using the same 

microcontroller (STM32F407VG) and the same sensor 

(LM35), the responses of the filters to dynamic temperature 

fluctuations are analyzed experimentally and the suitability 

of the system for real-time applications with a sampling time 

of 1 second is emphasized. 

The findings indicate that the Kalman filter 

demonstrates a substantially reduced mean squared error 

(MSE) value compared to the Alpha-Beta filter, thereby 

ensuring enhanced accuracy and stability in dynamic 

temperature fluctuations. Despite the Alpha-Beta filter 

boasting a simple and feasible structure, it falls short in 

achieving the superior noise reduction and fast response 

capability of the Kalman filter when confronted with sudden 

temperature changes. This finding demonstrates that with its 

optimized parameters, the Kalman filter can control sudden 

temperature changes with high accuracy and reliability, 

even in low-cost hardware. This superiority of the Kalman 

filter offers a significant advantage in meeting the accuracy 

and stability requirements for real-time applications. The 

study also analyses the critical effects of these parameters 

on the filter stability by testing different values of the Q 

(process noise) and R (measurement noise) matrices. This 

analysis provides a practical contribution by integrating the 

theoretical knowledge [9] about the Kalman filter in the 

literature into real applications. In contrast to the extant 

literature, which focuses on advanced methods such as the 

Unscented Kalman Filter (UKF) and sensor fusion [10], this 

research experimentally proves that the basic Kalman filter 

can provide high accuracy and reliability in low-cost 

systems. In this respect, the study provides an economical 

and effective solution for real-time embedded systems.  

The findings of this study demonstrate that the 

outcomes achieved with the low-cost system and the 

Kalman filter, whose parameters have been optimised, are 

significantly superior to those reported in the existing 

literature [11-14]. 

In future research, the utilization of advanced Kalman 

filters (e.g. UKF, Extended Kalman Filter) and sensor fusion 

techniques are recommended for nonlinear systems and 

applications characterized by abrupt changes. Furthermore, 

the employment of adaptive parameter updates based on 

artificial intelligence and machine learning is proposed to 

improve filter performance. These advances will contribute 

to the provision of high-performance solutions with low-

cost sensors in areas such as industrial automation and the 

Internet of Things (IoT). In this context, the present study 

makes an important contribution to both academic literature 

and practical applications. 

 

2. System Developed 

 

In this study, the ambient temperature was measured 

using the LM35 temperature sensor and STM32F407 

microcontroller. Due to the noisy output of the LM35 

temperature sensor, a Kalman filter was applied. With the 

applied Kalman filter, a more noise-free, linear graph was 

obtained. By changing the parameters of the Kalman filter, 

the responses of the Kalman filter to temperature changes 

are observed. 

 

 

Figure 1. Realized system 

 

2.1. LM35 Temperature Sensor 

 

The LM35 is a widely used temperature sensor 

characterized by its accuracy and simplicity. The sensor 

provides an analog output directly proportional to 

temperature in degrees Celsius, with a conversion rate of 10 

mV per degree Celsius [15]. This linear relationship allows 

for precise temperature readings, making it more accurate 

than thermistors and thermoelectric thermometers [16]. 

Figure 1 shows the system structure implemented in 

this study. The actual temperature value is compared with 

the Kalman-filtered temperature value. 

The LM35 sensor has been integrated into different 

systems for temperature monitoring and control. For 

example, it is used in IoT applications for patient monitoring 

[17], remote temperature monitoring systems [18], and 

smart home security access systems. The sensor's ability to 

sense a wide temperature range from -55°C to 150°C makes 

it versatile for different environments and applications. The 
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LM35 sensor is also used in research involving the 

monitoring of thermal conditions in various environments. 

It has been used in monitoring thermal conditions in 

distributed energy resources networks [19], in greenhouse 

prototypes for plant growth, and in designing systems that 

monitor thermal conditions. The reliability and applicability 

of the sensor make it a favored choice in these studies. 

Overall, the accuracy, simplicity, and wide temperature 

range of the LM35 temperature sensor make it a valuable 

component in various fields such as health, agriculture, and 

environmental monitoring. Here, precise temperature 

measurements are vital for effective operations and control. 

Figure 2 shows the LM35 internal block diagram. 

 

 

Figure 2. LM35 internal block diagram 

 

2.2. STM32 Microcontroller 

 

STM32 microcontrollers manufactured by 

STMicroelectronics offer a powerful and flexible 

development platform that addresses a wide range of 

applications. These microcontrollers are powered by ARM 

Cortex-M cores and are available in a variety of memory 

sizes, peripherals, and connection options. STM32 series are 

widely used in many different fields such as industrial 

control systems, smart home devices, medical devices, and 

automotive applications. 

STM32 microcontrollers have different core variants 

from ARM Cortex-M0 to Cortex-M7. These cores offer high 

performance, low power consumption, and a wide feature 

set. STM32 comes with a wide range of various peripherals. 

These include standard connection protocols such as ADC, 

DAC, USART, SPI, I2C, and USB. These peripherals allow 

microcontrollers to fulfill different application 

requirements. There are many different development 

programs for STM32. These include integrated 

development environments such as STM32CubeIDE, 

STM32CubeMX, Keil µVision, IAR Embedded 

Workbench, and open-source tools such as GNU Tools for 

ARM Embedded Processors (GCC). Each of them has 

different features and tools to facilitate the development 

process. In this study, a processor with 168 MHz speed and 

1 MB RAM was used. 

 

 

Figure 3. STM32F407VG Block diagram 

 

Figure 3 shows the block diagram of the 

STM32F407VG microcontroller, which provides an 

understanding of its peripherals. 

 

2.3. Kalman Filter 

 

The Kalman filter is an algorithm that updates the state 

of a system with noisy output by estimation and 

measurement in the process. The Kalman filter, first 

discovered by Rudolf E. Kálmán, allows the output to be 

formed in a more linear formation by making accurate 

estimations in cases where the system is noisy and 

uncertain. The Kalman filter consists of two stages: 

prediction and update [20].   

The prediction phase is the phase in which the future 

state of the system is predicted according to its general state 

and dynamic model. 

The measurement phase is the phase where the final 

state is updated by using the measured values and the 

predicted values when new measurements are taken. 

Kalman filter is used in vehicle tracking systems to track the 

position and speed of vehicles, in autonomous driving 

systems [21] to understand the current state of the vehicle 

by processing the vehicle's environmental conditions and 

sensor data, and in navigation systems [22] to predict the 
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speed and trajectory of aircraft and spacecraft, in robotics 

[23] for position and motion control in mobile robots and 

drone technology, in finance for market predictions and risk 

management. In health, it monitors and analyzes biomedical 

signals such as heart rate and blood pressure.  

In some applications and complex situations, variants 

of the Kalman filter have been developed to obtain more 

precise solutions. For example, the Unscented Kalman Filter 

(UKF) handles nonlinear systems using a deterministic 

sampling approach to more accurately capture the mean and 

covariance of state variables compared to the Extended 

Kalman Filter (EKF) [24].  

As a result, the Kalman filter and its variables are very 

important in state estimation, data fusion, and control 

applications in various fields. Researchers are continuously 

improving these filtering techniques to overcome specific 

challenges and increase their robustness and accuracy in 

managing complex systems with uncertainties. 

The Kalman filter consists of two stages: prediction 

and update.  

Prediction phase; 

 

 𝑥̂𝑘 = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘                                                          (1) 

 

 𝑥̂𝑘 ∶ Estimated state vector at time k 

 A: State transition matrix 

 𝑥̂𝑘−1 ∶ Updated state vector at time k-1 

 B: Control matrix 

 𝑢𝑘 ∶ Control input at time k 

 

𝑃𝑘 = 𝐴 𝑃𝑘−1𝐴𝑇  + 𝑄                                                                (2) 

    

 𝑃𝑘 ∶ Estimated error covariance matrix at time k 

 𝑃𝑘−1 ∶ Updated error covariance matrix at time k-1 

 Q :  Noise covariance matrix 

The prediction stage of the Kalman filter estimates the 

future state and error covariance of the system based on the 

current state and system dynamics. State estimation is the 

process of predicting the future state using the current state 

of the system and control inputs. Covariance estimation 

calculates the uncertainty of the estimated state. These steps 

estimate the future state and uncertainty based on the 

dynamic model of the system and process noise. 

Update phase; 

Kalman gain is calculated by the formula given in the 

equation.  

 

𝐾𝑘 = 𝑃𝑘
−1 𝐻𝑘  

𝑇  (𝐻𝑘 𝑃𝑘
−1 𝐻𝑘  

𝑇 + 𝑅𝑘)                                      (3) 

𝐾𝑘   : Kalman gain 

𝑃𝑘
−1 : Unupdated error covariance matrix 

𝐻𝑘      : Measurement Matrix 

𝑅𝑘    :  Covariance matrix of measurement noise 

The state update is done with equation 4. 

 

𝑥̂𝑘 = 𝑥̂𝑘
−1 + 𝐾𝑘(𝑧𝑘 −  𝐻𝑘 𝑥̂𝑘

−1)                                     (4) 

 

𝑥̂𝑘
−1  : Previous estimation 

𝑧𝑘  : Measurement vector 

𝑥̂𝑘  : Current estimation 

 

Updating the error covariance matrix (𝑃𝑘) ; 

 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−1                                                      (5) 

 

𝑃𝑘
−1  : Prior error covariance matrix  

I :  Unit matrix 

𝑃𝑘   : Updated error covariance matrix 

These equations summarize the basic steps and 

calculations in the measurement update phase of the Kalman 

filter. 

 

2.4. Alpha-Beta Filter 

 

The alpha-beta filter represents a relatively simple yet 

highly effective filtering method comprising estimation and 

correction stages. It is particularly well-suited to monitoring 

dynamic systems, including applications such as sensor data 

with noisy outputs, speed and position estimation of moving 

objects, radar, and tracking systems. 

The filter operates in two distinct phases: prediction 

and update. 

Position update ; 

 

𝑥𝑡+1 = 𝑥𝑡 +  𝛼 ∗ (𝑧 − 𝑥𝑡)                                                 (6) 

 

Velocity update ; 

 

𝑣𝑡+1 = 𝑣𝑡 +  𝛽 ∗
(𝑧−𝑥𝑡)

∆t
                                                       (7) 

 

𝑥𝑡  : predicted position 

𝑣𝑡   : predicted velocity 

𝑧 : measured position 

∆𝑡 : time interval 

α : The position gain (values between 0 and 1) 

𝛽 : The velocity gain (values between 0 and 1) 

 

The alpha-beta filter represents an effective solution 

for the basic monitoring and prediction of future events. 

However, for more complex or variable systems, the use of 

more advanced algorithms, such as the Kalman filter, may 

be preferable. 
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3. Result and Discussion 

 

In this study, ambient temperature measurements were 

performed using the LM35 temperature sensor, and these 

measurements were read with the STM32 microcontroller. 

A Kalman filter is applied to reduce the noise in the 

measurements and to obtain more accurate results. The 

study aims to improve the accuracy of temperature 

measurements and demonstrate the Kalman filter's 

effectiveness. 

Figure 4 shows the connection diagram of the LM35 

and STM32F407. The analog output of the LM35 

temperature sensor is connected to the analog PA0 input of 

the microcontroller. 

 

 

Figure 4. Connection diagram 

 

A voltage is calculated according to the measured 

output value of the analog-to-digital converter (ADC) 

defined on the PA0 pin of the microcontroller. The 

calculated voltage value is substituted in equation 7 and the 

voltage-temperature conversion is performed and the 

temperature value is determined. 

 

𝑎𝑑𝑐𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = (𝑎𝑑𝑐𝑣𝑎𝑙𝑢𝑒 ∗ 3000)/4095                           (6) 

 

𝑎𝑑𝑐𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = (𝑎𝑑𝑐𝑣𝑜𝑙𝑡𝑎𝑔𝑒)/10                                  (7) 

Since the ambient temperature is not a parameter that 

changes very fast, the temperature value read every 1 second 

(Timer2) was filtered by processing with a Kalman filter. In 

STM32, temperature data is converted to digital data using 

ADC (Analog Digital Converter). ADC results are read 

when the ADC interrupt is completed. By applying the 

Kalman filter to the measured data, the noise in the 

measurements was reduced and more accurate temperature 

values were obtained. 

 

 

Figure 5. Experimental study 
 

Figure 5 shows the experimental study. STM32F407 

microcontroller-based temperature measurement with 

LM35 is observed in the STM32CubeMonitor program. 

When the temperature is 32.8 °C, the analog output voltage 

of the LM35 temperature sensor is expected to be 328 mV 

according to equation 6. 
 

 

Figure 6. Analog output voltage 
 

The oscilloscope image in Figure 6 shows that the 

output voltage is 328 mV. 

Figure 7 shows the flow diagram of the system. After 

defining the required variables, a 1 s triggered ADC 

interrupt was initiated. When the interrupt occurs, the actual 

temperature and the temperature values calculated by the 

Kalman filter are sent to the PC. 

 
           Figure 7. Flow diagram 
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The Kalman filter updates the system state using 

current measurement data and previous predictions. In the 

prediction step, the state transition matrix A and the process 

noise covariance matrix Q are used to predict the next state 

and error covariance. In the measurement step, using the 

measurement matrix H and the measurement noise 

covariance matrix R, the innovation covariance is calculated 

by comparing the predicted state and measurement data. 

After the innovation covariance S and the Kalman gain K 

are calculated, the state vector and the error covariance 

matrix are updated by multiplying the Kalman gain by the 

innovation covariance. This process provides a more 

accurate estimation by reducing measurement noise. These 

steps are repeated for each temperature measurement and 

the Kalman filter is applied to the temperature value 

obtained from the LM35 sensor. 
 

   Table 1. Kalman filter case parameters. 

 R Q 

Case 1 0,1 0,0001 

Case 2 0,01 0,0001 

Case 3 0,1 0,001 

Case 4 0,1 0,01 
 

The Kalman filter's process noise covariance matrix Q 

and measurement error covariance matrix R are changed 

according to Table 1 and the Kalman filter's responses to 

temperature changes are observed in the following cases. 

As can be seen in Figure 8, the raw data from the LM35 

temperature sensor contains significant noise. After the 

Kalman filter was applied, the fluctuations and noise in the 

measurements were reduced and more consistent and 

accurate temperature values were obtained. 
 

 

Figure 8. LM35 temperature value with Kalman filter 

applied 

 

When the raw data and the Kalman-filtered data are 

compared, it is observed that the data obtained with the 

Kalman filter is closer to the actual temperature value. 

The error rate is approximately 5 percent before the 

Kalman filter is applied, while it decreases to 1 percent after 

the filter is applied. This method can be used especially in 

applications where precise temperature measurements are 

required. 

To understand the effectiveness of the Kalman filter, 

the sensor is exposed to an external heat source. In Case 1, 

the measurement error covariance matrix is set to R = 0.1 

and the process noise covariance matrix is set to Q = 0.0001. 

 

 

Figure 9. LM35 temperature increase graph 

 

Figure 9 shows the output graph of the temperature 

sensor with the Kalman filter applied with the parameters in 

case 1. The response of the Kalman filter is observed by 

increasing the sensor temperature. It is seen that the output 

graph of the Kalman filter is more noise-free and the error 

rate is less when the sensor temperature increases noisily. 

Due to the delay in response time to sudden temperature 

changes, the response of the Kalman filter is observed by 

changing the parameters of the measurement error 

covariance matrix R and the process noise covariance 

matrix Q of the Kalman filter. The measurement error 

covariance matrix R defines the magnitude of the noise in 

the measurement data. The smaller the R matrix, the faster 

the Kalman filter measurements are updated. The response 

time of the filter to temperature changes decreases. The 

process error covariance matrix Q represents the 

uncertainties and noise in the system model. As the Q matrix 

becomes larger, the Kalman filter makes more frequent 

measurements and the response time of the filter decreases. 

In Case 2, the measurement error covariance matrix is 

reduced by making R = 0.01 and the response of the Kalman 

filter is observed in Figure 10. It is seen that the filter 

responds faster to the temperature increase compared to the 

previous design. 

 
Figure 10. Kalman filter graph with reduced R matrix 
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In Figure 11, the response of the Kalman filter to the 

temperature change is analyzed when the process noise 

covariance matrix Q is set to a value larger than the value in 

case 1. It is seen that the response time to temperature 

increase accelerates. 

 

 

Figure 11. Kalman filter graph with Q=0.001 

 

Figure 12 shows the response of the Kalman filter to 

temperature change when the process noise covariance 

matrix Q is set to a value larger than the value in case 3.  

 

 

Figure 12. Kalman filter graph with Q=0.01 

 

It is seen that the response time to temperature increase 

is faster than in case 3. 

 

 

Figure 13. Kalman filter graph designed with the 

parameters in Case 1 

 

In Figure 13, it is seen that the Kalman filter designed 

with the first determined parameters in the system reacts 

more slowly to sudden temperature changes, but gives a 

noiseless output compared to the other cases. 

 

 

Figure 14. Comparison of temperature measurement data 

using Kalman and Alpha-Beta filters 

 

To evaluate the superiority of the Kalman filter in 

comparison to the Alpha-Beta filter, the sensor temperature 

was increased and decreased. The results obtained from this 

experiment are presented in Figure 14. The overall squared 

error for both filters is shown in Table 2.  

 

Table 2. Mean squared error analysis of Kalman and Alpha-

Beta filters on temperature data 

Time 

(s) 

Alpha 

Beta 

Kalman Temp Alpha 

Beta 

MSE 

Kalman 

MSE 

0 24.7984 24.7898 24.762 0.13% 0.08% 

3 24.9561 25.0128 25.128 2.96% 1.33% 

7 27.647 27.9891 28.278 39.8% 8.36% 

10 28.8388 29.027 29.085 6.02% 0.33% 

14 29.7209 29.812 29.963 5.88% 2.29% 

18 30.0352 29.9952 29.816 4.77% 3.18% 

22 29.0897 28.942 28.791 8.91% 2.27% 

25 28.4963 28.3792 28.278 4.75% 1.02% 

30 27.8192 27.7205 27.619 4.01% 1.03% 

  

The Kalman filter yielded more precise results with a 

lower mean squared error (MSE) compared to the Alpha-

Beta filter in both the 0–3 s and 3–30 s time intervals. In the 

0–3 s interval, where the temperature remained constant, the 

Alpha-Beta filter exhibited an MSE of 1.87%, while the 

Kalman filter demonstrated an MSE of 1.17%. However, in 

the 3–30 s interval, where the temperature increased, the 

error rate of the Alpha-Beta filter increased significantly, 

reaching 13.88%. In contrast, the Kalman filter exhibited a 

considerably lower MSE of 3.15%. This suggests that the 

Kalman filter provides more stable and reliable results, 

particularly in situations characterised by significant 

temperature fluctuations. In this context, the Kalman filter 

is a more robust filtering method that should be preferred in 

noisy and dynamic systems. 
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4. Conclusions  

 

In this study, using the STM32F407VG 

microcontroller, temperature data from the LM35 

temperature sensor were read in the CubeMonitor program 

and the Kalman filter was applied to the noisy output. The 

experimental results show that by using the Kalman filter, 

the noise in the measured temperature data is reduced and 

more accurate temperature data are obtained. The 

parameters of the Kalman filter (A, B, C, Q, R, P and K) 

were configured correctly and the filtering process was 

performed successfully. It was observed that the 

temperature values obtained with the Kalman filter were 

more stable and reliable than the raw data. ADC conversions 

and Kalman filter calculations were performed in real time 

with the microcontroller. 

By changing the parameters of the measurement error 

covariance matrix R and process noise covariance matrix Q 

of the Kalman filter, the responses of the filter to sudden 

temperature increases were observed. It is seen that the 

Kalman filter, which has a more noise-free output, reacts 

more slowly to the temperature change than the designs with 

smaller R and larger Q matrices. Analysis of the outputs 

from designs that increase the response time of the Kalman 

filter indicates that the resulting graphs display considerable 

noise. Determining the optimal state is achieved by correctly 

setting the Q and R matrices, choosing the initial covariance 

correctly, the accuracy of the system and measurement 

models, and using the appropriate time step. The parameters 

of the Kalman filter must be carefully tuned according to the 

requirements and specific conditions of the application. A 

balanced selection of these parameters ensures a fast and 

accurate response of the filter. 

In a comparative analysis of the Kalman filter and the 

alpha-beta filter, the Kalman filter demonstrated a mean 

squared error (MSE) of 1.17% under constant temperature 

conditions and 3.15% when temperatures were increasing 

and decreasing. In contrast, the alpha-beta filter exhibited an 

MSE of 1.87% when the temperature was held constant and 

13.88% under conditions of increasing and decreasing 

temperatures. 

This study aims to achieve highly accurate and reliable 

measurement results by processing the noisy outputs of the 

low-cost LM35 temperature sensor using a microcontroller-

based Kalman filter algorithm. This approach makes a 

meaningful contribution to the cost-performance balance 

through the software-based optimization of low-cost 

sensors. The superior accuracy and stability displayed by the 

Kalman filter in comparison to the Alpha-Beta filter provide 

a unique assessment of the applicability of filtering methods 

in dynamic systems within the existing literature. Further 

research could concentrate on comparative studies of 

Extended and Unscented Kalman filter approaches, as well 

as more sophisticated techniques such as multi-sensor 

fusion and AI-supported adaptive parameter optimization. 

By enhancing energy efficiency through integrated 

hardware-software solutions, these methods may gain 

broader applications in IoT, embedded systems, and mobile 

technologies, thus deepening both theoretical and practical 

contributions in academic and industrial contexts. 
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