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Abstract 

Power Quality (PQ) disturbances play a critical role in ensuring 
the reliability and efficiency of electrical systems. These 
disturbances can severely impact device performance, leading 
to malfunctions and significant energy losses. Accurate 
identification and classification of PQ disturbances are therefore 
vital for maintaining system stability and optimizing energy 
consumption. The proposed method stands out by emphasizing 
two key feature extraction techniques: the Teager-Kaiser Energy 
Operator (TKEO) and the Fast Walsh-Hadamard Transform 
(FWHT). After applying the Fast Fourier Transform (FFT) to 
randomly generated PQ disturbance events from nine different 
types, TKEO and FWHT are used to extract features that capture 
both the energy dynamics and structural patterns of the 
disturbances. These features provide a highly detailed and 
compact representation of the signal, crucial for effective 
classification. The Random Forest (RF) classifier, powered by 
these robust features, achieves an impressive classification 
accuracy of 99.35% with pure signals. Moreover, the method 
demonstrates strong noise resistance, maintaining a high 
accuracy of 98.26% even under 40 dB noise conditions, 
highlighting the reliability and effectiveness of the extracted 
features in real-world environments where noise is a common 
challenge. 
 
Keywords: Power Quality (PQ),  Fast-Walsh Hadamard Transform 
(FWHT), Teager-Kaiser Energy Operator (TKEO), Random Forest, Power 
Quality Disturbance Classification.

Öz 
Güç Kalitesi (PQ) bozulmaları, elektrik sistemlerinin güvenilirliği 
ve verimliliği açısından kritik bir öneme sahiptir. Bu bozulmalar, 
cihaz performansını ciddi şekilde etkileyerek arızalara ve önemli 
enerji kayıplarına yol açabilir. Bu nedenle, PQ bozulmalarının 
doğru bir şekilde tanımlanması ve sınıflandırılması, sistem 
kararlılığını korumak ve enerji tüketimini optimize etmek için 
hayati önem taşır. Önerilen yöntem, iki ana özellik çıkarma 
tekniğine odaklanarak öne çıkmaktadır: Teager-Kaiser Enerji 
Operatörü (TKEO) ve Hızlı Walsh-Hadamard Dönüşümü (FWHT). 
Dokuz farklı türden rastgele üretilen PQ bozulma olaylarına Hızlı 
Fourier Dönüşümü (FFT) uygulandıktan sonra, TKEO ve FWHT 
kullanılarak bozulmaların enerji dinamiklerini ve yapısal 
desenlerini yakalayan özellikler çıkarılır. Bu özellikler, sinyalin 
etkili bir sınıflandırma için kritik olan oldukça ayrıntılı ve 
kompakt bir temsilini sağlar. Bu güçlü özelliklerle donatılan 
Rastgele Orman (RF) sınıflandırıcısı, saf sinyallerde etkileyici bir 
doğruluk oranı olan %99.35’e ulaşmaktadır. Ayrıca yöntem, 40 
dB gürültü altında %98.26 doğruluk sağlayarak güçlü bir gürültü 
direnci sergilemekte, bu da gerçek dünya ortamlarında yaygın 
bir sorun olan gürültüye karşı çıkarılan özelliklerin güvenilirliğini 
ve etkinliğini vurgulamaktadır.  
 
 
 
Anahtar Kelimeler: Güç Kalitesi (PQ), Fast-Walsh Hadamard Dnüşümü 

(FWHT), Teager-Kaiser Enerji Operatörü (TKEO), Rastgele Orman, Güç 

Kalitesi Bozulmalarının Sınıflandırması.

  

 

1. Introduction 

Power quality (PQ) has emerged as a critical concern in 

modern electrical systems due to rising power demands 

and the integration of renewable energy sources. The 

inclusion of these renewables necessitates the use of 

more switching devices and power electronics, 

contributing to PQ disturbances (PQDs). These 

disturbances manifest as voltage sags when large loads 

are connected, voltage swells often caused by load 

disconnections, and a variety of other issues such as 

harmonics. Such disruptions can negatively impact the 

performance and lifespan of electrical devices, damage 

electronic equipment, reduce energy efficiency, and lead 

to significant economic losses (Singh et al. 2014). 

Therefore, accurately identifying these PQDs is essential 

for maintaining reliable and efficient electrical system 

operations and for designing and implementing effective 

compensation devices to improve power quality.  

Traditionally, the identification and classification of PQDs 

have relied on various signal processing techniques, 

including Fourier Transform (Gonzalez-Abreu et al. 2021), 

Wavelet Transform (Thirumala et al. 2018), and Short 
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Time Fourier Transform (Priyadarshini et al. 2024). These 

methods are instrumental in detecting and analyzing 

transient disturbances, harmonic distortions, and other 

anomalies within power systems. PQ disturbances can 

include both single and mixed event types, as both have 

been studied extensively in the literature.  

Yılmaz et al. (2022) have proposed a novel method 

combining the Undecimated Wavelet Transform (UWT) 

and support vector machine (SVM) using the "à trous" 

algorithm to classify nine different PQDs containing only 

single events in distributed generators (DGs). This method 

was tested using a LabVIEW-based experimental DG 

system, a MATLAB Simulink model, and real data under 

various grid conditions and noise levels, demonstrating 

high accuracy in both pure and noisy conditions. Singh et 

al. (2023) have developed a method for classifying 29 

types of PQDs using dimensionality reduction, employing 

Linear Discriminant Analysis (LDA) to transform the 

dataset from a higher to a lower dimensional space by 

eliminating unnecessary features. This method, evaluated 

with four machine learning classifiers (k-Nearest 

Neighbor, Naive Bayes, SVM, and Random Forest), has 

achieved high classification accuracy under varying noise 

levels. Qaisar (2021) has introduced a novel method 

combining signal-piloted acquisition, adaptive-rate 

segmentation, and time-domain feature extraction with 

machine learning tools for classifying three types of PQDs 

involving single events. This approach facilitates real-time 

compression, significantly reducing data storage, 

processing, and transmission requirements, while also 

lowering computational costs and classifier latency. 

Robust machine learning algorithms, such as k-Nearest 

Neighbor, Naive Bayes, Artificial Neural Network, and 

SVM, are employed for classification, achieving 

acceptable results for the automated recognition of major 

voltage and transient disturbances. Mozaffari et al. (2022) 

addressed the real-time detection and classification of 

four types of PQDs in power delivery systems. Their 

proposed supervised approach learns both standard and 

anomalous patterns from training data that includes clean 

and disturbance signals. By processing data from multiple 

meters simultaneously, the method achieves faster 

detection through cooperative analysis. Additionally, the 

method is extended to a multi-hypothesis framework, 

enabling the prompt and accurate classification of 

disturbance events in real-time. Narayanaswami et al. 

(2020) have discussed a technique for detecting PQDs in 

power systems using mystery curves (MC). The method 

first estimates the analytic signal of real-valued input 

signals via the Hilbert transform. By representing this 

signal in polar form, which reveals magnitude and 

frequency variations, informative MCs are discovered in 

two dimensions and extended to three dimensions using 

Euler's rotation hypothesis. The technique's effectiveness 

was validated with synthetic signals generated in MATLAB 

and experimentally tested on a prototype bench. In 

recent years, there has been a substantial shift towards 

leveraging Deep Learning (DL) techniques for PQD 

analysis (Wang and Chen 2019, Wang et al. 2019 ). 

Notably, Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) have emerged as 

effective tools, demonstrating exceptional ability in 

identifying and classifying various PQDs with high 

accuracy. These DL models are particularly valued for 

their ability to autonomously learn complex patterns and 

dependencies in the data, bypassing the need for explicit 

programmatic instructions. Rodrigues Jr et al. (2021) have 

developed a deep learning-based approach to detect and 

classify 16 types of PQ disturbances, including both single 

and multiple events. Their method leverages CNNs with 

1D convolution and Long Short-Term Memory (LSTM) 

networks to automatically extract, select, detect, and 

classify features in an integrated manner. The input for 

this method is a data window of one cycle, which moves 

incrementally to cover the entire signal length. The 

robustness of the method was tested with various 

sampling rates, and the impact of noise was also 

examined in this study. Guerrero-Sánchez et al. (2023) 

have introduced a novel Multitasking Deep Neural 

Network (MDL) designed to classify and analyze multiple 

electrical disturbances. This methodology employs 

Empirical Mode Decomposition (EMD) to extract 

characteristics from non-stationary signals. The MDL was 

tested on a diverse dataset comprising 4500 records of 

electrical disturbances, taking into account factors such as 

severity, disturbance duration, and varying noise levels. 

The results demonstrate high accuracy in both classifying 

multiple disturbances and analyzing crucial signal aspects, 

including crest factor, per unit voltage analysis, Short-

term Flicker Perceptibility (Pst), and Total Harmonic 

Distortion (THD). 

There has been a growing trend in converting signals into 

images (Sindi et al. 2021). This approach uses advanced 

techniques to transform raw signal data into visual 

representations, making the analysis of complex data 

patterns more intuitive and effective. The increasing 

adoption of these methods highlights their potential to 

enhance accuracy and efficiency. Liu et al. (2018) have 

introduced a novel approach for detecting and classifying 

PQD signals using singular spectrum analysis (SSA), 

curvelet transform (CT), and deep convolutional neural 

networks (DCNNs). PQD signals are decomposed using 
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SSA and fast discrete curvelet transform (FDCT), with 

initial six and three levels of decomposition serving as 

features. DCNNs and multiclass SVMs are then employed 

for classification. Tested on thirty-one categories of real 

and synthetic PQD waveforms, the proposed SSA-FDCT-

DCNN classifier outperforms multiclass SVM and other 

existing methods, proving effective in classifying both 

single and complex PQ disturbances.  Chen et al. (2022) 

have proposed a power quality classifier that utilizes 

signal processing techniques to convert signals into 2D 

grayscale images. These images are then processed 

through a deep CNN to classify five different quality 

disturbances. Tested on data from the Amrita Honeywell 

Hackathon 2021, the method demonstrated that using 

grayscale images captures more PQD information than 1D 

signals, thereby enhancing identification performance on 

real-world data.  Özer et al. (2021) have introduced a 

novel deep learning algorithm for classifying power 

quality disturbances using an inverse signal approach. The 

method combines a CNN and bidirectional long short-

term memory (Bi-LSTM) with spectrograms. It focuses on 

the region where the PQD event occurs, aiming to 

increase classification success rates. The approach 

involves finding the time shift of the signal relative to a 

pure sine wave, generating an inverse sine wave based on 

this shift, and combining it with the original signal to 

create spectrograms. These spectrograms are converted 

into RGB images and combined for classification via 

CNN/Bi-LSTM. The model was tested on 29 different 

disturbance events, both single and combined. As stated, 

DL methods are powerful but come with notable 

disadvantages, including a high demand for labeled data, 

substantial computational resources, and a heavy 

reliance on specific hyperparameter settings. This can 

make the practical implementation of DL for PQD analysis 

particularly difficult when access to adequate and 

relevant data is constrained.  

This study introduces a signal processing-based 

methodology designed to classify PQ disturbances. 

Initially, the Fast Fourier Transform (FFT) is applied to a 

varied collection of nine types of synthetically generated 

PQ disturbance events. Following this preliminary 

transformation, we apply the Teager-Kaiser Energy 

Operator (TKEO) and the Fast Walsh-Hadamard 

Transform (FWHT) to further refine the signal analysis. 

These extracted features are subsequently used to train a 

Random Forest (RF) classification model. Remarkably, the 

model achieves an accuracy of 99.35% with pure signals 

and maintains an impressive accuracy of 98.26% even 

with 40 dB noise. 

2. Proposed Methodology 

Figure 1 illustrates the proposed methodology for 

classifying PQ disturbances. First, disturbances from nine 

different event types are generated randomly and 

processed using FFT. TKEO and FWHT values from the 

transformed signals are extracted as features, which are 

then used as input for a RF classifier. Detailed 

explanations of each stage are provided in the following 

subsections. 

2.1 Creation of the Dataset 

Due to the limited availability of real PQD data, this study 

generates cases of PQDs (including both single and 

multiple disturbances) by randomly varying the 

parameters of their numerical models as described in 

Igual et al. (2018). The dataset is created in MATLAB 

according to IEEE-1159 standards, closely mimicking real-

time data. 

For each class, 400 (Ns) samples are generated using a 

sampling frequency of 1.6 kHz (fs). The fundamental 

frequency is set to 50 Hz (f), with each class containing 10 

cycles (N). The signal amplitude is set to 1 p.u. (A) Using 

these parameters, the total dataset size becomes 3600 x 

320. Samples for each class are generated using the 

mathematical models and parameters given in Table 1 

and 2 as described by Igual et al. (2018). Moreover, an 

example of each disturbance type is illustrated in Figure 

2. 

 

Teager-Kaiser Energy Operator (TKEO)  

Feature Extraction 

Fast Walsh Hadamard Transform (FWHT)   

Fast Fourier Transform (FFT)

PQ Disturbance  Prediction

Classification 

Random Forest

Dataset

…….

Decision Tree 2 Decision Tree n

Majority Voting/Averaging

Final Decision

Decision Tree 1

C1

C9

PQ Disturbance Dataset

 
Figure 1. General block diagram of the proposed method. 
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Table 1. Mathematical model of  the PQ Disturbance classes 

Class Disturbances Mathematical Model 

C1 Pure sinusoidal 𝑣(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜑) 
C2 Sag 𝑣(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)))𝑠𝑖𝑛(𝜔𝑡 − 𝜑) 
C3 Swell v(t)=A(1+ β (u(t−𝑡1)−u(t−𝑡2)))sin(𝜔𝑡 − 𝜑) 
C4 Interruption 𝑣(𝑡) = 𝐴(1 − 𝜌(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)))𝑠𝑖𝑛(𝜔𝑡 − 𝜑) 
C5 Transient/impulse/spike  𝑣(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡 − 𝜑) − 𝜓(𝑒−750(𝑡−𝑡𝑎) − 𝑒−344(𝑡−𝑡𝑎))((𝑢(𝑡− 𝑡𝑎) − 𝑢(𝑡− 𝑡𝑏))] 
C6 Oscillatory transient 𝑣(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡 − 𝜑) + 𝛽𝑒−(𝑡−𝑡𝐼)/𝜏𝑠𝑖𝑛(𝜔𝑛(𝑡 − 𝑡𝐼) − 𝜃)((𝑢(𝑡 − 𝑡𝐼𝐼) − 𝑢(𝑡 − 𝑡𝐼)))] 
C7 Harmonics 

𝑣(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡 − 𝜑) +∑𝛼𝑖

7

𝑖=3

𝑠𝑖𝑛(𝑖𝜔𝑡 − 𝜃𝑖)] 

C8 Harmonics with sag 
𝑣(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡1)− 𝑢(𝑡 − 𝑡2)))[𝑠𝑖𝑛(𝜔𝑡 − 𝜑) +∑𝛼𝑗

5

𝑗=3

𝑠𝑖𝑛(𝑗𝜔𝑡 − 𝜃𝑗)] 

C9 Harmonics with swell 

𝑣(𝑡) = 𝐴(1 − 𝛽(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)))[𝑠𝑖𝑛(𝜔𝑡 − 𝜑) +∑ 𝛼𝑗

5

𝑗=3

𝑠𝑖𝑛(𝑗𝜔𝑡 − 𝜃𝑗)] 

 

Table 2. Parameter ranges for disturbance types 

Disturbances Parameters 

General Ꞷ = 2𝜋𝑓; −π ≤ 𝜑 ≤ π; 𝑢(𝑡) = {
0 𝑡 < 0
1 𝑡 ≥ 0

 

Harmonic 𝑖 = {3,5,7}; 0.05 ≤ 𝛼𝑖 ≤ 0.15; −π ≤ 𝜃𝑖 ≤ π 
𝑗 = {3,5,7}; 0.05 ≤ 𝛼𝑗 ≤ 0.15; −π ≤ 𝜃𝑗 ≤ π 

[
𝑘 = {1,3,5}; 𝛼𝑘 = 1

𝑓𝑜𝑟
→ 𝑘 = 1;

0.05 ≤ 𝛼𝑘 ≤ 0.15 
𝑓𝑜𝑟
→ 𝑘 = {3,5}; −π ≤ 𝜃𝑘 ≤ π

] 

 
Sag, swell, interruption 𝑇 ≤ 𝑡2 − 𝑡1 ≤ (𝑁 − 1)𝑇; 0.1 ≤ 𝛼 ≤ 0.9; 0.1 ≤ 𝛽 ≤ 0.8; 0.9 ≤ 𝜌 ≤ 1 

 
  

Transient/impulse/spike 0.222 ≤ 𝜓 ≤ 1.11; 𝑇 ≤ 𝑡𝑎 ≤ (𝑁 − 1)𝑇; 𝑡𝑏 = 𝑡𝑎 + 1𝑚𝑠 

 
Oscillatory transient 300𝐻𝑧 ≤ 𝑓𝑛 ≤ 900𝐻𝑧; Ꞷ𝑛 = 2𝜋𝑓𝑛; 8𝑚𝑠 ≤ 𝜏 ≤ 40𝑚𝑠; −π ≤ 𝜃 ≤ π 

0.5𝑇 ≤ 𝑡𝐼𝐼 − 𝑡𝐼 ≤
𝑁

3.33
𝑇; 0.2𝑇 ≤ 𝑡𝐼𝐼′ − 𝑡𝐼′ ≤ 𝑡2 − 𝑡1; 𝑡1 ≤ 𝑡𝐼′; 𝑡𝐼𝐼′ ≤ 𝑡2 

 

 
Figure 2. Example for each disturbance type 

 

2.2 Feature Extraction 

Fast Fourier Transform (FFT)   

The Fourier Transform, a method commonly used in 

feature extraction, decomposes signals into their 

frequency components. This decomposition highlights 

various characteristics of the signals. In this study, the 

signals are initially transformed using the Fast Fourier 

Transform (FFT). Then, Teager-Kaiser Energy Operator 

(TKEO) and Fast Walsh-Hadamard Transform (FWHT) 

values are calculated separately for feature extraction. 

Teager-Kaiser Energy Operator (TKEO)  

The Teager-Kaiser Energy Operator (TKEO) is a method 

primarily designed for analyzing the energy content 

within a signal (Biswal et al. 2021). Operating as a 

nonlinear, local differential operator, the TKEO swiftly 

responds to variations in signal intensity, making it 

invaluable in various research areas. For an 𝑥(𝑛) signal 

TKEO is calculated as given in eq.1. 
 

𝛹[𝑥(𝑛)] = 𝑥(𝑛)2 − 𝑥(𝑛 − 1). 𝑥(𝑛 + 1)   (1) 
 

Fast Walsh Hadamard Transform (FWHT) 

The Fast Walsh-Hadamard Transform (FWHT) is a 

transformation method developed to eliminate the 

computational complexity of the Walsh-Hadamard 
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Transform. The FWHT matrix (𝐻𝑛) is a transformation 

matrix size of 2𝑛𝑥2𝑛as given in eq. 2. This matrix only 

takes the values of +1 or -1 (Ergün et al. 2020). 

 

𝐻𝑛 =
1

√2𝑛
[
𝐻𝑛−1 ⋯ 𝐻𝑛−1
⋮ ⋱ ⋮

𝐻𝑛−1 ⋯ −𝐻𝑛−1

] , 𝐻0 = 1  (2) 

 

2.3 Classification Stage 

 

To accurately classify various PQ disturbance events, a 

Random Forest (RF) classification model is employed. 

Random Forest is a powerful machine learning method 

used for both classification and regression tasks. It 

operates as an "ensemble" learning model by combining 

many decision trees, thereby reducing problems like 

overfitting and instability that a single decision tree might 

encounter. At the core of Random Forest is the technique 

known as "bagging" (Bootstrap Aggregating), where each 

tree is independently trained using randomly selected 

subsets of the training data. This ensures that each tree 

learns different aspects of the data. Additionally, at each 

split point in the tree, a random subset of features is 

chosen, which enhances the model's ability to generalize 

and prevents overfitting.  

The typical configuration of a Random Forest is depicted 

in Figure 3. The accuracy of the model is assessed using 

out-of-bag data, which are the data not used by each tree 

during training. This allows performance testing without 

the need for an additional validation set like cross-

validation. During prediction, the final outcome is 

determined either by averaging the predictions from all 

trees (for regression) or by selecting the class with the 

most votes (for classification). With its capability to 

handle high-dimensional data and model complex 

relationships in the data, Random Forest is a reliable 

model with a broad range of applications (Seyrek et al. 

2022).  

Performance Metrics 

The performance of the proposed method is evaluated 

using a confusion matrix. In this study, we aim to classify 

9 different types of PQ disturbances, making it a multi-

class problem. Each PQ disturbance is assigned a label (C1, 

C2, ..., C9) as described in the previous section. For an n-

class classification problem, the confusion matrix is an n×n 

matrix, given in Table 3, where each element 𝑟𝑖𝑗  

represents the number of instances where the true class 

is i and the predicted class is j. From this confusion matrix, 

various performance metrics such as accuracy, sensitivity 

(Recall), precision, and the F1 score for each class can be 

derived to assess the classifier's performance, as shown in 

eq. (3) to (6). The overall accuracy is determined by 

dividing the number of correctly classified instances by 

the total number of predictions made. 

Dataset

…….

Decision Tree 2 Decision Tree n

Majority Voting/Averaging

Final Decision

Decision Tree 1

 
Figure 3. Structure of RF. 

 

Table 3. Confusion Matrix 

 Predicted Class 

C1 C2 C3 …. Cn 

A
ct

u
a

l C
lla

ss
  C1 𝑟11 𝑟12 𝑟13 … 𝑟1𝑛 

C2 𝑟21 𝑟22 𝑟23 … 𝑟2𝑛 

C3 𝑟31 𝑟32 𝑟33 … 𝑟3𝑛 

…
.  

…
 

…
 

…
     … …
 

Cn 𝑟𝑛1 𝑟𝑛2 𝑟𝑛3 … 𝑟𝑛𝑛 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =
𝑟𝑖𝑖+∑ ∑ 𝑟𝑗𝑙

𝑛
𝑙≠𝑖

𝑛
𝑗≠𝑖

∑ ∑ 𝑟𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑟𝑖𝑖

∑ 𝑟𝑗𝑖
𝑛
𝑗=1

 (4) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 =
𝑟𝑖𝑖

∑ 𝑟𝑖𝑗
𝑛
𝑗=1

 (5) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑥𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 (6) 

 

3. Performance Results 

In this study, 300 samples from each disturbance type are 

allocated for training and 100 samples for testing, 

ensuring equal distribution across classes. Given the 

randomness of the generated samples, the algorithm is 

executed 50 times to account for all possible variations, 

with the results presented as averages in the tables. Table 

4 compares the performance metrics of the classification 

model under both no noise and 40dB noise conditions, 

offering insights into the model’s effectiveness and 

robustness. When there is no noise, the model performs 

exceptionally well across most classes. For classes C1, C3, 

C5, C6, C7, and C9, the model achieves perfect scores in 

accuracy, precision, recall, and F1 (all 1.0). This indicates 

flawless identification for these classes. Classes such as C2 
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and C4 also perform well, with slight variations; for 

instance, class C2 has an accuracy of 0.99, precision of 1, 

recall of 0.95, and an F1 score of 0.97, indicating only 

minor imperfections in recall. Class C4 has a precision 

value of 0.95 but maintains perfect recall, along with high 

accuracy and F1. 

In the presence of 40dB noise, the model's performance 

remains strong, showcasing its robustness against noisy 

conditions. For classes C3, C6, C7, and C9, the metrics 

remain perfect (all 1.0) across accuracy, precision, recall, 

and F1, indicating no drop in performance. Other classes 

also maintain high performance levels; for example, class 

C1 has an accuracy of 0.99, precision of 0.93, recall of 

0.97, and an F1 score of 0.95. Class C2 maintains an 

accuracy of 0.99 and perfect precision, with a recall of 

0.95 and an F1 score of 0.97. Class C4 shows similar 

resilience with an accuracy of 0.99, precision of 0.95, 

recall of 1.0, and an F1 score of 0.97. Class C5, while 

having an accuracy of 0.99, has precision and recall of 0.97 

and 0.93 respectively, balancing to an F1 score of 0.95. 

Comparing both scenarios, it is clear that the model 

exhibits strong resilience to noise. The high-performance 

metrics across classes C3, C6, C7, and C9, which are 

perfect even under noisy conditions, highlight the model's 

robustness. The slight variations observed in other classes 

under noise do not significantly impact the overall 

reliability, as the model still maintains high accuracy and 

balanced F1 scores. This comparison underscores the 

model's capability to handle both noise-free and noisy 

environments effectively, making it a dependable tool for 

classification tasks in varied conditions. 

The confusion matrices in Tables 5 and 6 summarize the 

average performance of the model over 50 runs, 

providing insights into how well the classifier 

distinguishes between different signal classes under both 

pure and noisy conditions. The rows of the matrices 

represent the actual classes, while the columns show the 

predicted classes, with the main diagonal containing the 

correct classifications. Off-diagonal values highlight the 

extent of misclassification between classes. For pure 

signals (Table 5), the model achieves an overall accuracy 

of 99.35%, indicating strong classification performance 

across most categories. Notably, classes such as C1, C3, 

C5, C6, C7, and C9 are classified with perfect accuracy 

(100%), suggesting the model’s ability to distinguish these 

signals with zero errors. However, there are small 

misclassifications in some cases, such as C2, which, while 

achieving 94.74% accuracy, shows some misclassification 

into C4 (5.14%) and a minor error in classifying a very 

small percentage (0.12%) into C6 Similarly, C4 is classified 

with near-perfect accuracy at 99.82%, with only 0.18% of 

signals being misclassified as C2. Class C8 also 

demonstrates high precision, with 99.60% correct 

classifications and minimal misclassification into C4 

(0.32%) and C2 (0.08%). When noise is introduced (Table 

6), with a signal-to-noise ratio of 40 dB, the overall 

accuracy remains high at 98.26%, reflecting the model's 

resilience in the presence of noise. 

Table 4. Performance metrics results 

Class 

Label 

No noise With 40 dB noise 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

C1 1 1 1 1 0.99 0.93 0.97 0.95 
C2 0.99 1 0.95 0.97 0.99 1 0.95 0.97 
C3 1 1 1 1 1 1 1 1 
C4 0.99 0.95 1 0.97 0.99 0.95 1 0.97 
C5 1 1 1 1 0.99 0.97 0.93 0.95 
C6 1 1 1 1 1 1 1 1 
C7 1 1 1 1 1 1 1 1 
C8 1 1 1 1 1 1 0.99 1 
C9 1 1 1 1 1 1 1 1 

 

Table 5. Average confusion matrix for pure signals 

Classes C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 100 0 0 0 0 0 0 0 0 
C2 0 94.74 0 5.14 0 0.12 0 0 0 
C3 0 0 100 0 0 0 0 0 0 
C4 0 0.18 0 99.82 0 0 0 0 0 
C5 0 0 0 0 100 0 0 0 0 
C6 0 0 0 0 0 100 0 0 0 
C7 0 0 0 0 0 0 100 0 0 
C8 0 0.08 0 0.32 0 0 0 99.60 0 
C9 0 0 0 0 0 0 0 0 100 

Overall classification accuracy 99.35% 
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Table 6. Average confusion matrix for 40 dB noise 

Classes C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 97.48 0 0 0 2.52 0 0 0 0 
C2 0 94.84 0 5.02 0.02 0.12 0 0 0 
C3 0 0 100 0 0 0 0 0 0 
C4 0 0.14 0 99.86 0 0 0 0 0 
C5 7.32 0 0 0 92.68 0 0 0 0 
C6 0 0 0 0 0.06 99.94 0 0 0 
C7 0 0 0 0 0 0 100 0 0 
C8 0 0.12 0 0.36 0 0 0 99.52 0 
C9 0 0 0 0 0 0 0 0 100 

Overall classification accuracy 98.26% 
 

Table 7. Comparison with the studies in the literature 

Reference 
  Classification Accuracy (%) 

Feature Extraction Classifier Pure 40dB 

Li et al. 2016 DRST  DAG SVM 99.30 - 
Ranjan et al. 2024 S-Transform  NN 99.50 - 
Khan et al. 2021 7 features Bagged Tree 96.3 - 
Wang et al. 2017 S transform  NN 99.26 99.13 

Thirumala et al. 2019 TQWT  SVM 97.22   
Garcia et al. 2020 - CNN-LSTM 84.76  - 

Proposed TKEO+FWHT  RF 99.35 98.26 

 

Although slightly lower than with pure signals, the drop in 

performance is relatively minor. Class C1, for example, 

maintains high accuracy with 97.48% of signals correctly 

classified, though there is a slight increase in 

misclassification, with 2.52% of the signals being mistaken 

for C5. Class C2 also retains a strong performance with 

94.84% correct classifications, though it shows 

misclassifications into C4 (5.02%), C5 (0.02%) and C6 

(0.12%). Class C3 continues to perform with 100% 

accuracy even under noisy conditions, showing that 

certain classes remain robust despite the added noise. 

Class C5 sees a more noticeable drop in accuracy, with 

92.68% correct classifications and 7.32% of signals 

misclassified as C1. Nevertheless, Classes C6, C7, and C9 

continue to maintain perfect accuracy, demonstrating the 

model's ability to handle noise without compromising 

accuracy for certain signal types. Class C8, though slightly 

impacted, retains 99.52% accuracy, with minimal 

confusion between C4 (0.36%) and C2 (0.12%).  

In summary, the confusion matrices highlight the model’s 

high reliability and its strong classification accuracy in 

both pure and noisy environments. The minor 

misclassifications observed, particularly under noisy 

conditions, do not significantly affect overall 

performance, indicating that the model is well-suited for 

applications involving signal classification, even in the 

presence of background noise. These results underscore 

the robustness and practicality of the model for real-

world implementations.  

Table 7 provides a comparative analysis of various studies 

in the literature on PQ disturbance classification. Li et al. 

(2016) employed the Double-Resolution S-Transform 

(DRST) in combination with a Directed Acyclic Graph 

Support Vector Machine (DAG SVM), achieving an 

accuracy of 99.30% with pure data. Although they 

explored the effect of noise by adding SNRs from 20dB to 

50dB, the results for these noise levels were not 

disclosed. Ranjan et al. (2024) attained a slightly higher 

classification accuracy of 99.50% using the S-Transform 

and a Neural Network (NN), but they did not investigate 

the impact of noise on their method’s performance. Khan 

et al. (2021) extracted seven features—standard 

deviation (std), energy, total harmonic distortion (THD), 

mean frequency, skewness (S kurtosis), average 

frequency, and total jitter—and applied a Bagged Tree 

classifier, reporting a lower accuracy of 96.3% under pure 

data conditions, which falls short compared to our 

proposed method. Thirumala et al. (2019) utilized the 

Tunable-Q Wavelet Transform (TQWT) for feature 

extraction, paired with SVM for classification, reaching 

97.22% accuracy under pure data conditions. They also 

validated their approach using simulated data 

contaminated with white Gaussian noise across a range of 

SNRs from 25dB to 55dB. Wang et al. (2017) also 

examined the influence of noise, achieving an accuracy of 

99.26% under pure data conditions and 99.13% under 

40dB noise, using the S-Transform and a Neural Network 

classifier. In contrast, Garcia et al. (2020) employed a 

CNN-LSTM approach, reporting a lower accuracy of 

84.76%, but they tackled a six-class PQ disturbance 

problem which was tested on experimental data. Our 

proposed method stands out by delivering highly 

competitive results using only two key features: TKEO and 
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FWHT. Despite the simplicity of using just two features, 

the method achieves a remarkable classification accuracy 

of 99.35% with pure data and demonstrates robust 

performance using RF under noisy conditions, reaching 

98.26% at 40dB noise. The success of our approach 

highlights the effectiveness and efficiency of carefully 

selected features, offering both simplicity and high 

accuracy in PQ disturbance classification. 

4. Conclusion 

In this paper, we proposed a method to classify PQ 

disturbances in power systems. The method begins by 

obtaining the FFT of the input disturbance signals. These 

transformed signals are then processed through the TKEO 

and FWHT to extract features. Using these features, a 

Random Forest classifier predicts the final class of the 

disturbances. 

The method was validated using an open dataset, where 

random PQ disturbance samples were generated with 

various parameters. The results demonstrate the 

method’s success, achieving 99.35% accuracy with pure 

signals. Furthermore, the method’s robustness was 

tested by introducing 40 dB noise to the pure signals, still 

resulting in an impressive 98.26% accuracy. These 

findings underscore the method's reliability and 

effectiveness, proving its suitability for PQ disturbance 

classification in both controlled and noisy environments. 

Although this study used only synthetic data, we plan to 

collect our own dataset in future studies, allowing us to 

test the proposed methods on real-world data. This will 

enable us to assess the method's real-world effectiveness 

and conduct a more detailed analysis of its impact on 

energy efficiency and system stability. 
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