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Abstract 

 

This paper investigates Tribonacci numbers can be expressed as either the sum or difference of two 

distinct powers of 2. Namely, we address the problem of expressing Tribonacci numbers in the form 

 

𝑇𝑛 = 2𝑥 ± 2𝑦 

                                                                                                           

in positive integers with 1 ≤ 𝑦 ≤ 𝑥. Our findings reveal specific instances where such representations are 

possible, including examples like the seventh Tribonacci number expressed both as the sum and the 

difference of powers of 2. Additionally, we identify Tribonacci numbers that can be represented as the 

differences of Mersenne numbers, specifically, the numbers 2, 4, 24, and 504. These results enhance the 

understanding of the structural properties of Tribonacci sequences and their relationships with exponential 

and Mersenne-based number systems.  
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1. Introduction 

 

The exploration of the properties of linear recurrence 

sequences has a rich history and has produced an 

extensive body of literature. The quest to find all integer 

solutions to Diophantine equations with Fibonacci 

numbers has drawn considerable interest from 

mathematicians, leading to a diverse array of literature 

on the subject. Tribonacci numbers are a generalization 

of Fibonacci numbers and therefore, it is inevitable that 

equations containing Tribonacci numbers will also be 

interesting. Let (𝑇𝑛) be the sequence of Tribonacci 

numbers defined by 𝑇0 = 0, 𝑇1 = 𝑇2 = 1 and  

 

𝑇𝑛+3 = 𝑇𝑛+2 + 𝑇𝑛+1 + 𝑇𝑛   for 𝑛 ≥ 0. 
 

In recent years, many studies have been seen involving  

integer sequences and powers integers. Readers can see 

these works in [1-9]. Especially, the equation 

 

𝑇𝑛 = 2𝑎 + 3𝑏 + 5𝑐 + 𝛿 

 

related to Tribonacci numbers has been solved by Irmak 

and Szalay in [10]. Here, variables are non-negative 

integers with 0 ≤ 𝛿 ≤ 10 and 0 ≤ 𝑎, 𝑏 ≤ 𝑐. 

 

 

In this paper, using the linear forms in logarithms, we 

obtain large upper bounds thanks to Lemma 2.1 and 

then, we reduce these bounds using Lemma 2.2. Now, 

we give our main theorem. 

                 
Theorem 1.1: Let 𝑇𝑛 be n-th Tribonacci number. The 

only solutions to the Diophantine equations  

 
                                     𝑇𝑛 = 2𝑥 + 𝜖2𝑦                            (1) 

                                                                                                                    

in non-negative integers with 1 ≤ 𝑦 ≤ 𝑥 and 𝜖 = ±1  

are given by             

 

𝜖 = 1:                    (𝑛, 𝑥, 𝑦) = (4,1,1), (7,4,3);          
 

𝜖 = −1:               (𝑛, 𝑥, 𝑦) = {(0, 𝑥, 𝑥), (3,2,1), (4,3,2), 
                                                 (7,5,3), (12,9,3)}. 

                                                          

2. The Tools 

 

In this section, we will remind you about Tribonacci 

numbers and linear forms in logarithms. We will also 

give some lemmas that are necessary to prove the main 

theorem. The characteristic equation 
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𝜓(𝑥): = 𝑥3 − 𝑥2 − 𝑥 − 1 = 0 

 

has roots 𝛼, 𝛽, 𝛾 = �̅� where 

 

𝛼 = (
1+(𝑠1+𝑠2)

3
), �̅�  = 𝛽 = (

2−(𝑠1+𝑠2)+√−3(𝑠1−𝑠2)

6
) 

 

and 

 

𝑠1 = √19 + 3√33
3

,  𝑠2 = √19 − 3√33
3

. 

 

Binet formula for this number is 

 

             𝑇𝑛 = 𝑎𝛼𝑛 + 𝑏β𝑛 + 𝑐𝛾𝑛 for all 𝑛 ≥ 0,            (2)  

 

where 

 

𝑎 =
1

(𝛼−𝛽)(𝛼−𝛾)
, 𝑏 =

1

(𝛽−𝛼)(𝛽−𝛾)
, and 𝑐 =

1

(𝛾−𝛼)(𝛾−𝛽)
. 

 

Moreover, 𝑎 =
𝛼

𝛼2+2𝛼+3
 and the minimal polynomial of 

𝑎 over ℤ is given by 44𝑥3 + 44𝑥 − 1. Zeros of this 

equation are 𝑎, 𝑏 and 𝑐. With simple calculations, it can 

be shown the following estimates hold: 

 

1.83 < 𝛼 < 1.84, 0.73 < |𝛽| = |𝛾| < 𝛼1/2 < 0.74 

 

and  

 

0.18 < 𝑎 < 0.19, 0.35 < |𝑏| = |𝑐| < 036. 

 

Let 

 

𝑒(𝑛) ≔ 𝑇𝑛 − 𝑎𝛼𝑛 = 𝑏β𝑛 + 𝑐𝛾𝑛. 
 

Then, from the above inequalities we conclude that 

 

                                  |𝑒(𝑛)| ≔
1

𝛼𝑛/2                          (3) 

 

for 𝑘 ≥ 1. The relation between 𝑇𝑛 with 𝛼 is given by 

 

                     𝛼𝑛−2 ≤ 𝑇𝑛 ≤ 𝛼𝑛−1 for all 𝑛 ≥ 1.           (4) 

 

Baker's Theory, developed by Alan Baker, is an 

important theory on number theory and Diophantine 

equations. This theory specifically includes the concepts 

of linear form and logarithmic height and plays a large 

role in the context of solving Diophantine equations. 

Now, we present materials related to this theory. Let 𝛾 

be an algebraic number of degree 𝑑 over ℚ with 

minimal primitive polynomial 

 

𝑐0𝑥𝑑 + 𝑐1𝑥𝑑−1 + ⋯ + 𝑐𝑑 = 𝑐0 ∑ (𝑥 − 𝛾(𝑖))𝑑
𝑖=1 ∈ ℤ[𝑥], 

 

with 𝛾(𝑖)’s are conjugates of 𝛾 and 𝑐0 > 0. Then 

logarithmic height of 𝛾 is given  

 

ℎ(𝛾) =
1

𝑑
(log 𝑐0 + ∑ log(max{|𝛾(𝑖)|, 1})𝑑

𝑖=1 ).  

The following properties are given in [11]. 

 

ℎ(𝛾1 ∓ 𝛾2) ≤ log 2 + ℎ(𝛾1) + ℎ(𝛾2) 

 

ℎ(𝛾1𝛾2
±1 ) ≤ ℎ(𝛾1) + ℎ(𝛾2) 

 

ℎ(𝛾1
𝑟) = |𝑟|ℎ(𝛾1). 

                                               

The following two lemmas can be found in [12,13].   

 

Lemma 2.1. Let 𝛾1, 𝛾2, … , 𝛾𝑛 be positive real algebraic 

numbers and let 𝑏1, 𝑏2, … , 𝑏𝑛 be nonzero integers. Let 𝐷 

be the degree of the number field ℚ(𝛾1, 𝛾2, … , 𝛾𝑛) over 

ℚ. Let 

 

𝐵 ≥ max{|𝑏1|, |𝑏2|, … , |𝑏𝑛|}, 

 

𝐴𝑖 ≥ max{𝐷 ∙ ℎ(𝛾𝑖), |log 𝛾𝑖|, (0.16)} 

 

for all 𝑖 = 1,2, … , 𝑛. If  
 

Γ ≔ 𝛾1
𝑏1 ∙ 𝛾2

𝑏2 ∙∙∙ 𝛾𝑛
𝑏𝑛 − 1 ≠ 0 

 

then 

 

|Γ| > exp(−1.4 ∙ 30𝑛+3 ∙ 𝑛4.5 ∙ 𝐷2 ∙ (1 + log 𝐷) ∙
(1 + log 𝐵) ∙ 𝐴1 ∙ 𝐴2 ∙∙∙ 𝐴𝑛). 

 

Lemma 2.2. Let 𝜂 be irrational number, 𝑀 be a positive 

integer and 
𝑝

𝑞
 be a convergent of the continued fraction 

of 𝜂 such that 𝑞 > 6𝑀, and let 𝐴, 𝐵, 𝜇 be some real 

numbers with 𝐴 > 0 and 𝐵 > 1. Put 

    

𝜀: = ‖𝜇𝑞‖ − 𝑀‖𝜂𝑞‖, 
 

where ‖∙‖ denotes the distance from the nearest integer. 

If 𝜀 > 0, then there is no positive integer solution 

(𝑟, 𝑠, 𝑡) to the inequality 

 

0 < |𝑟𝜂 − 𝑠 + 𝜇| < 𝐴 ∙ 𝐵−𝑡 

                                            

subject to the restrictions that  

 

𝑟 ≤ 𝑀 and 𝑡 ≥
𝑙𝑜𝑔(𝐴𝑞

𝜀⁄ )

𝑙𝑜𝑔𝐵
.   

 

We give the following lemma without proof since its 

proof can be easily seen. 

 

Lemma 2.3. If the real numbers 𝑥 and 𝐾 satisfy  

 
|𝑒𝑥 − 1 | < 𝐾 < 3/4, 

 

then |𝑥 | < 2𝐾. 
 

3. Proof of Main Theorem 

 

In the case 𝑥 = 𝑦, we have the trivial solution  
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(𝑛, 𝑥, 𝑦) = (0, 𝑥, 𝑥) for 𝜖 = −1 and the only solution 

(𝑛, 𝑥, 𝑦) = (4,1,1) for 𝜖 = 1, from [14]. From now on, 

we will take 1 ≤ 𝑦 < 𝑥. As 𝑦 ≤ 𝑥 − 1 and 𝑥 ≥ 2, we 

can say  

 

2 < 2𝑥−1 = 2𝑥 − 2𝑥−1 ≤ 2𝑥 − 2𝑦 < 𝑇𝑛 

 

by the equation (1). So, we get 𝑛 ≥ 3. Now let's find a 

relationship between 𝑛 and 𝑥. Considering (1), we 

obtain 

 

 𝑇𝑛 ≤ 2𝑥 + 2𝑦 ≤ 2𝑥 + 2𝑥−1 = 3. 2𝑥−1 < 𝛼1.9+1.2(𝑥−1). 

 

If we combine the above inequality and (4), we get  

 

                               𝑛 < 1.7 + 1.2𝑥                             (5) 

 

Using (2) and (3), we arrange the equation (1) as 

 

     |Γ| = |𝑎 ∙ 𝛼𝑛 ∙ 2−𝑥 − 1| ≤
1

𝛼
𝑛
2 ∙2𝑥

+
1

2𝑥−𝑦 <
1.21

2𝑥−𝑦    (6) 

 

and                              

 
|Γ′| = |(𝑎−1(1 ± 2𝑦−𝑥))−1 ∙ 𝛼𝑛 ∙ 2−𝑥 − 1| 

                  ≤
1

𝛼
𝑛
2 ∙2𝑥∙|1±2𝑦−𝑥|

 

                  <
0.81

2𝑥 .                                                         (7) 

 

Here, we have used that 𝛼−
𝑛

2 < 0.401 for 𝑛 ≥ 3 and  

 
|1 ± 2𝑦−𝑥|−1 < 2 

 

for 1 ≤ 𝑦 < 𝑥. To apply Lemma 2.1, we take 

 
(𝛾1, 𝑏1) ≔ (𝑎, 1)  

 

(𝛾′
1

, 𝑏′
1) ≔ ((𝑎−1(1 ± 2𝑦−𝑥))−1, −1) 

 

(𝛾2, 𝑏2) = (𝛾′
2

, 𝑏′
2) ≔ (𝛼, 𝑛) 

 

(𝛾3, 𝑏3) = (𝛾′
3

, 𝑏′
3) ≔ (2, −𝑥) 

 

in the inequalities (6) and (7). Moreover, 𝐷 = 𝐷′ = 3. 

Now, we show that 

 

Γ: = 𝑎 ∙ 𝛼𝑛 ∙ 2−𝑥 − 1 ≠ 0. 
 

If Γ = 0, then we can write 𝑎 ∙ 𝛼𝑛 = 2𝑥 ∈ ℤ, which is 

not possible. Similarly,  

 

Γ′: = (𝑎−1(1 ± 2𝑦−𝑥))−1 ∙ 𝛼𝑛 ∙ 2−𝑥 − 1 ≠ 0. 
 

Using the definition and properties of logarithmic 

height, we get 

 

ℎ(𝛾1) = ℎ(𝑎) =
log44

3
,  

 

ℎ(𝛾′
1

) = ℎ((𝑎−1(1 ± 2𝑦−𝑥))−1),  

                               <
log44

3
+ (𝑥 − 𝑦)log2 + log2,  

< 3.9(𝑥 − 𝑦)log2, 
 

ℎ(𝛾2) = ℎ(𝛾′
2

) = ℎ(𝛼) =
log𝛼

3
,  

 

and 

 

ℎ(𝛾3) = ℎ(𝛾′
3

) = ℎ(2) = log2. 

 

Thus, we can write 

 

A = A1 ∙ A2 ∙ A3 = log44 ∙ log𝛼 ∙ log8, 
 

A′ = A′1 ∙ A′
2 ∙ A′

3 ≔ 11.7(𝑥 − 𝑦)log2 ∙ log𝛼 ∙ log8. 
 

The inequality (5) lead to 𝐵 = 𝐵′ ≔ 1.7 + 1.2𝑥. Let  

 

𝑇 = (−1.4) ∙ 306 ∙ 34.5 ∙ 32 ∙ log9. 
 

From Lemma 2.1, the inequalities (6) and (7) give  us  

 

1.21 ∙ 2−(𝑥−𝑦) > |Γ| > exp((𝑇 ∙ (3.5 log 𝑥) ∙ A) 

 

i.e.,  

 

                        𝑥 − 𝑦 < 6.55 ∙ 1013 ∙ log 𝑥                  (8) 

 

and 

 

0.81 ∙ 2−𝑥 > |Γ′| > exp((𝑇 ∙ (3.5 log 𝑥) ∙ A′) 

 

i.e.,  

 

                  𝑥 < 1.41 ∙ 1014 ∙ (𝑥 − 𝑦) ∙ log 𝑥,               (9) 

 

where we have used  

 

1 + log(1.7 + 1.2𝑥) < 3.5 log 𝑥 

 

for 𝑥 ≥ 2. The inequalities (8) and (9) tell us  

 

𝑥 < 9.24 ∙ 1027 ∙ (log 𝑥)2 

 

or 𝑥 < 4.93 ∙ 1031. From (5), we obtain 

 

                               𝑛 < 5.92 ∙ 1031.                          (10) 

   

Let 

 

z ≔ 𝑛logα − 𝑥log2 + log𝑎 

 

and 

 

z′ ≔ 𝑛logα − 𝑥log2 − log((𝑎−1(1 ± 2𝑦−𝑥)).  

 

From (6) and (7), we can write 
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|Γ| ≔ |𝑒z − 1| <
1.21

2𝑥−𝑦 < 0.61        

 

for 𝑥 − 𝑦 ≥ 1 and  

 

|Γ′| ≔ |𝑒z′
− 1| <

0.81

2𝑥 < 0.21.       

 

for 𝑥 ≥ 2. According to Lemma 2.3, we can say 

 

|𝑧| = |𝑛logα − 𝑥log2 + log𝑎| <
2.42

2𝑥−𝑦
 

 

and  

 

|𝑧′| = |𝑛logα − 𝑥log2 − log((𝑎−1(1 ± 2𝑦−𝑥))| <
1.62

2𝑥
. 

 

With necessary arrangement, these inequalities convert 

to 

 

                0 < |𝑛 (
logα

log2
) − 𝑥 +

log𝑎

log2
| <

3.5

2𝑥−𝑦               (11) 

 

and  

 

      0 < |𝑛 (
logα

log2
) − 𝑥 −

log((𝑎−1(1±2𝑦−𝑥))

log2
| <

2.34

2𝑥 .     (12) 

 

To apply Lemma 2.2, we choose  

 

𝜂 = 𝜂′: =
logα

log2
, μ: =

log𝑎

log2
, 𝐴 ≔ 3.5, 𝐵 ≔ 2, 𝑡 ≔ 𝑥 − 𝑦  

 

and  

 

μ′: =
log((𝑎−1(1±2𝑦−𝑥))

log2
, 𝐴′ ≔ 2.34, 𝐵′ ≔ 2, 𝑡′ ≔ 𝑥   

 

by considering (11) and (12). To reduce 𝑥 − 𝑦, we take  

 

𝑛 < 5.92 ∙ 1031 = 𝑀  

 

from (10) in the equation (11). We find that q62 > 6𝑀 

for 𝜂. Moreover, we compute 

 
 

𝜀 ≔ ‖𝜇𝑞62‖ − 𝑀‖𝜂𝑞62‖ > 0.37. 

 

Thanks to Lemma 2.2, we have 
 

𝑥 − 𝑦 ≤
log(

𝐴𝑞62
𝜀

)

log 𝐵
≤ 112.61,  

 

and so 𝑥 − 𝑦 ≤ 112. This upper bound and (9) give us 

 

𝑥 < 6.48 ∙ 1018. 

 

The above inequality and (5) imply that 

 

                               𝑛 < 7.78 ∙ 1018.                        (13) 

 

Considering (12) and (13), we choose 

 

𝑛 < 7.78 ∙ 1018 = 𝑀′. 
 

It can be seen that q33 > 6𝑀′ for 𝜂′. Furthermore, we 

compute 

 

𝜀 ≔ ‖𝜇𝑞33‖ − 𝑀‖𝜂𝑞33‖ > 0.001. 
 

From Lemma 2.2, we conclude that  

 

𝑥 ≤
log(

𝐴𝑞33
𝜀

)

log 𝐵
≤ 78.86.  

 

From this, we get 𝑥 ≤ 78 and so 𝑛 ≤ 95. With help a 

computer program, we get the only solutions displayed 

as 

 

24 = 𝑇7 = 24 + 23,    2 = 𝑇3 = 22 − 21, 
 

 4 = 𝑇4 = 23 − 22,      24 = 𝑇7 = 25 − 23, 
 

504 = 𝑇12 = 29 − 23 

 

for 1 ≤ 𝑦 < 𝑥 ≤ 78 and 3 ≤ 𝑛 ≤ 95. Therefore, the 

proof ends. 

 

Mersenne numbers are given by 2𝑎 − 1 for 𝑎 ≥ 1. 

Difference of two Mersenne numbers is expressed as 

2𝑎 − 2𝑏 for 𝑎, 𝑏 ≥ 1. 

 

Corollary 3.1: Tribonacci numbers that can be written 

as the difference of two Mersenne numbers are 2, 4, 24 

and 504. 

 

4. Conclusion and Suggestion 

 

Recently, investigators have used linear forms in 

logarithms and reduction method in many of their 

studies. It turned out that the Diophantine equation 

produced the interesting result, which is Tribonacci 

numbers in the form of the difference of two Mersenne 

numbers. This result not only show cases the power of 

logarithmic forms in solving Diophantine equations but 

also provides a deeper understanding of the interplay 

between different number-theoretic structures.  

 

As a more general version of this study, solutions to 

these equations can be investigated by substituting 

various integer sequences for 2 in these equations. By 

doing so, one can explore a broader class of 

Diophantine equations that involve powers of integers, 

such as powers of primes or other specially constructed 

sequences. This approach could yield new insights into 

the nature of integer solutions and their distribution, 

potentially revealing deeper symmetries in number 

theory. 
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