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In this work, we construct new sequence spaces by combining the integrated and
differentiated sequence spaces with the binomial matrix. Firstly, we provide
information about basic matters such as sequence spaces and matrix domain.
Subsequently we briefly summarize some sequence spaces generated by the binomial
matrix. Thereafter, we define the integrated and differentiated sequence spaces and
establish the new sequence spaces. Afterwards, we examine some properties and the
inclusion relations of these new sequence spaces. We also determine the «, g and
y —duals of the integrated and differentiated sequence spaces. Finally, we
characterize some matrix classes associated with the new sequence spaces.

1. Introduction

Let w ={x = (x) : x € R(or C),Vk € N} be
a set. Under the pointwise addition and scalar
multiplication w is a vector space. Each subspace
of w is called a sequence space. The sequence
space f,, which is absolutely p-summable

sequences, is a frequently used sequence space.

A Banach sequence space is classified as a BK-
space if the maps p,,: X — C, defined as p,,(x) =
x, are continuous for all n € N [1]. Therefore,
we can say that the sequence space ¢, with their-
norm defined as

(1)

isa BK-space, for 1 < p < oo.

Let, A = (ay,) be an infinite matrix of real (or
complex) entries. The A-transform of the
sequence x is denoted as

[ee]

(Ax), = Z Ani X,

k=0

(2)

where the series (Ax), is required to be
convergent for every n € N.

Moreover, let X and Y be two sequence spaces
and consider the set defined as X, = {x =
(x;) € w: Ax € X} for a given infinite matrix A.
This set is referred to as the matrix domain of A
on the sequence space X. Additionally, the class
of all matrix transformations from X into Y is
denoted by (X:Y) and it is given by [2],

(X:Y) ={A = (ay):Ax € Y forall x € X}.(3)

Let us consider the summation matrix S = (s,)
defined as

(4)

< _{1, 0<k<n,
nk 0, k>n,

where Vn, k € N.

The matrix domain of S is used to define the sets
bs = (£)s and cs = c,, which denote the sets
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of all bounded and series,

respectively.

convergent

If the entries of an infinite matrix A = (a,)
satisfies the conditions a,, # 0 for all n,k € N
and a,;, = 0 for k > n, then this matrix is called
a triangular matrix. A triangular matrix has an
inverse which is also a triangular matrix.

The integrated and differentiated sequence
spaces were initially introduced by Goes and
Goes [3]. Recently, Kiris¢i has extensively
studied these sequence spaces from various
perspectives [4-6].

Additionally, Binomial sequence spaces were
defined by Bisgin using the matrix domain of the
Binomial matrix [7, 8]. Subsequently, various
sequence spaces were constructed by several
authors using the matrix domain of the Binomial
matrix [9, 10].

2. New Sequence Spaces

In this section, we first provide a brief overview
of some previous studies. Next, we introduce
new sequence spaces obtained by combining the
integrated and differentiated sequence spaces
with the binomial matrix. Then, we explore their
respective properties.

The Binomial matrix B™ = (b;3) is defined as
follows;

1 n
n-k.,.k
—(s+r)”(k)s %, 0<k<n

0 ,

rs _
nk —

(5)

k>n

for all nkeN, r,seR and s-r>0.
(Throughout the article, we assume s-r >0
unless otherwise stated.)

The binomial sequence spaces were first defined
by Bisgin in [7, 8] as follows;

x=(x,) Ew:

pTs = 1 <

n—»oo—(s+r)"Z)(:)Sn Kk, =0 ,(6)

lim

b.*
x=(x;) Ew:
n

= 1 n , (7)
#ELWZJ (k) s krky, exists

x = (xy) Ew:
( | 1

n
b = . . (S +71) (8)
up < oo

S

nkk

S
m
Z
OM

and
x = (x) Ew:
( | 1 I’ ]
by® = (s +m)" ENC)
n < 0
zn: Z gn—kpk
k=0

where 1 < p < oo. Throughout the article, unless
otherwise specified, we assume 1 < p < .

Subsequently, the sequence space b,”(G),
obtained from the composition of the binomial
matrix with the double band matrix defined by
Bisgin in [9] as follows;

bE(6)
( x = (xx) Ew: A
1 p
(s+nr)n (10)
=< z n > 10
n <
~ Z (k) sTErk (uxy,
k=0
+Vx,_1) J

where double band matrix G = (g,) is defined
by

u, k=n
gnk={ v, k=n-1 (11)
0, otherwise

foralln,k e Nand u,v € R\ {0}.

Then, the sequence space b, (D), obtained from

the combination of the binomial and triple band
matrix, defined by Sénmez in [10] as follows;
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b,* (D)

( x = (x) Ew: )

1 p

J G L (2

= n
n o <oof’
2 Z (k) sVRrE (txy,
k=0
\ +uxy_q + vxp_3) J

where triple band matrix D = (d,,;) is defined by

t, k=n
u, k=n-1

e = v, k=n—-2 (13)
0, otherwise

foralln,k e Nand t,u,v € R\ {0}.

Lastly, the sequence space b,*(Q) defined by
Topal combining the binomial matrix and
quadruple band matrix as follows;

by (Q)
x = (x,) Ew:
1 n 14
— n n—k..k 14
Z (S‘*‘T)nkz_o(k)s r*(oxy < o ,(14)
T txg_q F uxp_y + UXE_3)
where  quadruple  band matrix Q =
(qnr (0, t,u,v)) is defined as follows;
0, k=n
t, k=n-1
an(O, t,u, U) = u, k=n-2 (15)
v, k=n-3
0, otherwise

foralln,k e Nand o, t,u,v € R\ {0}.

Now, let us define the matrix ((k + 1)1) such
that;

10 00
0 2 00

(k+DI=|0 0 3 0 (16)
0 0 0 4

where k€N, =1{0,12,..}. Let, X be a

sequence space. Accordingly, the integrated and
differentiated sequence spaces are defined by
Goes and Goes [3] as follows;

fX={x= (x1) EW:((k+1)xk) EX}

= X+ 1)1 (17)
and
1
dX = {x = (xy) Ew: ((k n 1)xk> € X}
=X;,1\, - (18)
1)l

Here, if we take k = 0 we obtain [ X = X and
dX = X.

Now, we establish the new sequence spaces by

combining the binomial matrix and the integrated
and differentiated sequence spaces as follows;

S _ (.18
fbp _(bp (k+1)1

I( x = (xp) Ew: ) \I
1 ny .
= Z (s+r)”kz=0(k)sn kyk <Oo}
n (k + 1)y )
- [({gﬁ,)w](kﬂ)I (19)
and
dby,” = (b;'s)(ﬁ)l
( x = (x) Ew: )
n p
1 ny
:{Z (s+r)nkz=0(k)sn “rk <oo>
~ 1
\ (k + 1) Xk y

(20)

- [({)P)B“] SETAY

(o)t
Furthermore, by constructing the matrix 7" =
(t7) = B™(k + 1)1 so that;

1 n
n-k,.k 0<k<
s = (s+r)”(k)s rk(k+1);0 <k <n
0 s k>n

for all n, k € N. New integrated sequence spaces
can be redefined by matrix T™ = (¢]3) =
B™5(k + 1)I as follows;
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jb;'s = (fp)rrr,s . (21)

So, for given x = (x;) € w , the T™5-transform
of x is defined as follows,

Vi = (T7°x)y
1 k o
= mz (l) Sk_l'l"l(i + 1)xi (22)
i=0
forall k € N.

Similarly, by constructing a matrix U™ =
rsy __ r,S L .
(wi) =B (k+1)lsothat,

1 n 1
n-k..k 0 < <
U = (s+r)n(k)s r <k+1)’0_k_n
0 ;o k>n

for all k € N. The new differentiated sequence
spaces can be redefined by the matrix U™° =
(uyi) as follows;
db;'s = (‘gp)ur,s ' (23)

Thus, for given x = (x,) ew , the U™s-
transform of x is defined as follows;

Vi = (U™%x)y )
1 k . 1
_ k—i..0 .
_(s+r)kZ;<i>S r <i+1)xl (24
1=
forall k € N.

Theorem 2.1. The sequence space [ b,” with its
norm defined as follows;

el s = Tl

. 1
p
= <2|<T“x>k|t’>
k=0

is a BK- space.

(25)

Proof: T™ = (¢]3) is a triangular matrix and
the equation (21) holds. Additionally, since the
space ¢,, with p-norm is a BK-space, according
to Theorem 4.3.12 of Wilansky [2], we conclude

that the sequence space [ b, is also a BK-space.
Thus, the proof is complete.

Theorem 2.2. The sequence space db,,” with its
norm defined as follows;

lxllgprs = U™ xll,
1
ot P
= DIl 26)
k=0
is a BK- space.

Proof: T™S = (¢]) is a triangular matrix and
the equation (23) holds. Therefore, the proof can
be demonstrated in a similar way as shown in
Theorem 2.1.

Theorem 2.3. The sequence space [ b,” is
linearly isomorphic to the sequence space £,,.

Proof: Let F be a transformation defined as
F:[by® = ¢,, F(x) = T™*x. It is obvious that
F is linear. Also, it is clear that x = 8 whenever
T™*x = 6. Consequently, F is injective.

Now, let us consider a sequence y = (y,) € £,,.
We define a sequence x = (x,) for the given
sequence y = (y,,) such that,

3 () e+ 9

Xp=1""
k=0
(27)
forall n € N.
((G+D1D)x) =G+ D
k
k
= (}) o + ) (28)
=0

Then, we have

el s = 775l

o 1
b
= (ZKT“x)nw)
n=0
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1
© n P\ p
- (Z (s +1r)” z (Z) ST+ 1 >
n=0 k=0
oo n k
1 k
S o YRR AR
n=0 k=0 =0
»\?
+ )y, >
o 1
14
- (pr)
n=0
= Iyl
= IFIle,
< 00, (29)

Hence, F is norm preserving from (25) and
surjective. As a result, F is an isomorphism and
the proof is complete.

Theorem 2.4. The sequence space dby,* is
linearly isomorphic to the sequence space £,,.

Proof: Let F be a transformation defined as
F:db,” = £, F(x)=U"x. Now, let us
consider the sequence x = (x,,) as follows;

xp =1+ D) ) (1) G + )y
k=0 (30)

forall n € N.

Thus, the proof is completed using the method
employed in Theorem 2.3.

Theorem 2.5. The sequence space [ b,” is not a
Hilbert space under the condition p # 2.

Proof: Let us assume that p = 2. We know from
Theorem 2.1. that the sequence space [ b, is a
BK-space with respect to the norm defined by

lxllyprs = NIT™ x|l

= (ZKT“x)kP) .
k=0

(31)

Therefore, this norm can be constituted in terms
of the inner product as follows;

(32)

1
lxllyprs = (T™x, T" x)2.
So, [ by is a Hilbert space.

Conversely, let us take p € [1,00) \ {2}. We
define two sequences y = (y,) and z = (z;,) as
follows;

= (Ep) ) () e

and

1 S\k(s+k(r+s)
2= () () (2) oo
for all k € N. Then we obtain,

2
—+2
ly + Z”?b;ﬂs +ly — Z“?b;.s =8+ 2p+
=2 2 s 2 s |.
(vl s + 112115 s ) (35)

So, the parallelogram equality is not satisfied by
the norm defined in (25). As a result, if p # 2
then this norm cannot be generated by an inner
product. Therefore the sequence space [ b,”
cannot be a Hilbert space. Thus, the proof is
complete.

Theorem 2.6. The sequence space db,,” is not a
Hilbert space under the condition p # 2.

Proof: Let us assume that p = 2. In this part of
the proof, we utilize the norm defined Theorem
2.2. Thus, as in the previous theorem, it is shown
that the sequence db," is a Hilbert space.

Conversely, let us take p € [1,) \ {2}. We

define two sequence spaces u = (uy) and v =
(vy) as follows;

u,=(k+1) (— ;)k <S—k(—r+5‘)> (36)

S

and
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v, =(k+1) (— ;)k (M) (37)

S

for all k € N. Thus, by obtaining the same results
as in Theorem 2.5. Thus, the proof is complete.

Theorem 2.7. The inclusion [#,c [b,*
strictly holds.

Proof: Let us consider an arbitrary sequence x =
(x) € [ £, for 1 < p < oo. From the definition
of the sequence space ffp, we obtain Y| (k +
1)x4|P < . Therefore, by applying Holder’s
inequality we can write;

k p

ﬁ; (f) sKIrI(j + 1)x;

<i( )Ist- f|r|1>p1

Jj=0

(-t sy
j=0 |

- (Is rlk) &(lSI + |T|)k)p '

i <]) IsI*T 1P| G + D[

J

=0
() 10+ 0

j=0

|(T™*x)c|P =

-
(

Then we obtain;

k
Sirr <33 (k3

lem Z( el
|Z|o+1>x1|

If we consider the comparison test together with

the result we have obtained, we conclude that;

T™x € £,. S0, x=(x) € [by". Hence,
)

[, c [by*.

ENC

S+r

s +r (38)

Now, we define a sequence y = (yy) as follows,

1 k
y":(_k+1>

for all k € N. From here, it is observed that
(k+Dy=((-D ¢, and T7y=

S—=r

k
((;) )Ei’p- So, y= (i) €[, and y =
(vr) € [ b,°. Hence, [#,c [b,* is strict.
Similarly, the case of p = 1 can be proven in a
similar way. Thus, the proof is complete.

Theorem 2.8. The
strictly holds.

inclusion d¢, c db,”

Proof: The proof of this theorem follows a
similar method to the one used in the previous
theorem. Where, using U™* instead of T"™5.

3. a, B and y — Duals of the Spaces [ b,,” and
db;*
14

In this part, we determine «, § and y — duals of
the differentiated and integrated sequence spaces
J by® and db,*. Given two sequence spaces X
and Y, the multiplier space M(X,Y) is defined as
follows;

X% = M(X,¢,),
XB = M(X, cs)
and

XY = M(X, bs).

Lemma 3.1. [11] Let A = (a,,) be an infinite
matrix; the following conditions hold.

i) A=(a,) € ($:%;) if and only if
sup Lnlank| < oo, (39)
i) A = (au) € (1:€,) if and only if
sup |an| < oo, (40)

n,keN
i) A = (a,) € (¢1:c) ifand only if (40) holds
and lim a,, = a, forall k € N. (41)
n—-oo

Lemma 3.2. [11] Let A = (a,;) be an infinite
matrix; the following conditions hold.
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i) = (an) € (£p:¢1) if and only if
;telp Ll Znex ankl? < oo, (42)
i) A= (aw) € (¢p:?s) if and only if
sup Yilank|P < o, (43)

TLE

iii) A = (an) € (¢,:c) if and only if (41) and
(43) hold.

is the

Where 1 <p < oo, %+%=1 and F

collection of all finite subsets of N.

Theorem 3.3. i) The a-dual of the integrated
sequence space [ by” is the set,

[ a=(ag) Ew: . ]
)|
= Vsup L PRCE
KeF & r_”(k) (—s)nk
nek - (r + s)ka,

and the a-dual of the integrated sequence space
[ bi” is the set,

a=(ay) Ew:

(1) ()

(=)"*0 + 9)*ay,

&"° = -(45)

sup
keN
n

<

i) The a-dual of the differentiated sequence
space db,” is the set,

a=(ag) Ew:

n+1) a :
£ = 1 m - 46)
B 222 ) A I
nek  (r +s)*a,

and the a-dual of the differentiated sequence
space db; " is the set,

a=(ay) Ew:

1 mn
(n+D— (k)
(=)™ (r + s)*a,

rs __
€= qup (47

keN
n

<

Proof: i) Consider a sequence x = (x,,) defined
as,

1
_n

(=) *(r + )*| yy

“e Yl

for all n € N. From this, we conclude that for a
sequence a = (a,), we write;

nn = 2 [nj—lri"(z) =

k=0

(48)

) k(r

+ S)kan] Yk
n

_ .S

k=0
= (Z"y)n

forall n € N.

By taking into account the equality above, we
observe that ax = (a,x,) € £; whenever x =
(xx) € [ by or x = (x;) € [ b,” if and only if
Z"Sy € £1 whenever y=(y,) €¥, or y=
(¥k) € ¢, respectively. Where 1 < p < 0. So,
we that a = (a,) € {/ b;°}* or a=(a,) €
{J b5} if and only if 2™ € (¢,:4;) or 275 €
(¢,:4,) respectively, where 1 <p < co. By
connecting these results, Lemma 3.1 (i) and
Lemma 3.2 (i), we deduce that;

a=(a,) € U bf's}a &

1 /mn
- _\n—k k
fféﬁ? r”(k)( T+ s) nt+1om
n
< oo (49)
and
a
a=(a,) € U b;'s} &
1 mn
Su — —s)"k(r
p )| 2,7 () 9
a
1
k
+5) nt1lm
< o, (50)
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where 1 <p<o. These vyield us that
{J b} = &7 and {J by*}" = & Where 1 <
p < oo. Thus, the proof is complete.

ii) The sequence x = (x,,) is defined as;

6= [+ D () Comte + 9 v
- (51)

forall n € N. The proof is carried out in a similar
method in part (i).

Theorem 3.4. i) Consider the sets &.°, &;”° and
- defined by

a=(ay) Ew:

@ =Dl (e
j=k

exists Vk € N

( a= (ay) €Ew:

LY e
f£‘s=ik§#& Z i (k)( sY ka' <ooj (53)
/)

=k (r + s)k <L>

Jj+1
and
a=(ag) Ew:
i q
7,5 n|n l(]) (—S)j_k
67’ = T'J k )
sup 1 < o0
NEN bmed | b k(_——_),.
k=0 |j=k (r +5) (j n 1) a;
(54)
where 1< qg<o. Then the following

statements hold;

L by =87 ngg”,
N Y =esng®, A<p<ow)
nL [y =&,
V. {fby) =érs,

if) Consider the sets &g, &5”° and &7 defined by;

(1<p< o)

a= (ay) Ew:

(o )
&7 = iz rll (;{) (=)@ + )G + 1)ajf ,
o exists Vk € N
(55)

)
mf (56)

a=(ay) Ew:

& 3o

fT,S —
K sup
neN =% (r + 9)*( + Da;

and
a=(a;) Ew:
rs _ n n l(]) Nk q
$10 sup i \k (=) <oof’
neNITo Tk (r + )R + Da;
(57)

where 1 < g < oo. Then thefollowing statements
hold,;

. {db]"}f =&°n&)”,

I {db;'s}ﬁ =&°NE&y, (1<p<x)
1. {db{’s}; =&,
V. {db,*} = ¢y (1<p< o)

Proof: Since the other parts of the proof can be
done similarly, we provide the proof only for
case (1) of part (i). Let us consider the sequence
x = (x,) defined in (48) for an arbitrary a =
(a,) € w. Then,

1 /j .
nl|ln —<q)Jk
_ ) (k) (=9)
K 1
k=0]j=k (T‘ + S) (m) aj
= (F™y)n

Yk

(58)

for all n € N. Where the matrix F™ = (f,°) is
defined by,
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1/j .
. 3o
r ,0<k<n

TS — 1 > >
fuk Tk (r +s)k (—+ 1) a;

0 Jk>n

(59)

forall n,k € N. So, ax = (a,x,) € cs whenever
x = (x;) € [by® if and only if F™Syec
whenever y = (y,) € £;. This outcome makes
clear that a = (a,) € {f b]*}* if and only if
F™S € (£1:c¢). By combining this result and
Lemma 3.1. (iii), we obtain that a = (a,) €
{J b]*}# if and only if

$ 10 en(

58,12, i)yl <e
j=k
and
S 1 /] . 1
- —g)J—k k ;
53 ()0 (e
]=
exists for all k € N.
This result shows us that {[ b7} = &7° n &.°.

Thus, the proof is complete.
4. Some Matrix Classes

In this part, we identify certain matrix classes
associated with the new sequence spaces.

Now let us prefer the following sequences that
we use throughout this section.

nk = Z%(D (=) k(@ + s)* (j _Il_ 1) an; (60)

and

B

forall n, k € N.

Theorem 4.1. Given an infinite matrix A =
(a,x), the following statements hold.
i) A= (an) € ([b17:4s)

if and only if sup|pj| < oo, (62)
kn

i) A= (am) € (Jb)°:4e)
if and only if sup Elpf{i !
neN A

(1<p< x),(64)

< o, (63)

{ank}ken € &°

i) A= (ay) € (db]*: £s)

if and only if sup|ni| < oo, (65)
kn

IVIA = (an) € (db;'s: ?o)
if and only if sup z |TI17;1§ !
neN A

(1<p < ®).(67)

< o, (66)

{ank}ken € &1o

Proof: Since the others can be done in a similar
method, we only provide the proof for (iv).

Let 1 <p < oo. Let us consider an arbitrary
sequence x = (x;) € db,” that satisfies the
conditions (66) and (67). Thus, it is obtained that

{@uidren € {db;'s}ﬁ. This result indicates the

existence of the A-transform of x. From the
relation (48), we have

m m k
kZo AniXe = kZO ;)rik (f) (=) (r

+5) (k+ Dy; | ank

=§0 iﬁl’(;‘) (=) *(r + $)*(

+ | anyi. (68)

By taking limit (68) side by side as m — oo, we
obtain that

s
Z AnpXyx = Z MYk M € N.
k

k

(69)

Then, we derive by taking £,-norm (69) side by
side and any by applying Holder’s inequality

that,
lAxlle = sup| D wivi
neN T
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1 1
q q p
<sup( Y izl ) (Yl ) <. (70)
neN T "

Consequently, we conclude that Ax € .. So,
A = (ay) € (dby*: 4.,).

Conversely, assume that A= (a,) €
(db)°:%,). This gives us t0 {anxlen €

{dbg's}ﬁ foralln € N. Then, it is evident that the
condition (67) is necessary and that the
{Mitenen exists. Because of {a,lren €

{db;'s}ﬁ, we can see that the condition (69) holds
and the sequences a, = (ani)key define the
continuous linear functionals £, on db,* by

L) =) au (7D

k

for all n € N. Additionally, we know from the
Theorem 2.4 that the db,,* is norm isomorphic to
£,. By connecting this result and the condition
(69), we have

Wl = (| G2 el (72)

which yield that the functionals f,, are pointwise
bounded. Moreover, we derive from the Banach-
Steinhaus Theorem that the functionals f,, are
uniformly bounded. So there exists a constant
M > 0 such that;

1
q
(ZInQ’iI") = lfall < M
k

for all n € N, which shows us that the condition
(66) holds. Thus, the proof is completed.

(73)

Lemma 4.1. [11] Let B = (by,y) be an infinite
matrix. Then, B = (by) € (¢,:£,) if and only
if

wup S el < o
keN -

where 1 < p < co.

Theorem 4.2.Let an infinite matrix B = (by;,)
be given. Then,

i) B=(by) € ([b]*:¢,)if and only if

sup Xy ¥ < oo, (74)

€

i) B = (by) € (db;*:¢,) if and only if
sup Yo|nms|” < co. (75)
keN

Proof: Let a sequence y = (yi) € [ b;’be
given. Assume that the condition (75) holds.
Then, it is clear that z=(z,)€ ¥, and
{bi}ren € {J b7} for all n € N. That means
B-transform of x exists. As a result of this, the
series Y. o,y ), are absolutely convergent for all
n €N and z = (z;) € £;. Now let us consider
the following equality.

Z bniYr = Z Pric 2k € N,
K K

If we apply the Minkowsky inequality to
equation (76), we obtain

(76)

(Zl(iey)nlp)5 < 1z (2lpf;,:‘ ”)5. (77)
n k n

Thus, it follows that By € £,, namely B =
(i) € (f by : 4p).

Conversely, we suppose that B = (b,) €
(fb7¥:¢,). Namely, By e ¢, for all y=
1) € [ by, S0, {builken € {J b1} for all
n € N, which shows us that the relation (76)
holds. These results give us that (p,;) €
(#1:¢,). By combining last result and Lemma
4.1, we obtain that the condition (74) holds.

The part (ii) can be proved by using a similar
method. Thus, the proof is complete.

5. Conclusion

TS = (t;) represents the composition of the
binomial matrix and the integrated sequence
space and U™ = (ul;) represents the
composition of the binomial matrix and the
differentiated sequence space. Since T™° =
(t77) and U™ = (u]) is more comprehensive
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than integrated and differentiated sequence
spaces, respectively, our conclusions are more
general.
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