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ABSTRACT

In this paper, we use the Lichnerowicz Laplacian to prove new results: the sphere theorem and
the integral inequality for Einstein’s infinitesimal deformations, which allow us to characterize
spherical space forms. Our version of the sphere theorem states that a closed connected
Riemannian manifold (M, g) of even dimension n > 3 is diffeomorphic to a Euclidean sphere or
a real projective space if the inequality Ricmax(x) < nKmin(x) g is true at each point x ∈ M , where
Ricmax(x) is the maximum of the Ricci curvature, and Kmin(x) is the minimum of the sectional
curvature of (M, g) at x. Since this inequality implies positive sectional curvature; therefore, our
result partially answers Hopf’s old open question.
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1. Introduction and main results

The Lichnerowicz Laplacian ∆L is a fundamental differential operator of order two, perhaps it is more
natural than the rough Laplacian, although both operators are related by the Weitzenböck decomposition
formula. Examples of this naturalness are the appearance of ∆L in the linearized Ricci flow equation (e.g., [8]),
in Differentiable Sphere Theorems, in the stability analysis of Einstein metrics and Kaluza-Klein theories (e.g.,
[1] and [2, Chapter 12]), etc. Namely, ∆L, acting on the vector bundle S2

0M of symmetric traceless 2-tensors,
can be considered as Einstein’s infinitesimal deformations of the metric g.

By the Differentiable Sphere Theorem, see [5], any closed connected Riemannian manifold (M n, g) with
strictly pointwise 1/4-pinched sectional curvature is diffeomorphic to the spherical space form Sn/Γ, where
Γ is a finite group of isometries acting freely. Riemannian manifolds isometric to the quotient manifold Sn/Γ,
where Γ is a finite group of isometries acting freely on the unit n-sphere, are fully classified in [15] and are
called spherical space forms.

The kth Betti number bk(M) (called after Enrico Betti) represents the rank of the kth homology group of M . If
a Riemannian manifold (M, g) is diffeomorphic to the spherical space form Sn/Γ, then it has zero Betti numbers
bk(M) for k = 1, . . . , n− 1; thus, χ(M) > 0 for even n. Recall the expression of the Euler-Poincaré characteristic
of a manifold M in terms of Betti numbers:

χ(M) =
∑

k>0
(−1)

k bk(M).

For example, a closed locally conformally flat Riemannian manifold of dimension n ≥ 4 with positive sectional
curvature admits a metric of positive constant sectional curvature, hence it is diffeomorphic to a spherical space
form, see [11], and χ(M) > 0 for even n ≥ 4.

The Hopf’s conjecture (posed in 1931) on controlling topology through curvature is a popular open question
in Riemannian geometry, which can be considered in relation to Differentiable Sphere Theorems, see [5, 4]. The
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modern formulation of Hopf’s hypothesis is as follows, see [8, p. 81]: a closed, even-dimensional Riemannian
manifold with positive sectional curvature has positive Euler-Poincaré characteristic. Note that any closed, odd-
dimensional manifold has zero Euler-Poincaré characteristic. This conjecture holds in dimensions 2 and 4,
see [3, 7]. Despite the relevance of Hopf’s conjecture, it remains open in dimensions 6 and higher.

Since the unit sphere in TxM at an arbitrary point x ∈ M is a compact set, then there exist the 2-plane
σ(x) ⊂ TxM and the unit vector X ∈ TxM such that exist real

Kmin(x) := inf σ(x)⊂TxM K(σ(x)), Ricmax(x) := supX∈TxM Ric(X),

where K(σ(x)) is the sectional curvature of (M.g) with respect to the plane σ(x) at x ∈ M , and Ric(X) is the
Ricci curvature in the direction of any unit vector X ∈ TxM at x ∈ M .

Now we can complete the following differentiable sphere theorem for Riemannian manifolds with pinched
curvature in the pointwise sense, see [14]: Let (M, g) be an n-dimensional, n ≥ 3, compact Riemannian manifold
with Ricmin(x) > (n− 1) τnKmax(x) at each point x ∈ M , where τn = 1− 6

5(n−1) , then M is diffeomorphic to
a spherical space form. In particular, if M is simply connected, then M is diffeomorphic to Sn. Namely,
the following new differentiable sphere theorem for Riemannian manifolds with pinched curvature in the
pointwise sense is true.

Theorem 1.1. An n-dimensional (n ≥ 3) connected closed Riemannian manifold (M, g), whose Ricci tensor satisfies the
inequality

Ricmax(x) < nKmin(x), (1.1)

is diffeomorphic to the spherical space form Sn/Γ. Moreover, if (M, g) is simply connected, then it is diffeomorphic to Sn.

Remark 1.1. In the article, we consider the following condition at each point x ∈ M :

Ric(X) < nKmin(x). (1.2)

Since,
Ric(X) ≥ (n− 1)Kmin(x)

at each point x ∈ M , by (1.2) we conclude that

(n− 1)Kmin(x) ≤ Ric(X) < nKmin(x). (1.3)

The double inequality (1.3), and hence (1.2), implies Kmin(x) > 0 at any point x ∈ M .
Under conditions of Theorem 1.1, (M, g) is a closed Riemannian manifold of positive sectional curvature.

Since the spherical space form Sn/Γ has zero Betti numbers bk(M) for k = 1, . . . , n− 1, then χ(M) > 0 for even
n. Therefore, Theorem 1.1 gives a partial answer to Hopf’s old open question.

Remark 1.2. A Riemannian manifold (M, g) is called strictly pointwise δ-pinched if

0 < δK(σ1(x)) < K(σ2(x))

for some real δ > 0 and any planes σ1(x), σ2(x) ⊂ TxM at any point x ∈ M , see [5, 4]. Since the unit sphere in
TxM is a compact set, there exists a plane σ(x) ⊂ TxM such that Kmin(x) = K(σ(x)) – the sectional curvature of
σ(x). If the sectional curvature of (M, g) is weakly pointwise 1/4-pinched, i.e.,

0 < Kmin(x) < K(σ) < 4Kmin(x),

then the Ricci tensor and Kmin(x) satisfy the inequality

Ricmax(x) < 4(n− 1)Kmin(x). (1.4)

Since (1.4) follows from (1.2), Theorem 1.1 is consistent with the differentiable sphere theorem.

Corollary 1.1. Let a closed connected Riemannian manifold (Mn, g) of even dimension satisfy (1.1), then (M, g) is
diffeomorphic to Sn or RPn.
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One can also ask if the scalar curvature Scal = traceg Ric (a smooth function on a manifold) can control the
topology, see [2]. For example, a metric with nonnegative scalar curvature on a torus has to be flat.

The main results of our article are the differentiable sphere theorem and the integral inequality for Einstein’s
infinitesimal deformations of closed Einstein manifolds, which allow to characterize spherical space forms. In
the proofs of our theorems (see Section 2) we use the curvature operator of the second kind, acting on the space
of symmetric covariant 2-tensors and the Weitzenböck decomposition formula, which relates the Lichnerowicz
Laplacian to the rough Laplacian and Weitzenböck operator.

Recall that an n-dimensional (n ≥ 3) connected manifold with a Riemannian metric g is said to be an Einstein
manifold with Einstein’s constant α ∈ R (related to the scalar curvature by Scal = nα) if its Ricci tensor satisfies

Ric = α g,

see [2, p. 3]. For example, there exist three kinds of Einstein 4-dimensional manifolds of positive sectional
curvature: a sphere S4 and real projective space RP4 with positive constant sectional curvature, and the complex
projective plane CP2 with the Fubini-Study metric.

Let (M, g) be a closed Einstein manifold and all Einstein metrics on M close to g be homothetic to g, then the
Einstein metric g is said to be rigid. For example, all Einstein metrics, whose sectional curvature is pointwise
n−2
n−1 -pinched, are homothetic to g, see [1]. M. Berger and D. Ebin (see [1] and [2, Chapter 12]) considered
generalizations of this result and introduced “Einstein’s infinitesimal deformations". The result they gave,
roughly speaking, is that the space of all Einstein metrics on a smooth manifold is locally finite-dimensional.

For Einstein manifolds, the inequality (1.2) can be written in the form (1.5). Thus, the next corollary (also
proven in [12, Theorem 1]) directly follows from Theorem 1.1.

Corollary 1.2. Let an n-dimensional (n ≥ 3) closed connected Einstein manifold (M, g) with Einstein constant α satisfy
the inequality

α < nKmin(x), x ∈ M , (1.5)

then (M, g) is a spherical space form Sn/Γ. In particular, if (M, g) is simply connected, then it is diffeomorphic to Sn.

Remark 1.3. If (M, g) is an n-dimensional closed connected Einstein manifold of nonnegative scalar curvature
such that α < (n+ 2)Kmin(x) (x ∈ M), then the Betti numbers bk(M) are zero for k = 1, . . . , n− 1, see [12].
Furthermore, if n is even and M is simply-connected, then b0(M) = bn(M) = 1; hence, χ(M) > 0.

Theorem 1.2. Let (M, g) be an n-dimensional (n ≥ 3) closed connected Einstein manifold with Einstein constant α.
Then for any Einstein’s infinitesimal deformation φ ̸= 0, the following integral inequality is true:∫

M

(α− nKmin(x)) ∥φ∥2 dvg ≥ 0 . (1.6)

Moreover, if the equality in (1.6) is achieved for some Einstein’s infinitesimal deformation φ ̸= 0, then (M, g) has constant
sectional curvature and φ is a parallel tensor.

It is well known that the standard metric of the sphere is rigid, see [2, p. 132].
In the following corollary of Theorem 1.2 we generalize this result.

Corollary 1.3. Let (M, g) be an n-dimensional (n ≥ 3) closed connected Einstein manifold with Einstein constant α. If
for any Einstein’s infinitesimal deformation φ ̸= 0 of the metric g the following weaker than (1.5) integral inequality holds:∫

M

(α− nKmin(x)) ∥φ∥2 dvg < 0 , (1.7)

then the metric g is rigid.

Remark 1.4. Since α ≥ (n− 1)Kmin(x) is true at any point of an n-dimensional Einstein manifold (M, g), from
(1.7) we get

∫
M

Kmin(x) ∥φ∥2dvg > 0, thus Kmin(x) is positive somewhere on M . For the unit sphere, (1.7)
reduces to

∫
M

∥φ∥2 dvg > 0, so it is true.

2. Proof of Theorem 1.1 and its corollaries

Let SpM be the bundle of symmetric covariant tensor fields over a Riemannian manifold (M, g). For this case,

we have the pointwise identity dimSp(TxM) =
(

n+ p− 1
p

)
at an arbitrary point x ∈ M . The well-known

dergipark.org.tr/en/pub/iejg 390

https://dergipark.org.tr/en/pub/iejg


V. Rovenski, S. Stepanov

Lichnerowicz Laplacian ∆L : C∞(SpM) → C∞(SpM) as on the space of covariant symmetric p-tensors. At
the same time, the Lichnerowicz Laplacian satisfies the Weitzenböck decomposition formula ∆L = ∆̄ + ℜp,
where ℜp is the Weitzenböck curvature operator (see [1, p. 388]; [2, p. 54]). It is an algebraic operator,
representing the restriction of the Weitzenböck curvature operator ℜ to symmetric p-tensors. This differential
operator, initially introduced by Lichnerowicz in [9, p. 26], is self-adjoint, elliptic and preserves the symmetries
of tensor fields. Furthermore, the Weitzenböck curvature operator ℜp : SpM → SpM satisfies the following
identities: g(ℜ(φ), φ′) = g(φ,ℜ(φ′)) and traceg ℜ(φ) = ℜ(traceg φ) for any φ,φ′ ∈ SpM (see [9, p. 315]). Next, let
(M, g) be covered by a system of coordinate neighborhoods {U, x1, . . . , xn}, where U denotes a neighborhood
and x1, . . . , xn denote local coordinates in U . Then we can define the natural frame {X1 = ∂1, . . . , Xn = ∂n}
in an arbitrary coordinate neighborhood {U, x1, . . . , xn}. In this case, gij = g(Xi, Xj) are local components
of the metric tensor g with the indices i, j, k, l, . . . ∈ {1, 2, . . . , n}. Next, we denote by Rik = Ric(∂i, ∂j) and
Ri

kjl∂
i = R(∂j , ∂l)∂k the local components the Ricci Ric and curvature R tensors, respectively, see [14, p. 49].

Then the Lichnerowicz Laplacian ∆L : C∞(S2M) → C∞(S2M) with respect to local coordinates x1, . . . , xn has
the form, e.g., [1, p. 387–388] and [9, p. 316])

∆Lφij = ∆̄Lφij + (Rikφ
k
j +Rjk)φ

k
i − 2Rikjl)φ

kl, (2.1)

where ∆̄ = ∇∗∇ is an elliptic operator, called the rough Laplacian, φij = φ(∂i, ∂j) for arbitrary φ ∈ C∞(SpM)
and Rikjl = gimRm

kjl for the local components gij = g(∂i, ∂j) of the metric tensor g, see [14, p. 49]. Next we will
consider a smooth section of a subbundle Sp

0M ⊂ SpM of covariant symmetric p-tensors which are traceless
on any pair of indices, i.e.,

∑n
i=1 φ(ei, ei, X3, . . . Xn) = 0 for an orthonormal basis {e1, e2, . . . , en} of TxM at an

arbitrary point x ∈ M . It is well-known that dimSp
0 (TxM) =

(
n+ p− 1

p

)
−
(

n+ p− 3
n− 1

)
.

We recall that the symmetric operator
◦
R : S2

0M → S2
0M determined by the equations

◦
R(φ)ij = Rikljφ

kl is

called as the curvature operator of the second kind (see [6]). We can also say that
◦
R > 0 if the eigenvalues of

◦
R as a bilinear form on S2

0M are positive definite everywhere on (M, g). In addition, the well-known (see,

for example, [6]) that if
◦
R > 0 (resp.,

◦
R ≥ 0), then the sectional curvature is positive (resp., non-negative).

Moreover, easy calculations give that (M, g) is Einstein (i.e., Ric = (s/n) g) if and only if
◦
R maps S2

0M into

itself at each point x ∈ M , see [2, p. 49]. In particular,
◦
R is identical with s/(n(n− 1)× (the identity map)) on

S2
0 Sn for the Euclidean sphere Sn with standard metric g0. Therefore, the curvature operator

◦
R is positive on

the Euclidean sphere (Sn, g0). Using the above, we can rewrite (2.1) in the following form:

∆Lφij = ∆̄Lφij +
(
Rikφ

k
j +Rjkφ

k
i + 2

◦
R(φ)ij

)
We showed above that the curvature operator of the second kind arises as a term in the Lichnerovich Laplacian,
including the curvature tensor. Let consider the quadratic form Q2(φ) : S

2M ⊗ S2M → R defined by

Q2(φ) = g(ℜ2(φ), φ) = ℜ(φ)φijφ
ij = 2

(
Rijφ

ikφj
k −Rijklφ

ikφjl
)
. (2.2)

In the last case, there exists an orthonormal basis e1, . . . , en of TxM at any point x ∈ M such that φx(ei, ej) = ϵiδij
for the Kronecker δij . Then the quadratic form Q2(φ) can be rewritten in the form (see [1, p. 388])

g(ℜ2(φx), φx) =
∑

i<j
K(ei, ej)(ϵi − ϵj)

2,

where K(ei, ej) is the sectional curvature in the direction of σ(x) = span{ei, ej} ⊂ TxM at an arbitrary point
x ∈ M (see [1, pp. 387–388]). In this case we rewrite (2.1) in the form

Rijφ
ikφj

k −Rijklφ
ikφjl =

∑
i<j

K(ei, ej)(ϵi − ϵj)
2.

Since the unit sphere in TxM at an arbitrary point x ∈ M is a closed set, then there exists the number K(x) such
that for all 2-planes σ(x) ⊂ TxM , the inequality K(x) ≤ K(σ(x)) is satisfied. In other words, K(x) = Kmin(x),
where Kmin(x) is the minimum of the sectional curvature at x ∈ M . Then the following equalities hold:∑

i<j
K(ei, ej)(ϵi − ϵj)

2 ≥ Kmin(x)
∑

i<j
(ϵi − ϵj)

2

= Kmin(x)
(
(n− 1)

∑
i
(ϵi)

2 − 2
∑

i<j
ϵiϵj

)
= Kmin(x)

(
n
∑

i
(ϵi)

2 − (
∑

i
ϵi)

2
)
= nKmin(x)∥φ∥2 (2.3)
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for σ(x) = span{ei, ej} and (tracegφ)(x) = ϵ1 + . . .+ ϵn = 0. Then from the above we conclude that at each point
x ∈ M the following inequality is satisfied:

Rijφ
ikφj

k −Rijklφ
ikφjl ≥ nKmin(x)∥φ∥2. (2.4)

for the local contravariant components φkl = gkigljφij of an arbitrary φ ∈ S2
0(TxM) at x ∈ M . Then (2.4) can be

rewritten in the form
g(

◦
ℜ(φ), φ) ≥ nKmin(x)∥φ∥2 −Rijφ

ikφj
k (2.5)

Using the above, we can state that if the inequality Rijφ
ikφj

k < nKmin(x)∥φ∥2 holds for any φ ∈ S2
0(TxM)

at each point x ∈ M , then the condition
◦
R > 0 is satisfied. In conclusion, we note that if the inequality

RijX
iXj < nKmin(x)∥X∥2 holds for any X ∈ TxM , then the inequality Rijφ

ikφj
k < nKmin(x)∥φ∥2 also holds

for any nonzero φ ∈ S2
0(TxM) at point x ∈ M , see [16, p. 82–83]. Therefore, from (1.6) and the above comments,

we conclude that curvature operator of the second kind
◦
R is positive everywhere on an n-dimensional (n ≥ 2)

Riemannian manifold (M, g) if the sectional curvature and Ricci tensor Ric of (M, g) satisfy the inequality
RijX

iXj < nKmin(x)∥X∥2 for any X ∈ TxM at any point x ∈ M .
Since the unit sphere in TxM at an arbitrary point x ∈ M is a closed set, there exists a real number Ricmax(x) =

supX∈TxM Ric(X). Then the above condition: the Ricci curvature Ric of (M, g) satisfies the strict inequality
Ric(X) < nKmin(x) for any unit vector X ∈ TxM and the minimum Kmin(x) of the sectional curvature of (M, g)
at an arbitrary its point x ∈ M can be replaced with the following more exact condition: Ricmax(x) < nKmin(x)

at each point x ∈ M . At the same time, we recall that if (M, g) is a closed Riemannian manifold such that
◦
R is

positive, then M is diffeomorphic to a spherical space form, see [6]. Therefore, Theorem 1.1 holds.
Note that the simplest examples of spherical space forms are the sphere Sn and the real projective space RPn.

Furthermore, when n is even, these are the only examples, see [5, p. 3]. In particular, for n = 2 the “differentiable
sphere theorem" can be rewritten as follows: A closed surface of positive Gaussian curvature is diffeomorphic
to S2 or RP2. Therefore, we can formulate Corollary 1.
Remark 2.1. Ogiue and Tachibana proved in [13] that an n-dimensional closed Riemannian manifold (M, g) with
positive curvature operator of the second kind is a rational homology spheres. We reformulate this statement
in the following form: An n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) is a real homology sphere
if its Ricci and sectional curvatures satisfy the inequality Ricmax(x) < nKmin(x) at each point x ∈ M .

3. Proof of Theorem 1.2

Let g be an Einstein metric on a closed manifold M with Einstein constant α ∈ R. Recall that any Einstein’s
infinitesimal deformation φ satisfies the following equations with the Lichnerowitz Laplacian, see [2, p. 347]:

∆L φ = 2αφ; δφ = 0; traceg φ = 0. (3.1)

Suppose the opposite, that there exists an Einstein’s infinitesimal deformation φ ̸= 0 on (M, g) satisfying the
integral inequality (1.7) inverse to (1.6).

From (2.1) we obtain for any φ ∈ C∞(S2
0M) the following equality, see [10, 11]:

1

2
∆ (∥φ∥2) = −g(∆L φ,φ) + ∥∇φ∥2 + g(R2(φ), φ), (3.2)

where ∆ = div ◦ grad is the Laplacian (called the Laplace-Beltrami operator). Using (2.2) and (3.1), we rewrite
(3.2) as follows:

1

2
∆ ∥φ∥2 = ∥∇φ∥2 + 2 g

( ◦
R(φ), φ

)
. (3.3)

From (3.3) we obtain the following integral formula:∫
M

(
∥∇φ∥2 + 2 g(

◦
R(φ), φ)

)
dvg = 0 . (3.4)

On the other hand, according to (2.5) and our assumption (1.7) we conclude that the integral of the function

g(
◦
R(φ), φ) is positive:∫

M

g(
◦
R(φ), φ) dvg ≥

∫
M

(
nKmin(x)∥φ∥2 −Rijφ

ikφj
k

)
dvg =

∫
M

(
nKmin(x)− α

)
∥φ∥2 dvg > 0. (3.5)
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This contradicts the integral formula (3.4), from which it follows that the integral of the function g(
◦
R(φ), φ)

is non-positive for our φ ̸= 0. We conclude that any Einstein’s infinitesimal deformation φ of g satisfies the
integral inequality (1.6).

If the equality in (1.6) is achieved for some Einstein’s infinitesimal deformation φ ̸= 0, then we get the
equality in (2.3) for such φ, thus (M, g) has pointwise constant sectional curvature, and by Schur’s Theorem,
(M, g) has constant sectional curvature.

By the above considerations, see (3.4) and (3.5), the tensor φ is parallel: ∇φ = 0, and the equality g(
◦
R(φ), φ) = 0

is valid on M . □
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