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Abstract. This study, introduces a new definition of hyperbolic spinors through

a transformation from the Horadam split quaternion, which holds significant

importance in mathematics and physics. Subsequently, fundamental concepts
such as conjugate and norm are elucidated. Leveraging the defined hyperbolic

spinor and the recurrence relation of the Horadam sequence, a novel sequence

is delineated, and its foundational equations, akin to the generator function
and Binet formula, are expressed through theorems.

1. Introduction

Number sequences are of significant interest in mathematics. Among these,
the number of sequences attributed to Leonardo Fibonacci (1170–1250) stand out
prominently. However, numerous sequences exist akin to the Fibonacci sequence,
where each term after the second is the sum of the preceding two terms, albeit with
different initial values. Notable examples include the Lucas, Pell, modified Pell,
Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas numbers, each defined with distinct
starting points [10].

Mathematically, quaternions represent a number system that extends beyond
complex numbers, thus enriching the domain of normed division algebra. This al-
gebraic hierarchy comprises the real numbers R, complex numbers C, quaternions H,
and octonions O, marking a significant milestone in modern algebra following their
discovery in 1843 by Hamilton [8]. Hamilton’s seminal work has resonated across
diverse disciplines, spanning from quantum physics to computer science [6, 7, 13].
Within algebraic realms, split quaternions or coquaternions emerge as elements
within a 4-dimensional associative algebra initially introduced by James Cockle [5].
Diverging from the quaternion algebra established by Hamilton, which delineates
a 4-dimensional real vector space equipped with a multiplicative operation, split
quaternions exhibit distinctive attributes. They encompass zero divisors, nilpo-
tent elements, and nontrivial idempotent elements, distinguishing themselves from
conventional quaternionic structures.
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Spinor is a significant concept in quantum mechanics, particularly in areas such
as spacetime geometry and particle physics. Spinors are used to represent a property
called spin, which is the rotation of a particle around its axis, determining its
magnetic moment and response to magnetic fields. Spinors are mainly employed
in defining fermions (particles with spin) in quantum mechanics, particularly in
describing the properties of fundamental particles such as electrons, protons, and
neutrons. Consequently, spinors are crucial for understanding and predicting the
behavior of fundamental particles [3]. However, spinors are not limited to quantum
mechanics alone. Mathematically, spinors are also utilized in general relativity
and spacetime geometry. Spinors are particularly used to describe the behavior of
particles subject to Lorentz transformations (operations rotating and changing the
direction of spacetime). This is particularly important for understanding topics
such as spacetime curvature and time dilation within the framework of Einstein’s
general theory of relativity. Spinors represent an essential concept with broad
applications in physics and mathematics, utilized in various fields ranging from
theoretical physics to practical applications such as magnetic resonance imaging
[12].

2. Preliminaries

The recurrence relation defines Horadam number sequence

Wn+2 = pWn+1 + qWn

with initial conditions W0 = a, W1 = b, for n ≥ 0. The characteristic equation of
the recurrence relation of this sequence is

x2 − px− q = 0

the roots of the equation are

α =
1 +
√
d

2
, β =

1−
√
d

2
, d = p2 + 4q.

The recurrence relation of the (p, q)-Fibonacci number sequence derived from
the Horadam number sequence with initial conditions a = 0 and b = 1 is

Un+2 = pUn+1 + qUn.

where Un is nth (p, q)-Fibonacci number, for n ≥ 0 [4].
Ipek has formulated the recurrence relation for (p, q)-Fibonacci quaternions, rep-

resented by the equation

QUn+2 = pQUn+1 + qQUn, n ≥ 0.

and has subsequently derived various identities. These include the Binet formula,
generating functions, and specific binomial sums incorporating (p, q)-Fibonacci
quaternions.

The recurrence relation defines (p, q)- Lucas sequence

Vn+2 = pVn+1 + qVn

with initial conditions V0 = 2, V1 = b, for n ≥ 0 [9].
Patel and Ray introduced the (p, q)- Lucas quaternion and they define this

quaternion as follows [11].
The (p, q)- Lucas quaternion is defined recursively by

QVn+2 = pQVn+1 + qQVn, n ≥ 0.
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Let’s give some information about split quaternions, which play an essential role
in our paper. You can find more detailed information in [1].

A split quaternion is defined with q = q0 + iq1 + jq2 +kq3, where q0, q1, q2, q3 ∈ R
and the quaternion basis {1, i, j,k} is given such that

i2 = −1, j2 = k2 = 1, ijk = 1, ij = −ji = k, jk = −kj = i, ki = −ik = j

Let q0 = Sq and Vq = iq1 + jq2 + kq3 be scalar and vectorial parts of the
quaternion q. So, we can write the quaternion q as q = Sq + Vq. The set of these
quaternions is K. Let p = Sp + Vp, q = Sq + Vq ∈ K be two real quaternions.
q is the conjugate of the quaternion q is equal to q = Sq − V q and it is

q = q0 − iq1 − jq2 − kq3

In addition, the norm of a split quaternion

N(q) =
√
q2
1 + q2

2 + q2
3 + q2

4

For n ≥ 0, define the split Horadam quaternion Hn by

Hn = Wn + iWn+1 + jWn+2 + kWn+3

where, Wn is the nth Horadam number and i,j,k are split quaternionic units [2].
On the other hand, let us consider the vector (α1, α2, α3) with α1

2+α2
2+α3

2 = 0
in the complex vector space C3. These vectors form a two-dimensional surface in
the two-dimensional C2 subspace of C3 . If the parameters of this two-dimensional
surface are taken as ϕ1 and ϕ2 , the following equations can be written

α1 = ϕ1
2 − ϕ2

2

α2 = i
(
ϕ1

2 + ϕ2
2
)

α3 = −2ϕ1ϕ2

Thus, each isotropic vector in C3 corresponds to a vector in C2 and vice versa. The

vector ϕ = (ϕ1, ϕ2) ∼=
[
ϕ1

ϕ2

]
obtained in this way is called a spinor [12].

3. Main Theorems and Proofs

Hyperbolic spinors corresponding to the Horadam split quaternion were defined
using the transformations provided in the preceding section. Their conjugates,
norms and fundamental properties were examined in this section. Additionally,
important equalities and theorems, such as the Binet formula and the generating
function were proven. Consequently, by determining the initial conditions of the
Horadam sequence, special cases of hyperbolic spinous, namely (p, q)- Fibonacci
and (p, q)- Lucas hyperbolic spinors, were introduced and fundamental equations
for both were derived.

Definition 3.1. Let Hn = Wn + iWn+1 + jWn+2 + kWn+3 be nth split Horadam
quaternion where Wn is nth Horadam number for n ≥ 0. Hw is the set of split
Horadam quaternions. Therefore, we give the linear transformation between the
hyperbolic spinors and split quaternions as follows:

ϕw : Hw −→ S

Hw −→ ϕw (Wn + iWn+1 + jWn+2 + kWn+3) =

[
Wn + jWn+3

−Wn+1 + jWn+2

]
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Furthermore, a new hyperbolic Horadam spinor sequence can be introduced using
the spinor defined. The recurrence relation of this sequence is as follows.

SHn+1 = pSHn + qSHn−1

where p and q are real numbers,

SH0 =

[
a+ j

(
p2b+ qpa+ qb

)
−b+ j(pb+ qa)

]
, SH1 =

[
b+ j

(
p3b+ p2qa+ 2pqb+ qbpa

)
−pb− qa+ j

(
p2b+ qpa+ qb

]
are initial conditions.
The set of hyperbolic Horadam spinor sequences is

{SHn}∞n∈N

=

{[
a+ j(p2b+ qpa+ qb)
−b+ j(pb+ qa)

]
,

[
b+ j(p3b+ p2qa+ 2qbp+ q2bpa)
−pb− qa+ j(p2b+ qpa+ qb)

]
, ...,

[
Wn + jWn+3

−Wn+1 + jWn+2

]
, ...

}
where SHn =

[
Wn + jWn+3

−Wn+1 + jWn+2

]
is nth hyperbolic Horadam spinor and Wn

is nth Horadam number.

Definition 3.2. Let n ≥ 0, n ∈ Z and the nth hyperbolic (p, q)- Lucas spinor is
SVn. Then, the recurrence relation of hyperbolic (p, q)- Lucas spinors is as follows:

SVn+2 = pSVn+1 + qSVn

with initial conditions

SV0 =

[
2 + j

(
p2b+ 2pq + pqb

−b+ j(pb+ 2q)

]
SV1 =

[
b+ j

(
p3b+ 2qp2 + p2qb+ pbq + 2q2

)
−(pb+ 2q) + j

(
p2b+ 2qb+ pbq

) ]
.

Similar to number sequences, here, by keeping the coefficients constant in the
recurrence relation of the hyperbolic Horadam spinor sequence and changing the
initial conditions to a = 0, b = 1, the hyperbolic (p, q)- Fibonacci spinor sequence
can be obtained. Similarly, when a = 2, b = b is taken, the hyperbolic (p, q)-Lucas
spinor sequence can be obtained as follows:

Definition 3.3. Hyperbolic (p, q)- Fibonacci spinor sequence is defined with

SUn+2 = pSUn+1 + qSUn

recurrence relation for n ≥ 0. The initial conditions of this sequence are

SU0 =

[
j
(
p2 + q

)
−1 + jp

]
, SU1 =

[
1 + j

(
p3 + 2pq

)
−p+ j

(
p2 + q

) ] .
The terms for this two hyperbolic spinor, defined with a = 0, b = 1, have been

obtained. In hyperbolic (p, q)- Fibonacci spinors, taking p = 1, q = 1 results in
the recurrence relation of the Fibonacci sequence. Therefore, similar properties
provided for hyperbolic Horadam spinors can readily be derived for hyperbolic
Fibonacci spinors. A parallel situation also holds for hyperbolic (p, q)-Lucas spinors.
By classifying hyperbolic Horadam spinors, such as the Fibonacci, Pell, Pell-Lucas,
Jacobsthal, Jacobsthal Lucas sequences obtained through the classification of the
coefficients and initial conditions of the Horadam sequence, the following table can
be derived.
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p q a b Hyperbolic Horadam spinor
p q 0 1 Hyperbolic ( p, q )-Fibonacci spinor
p q 2 p Hyperbolic ( p, q )-Lucas spinor
2 1 0 1 Hyperbolic Pell spinor
1 2 0 1 Hyperbolic Jacobsthal spinor
1 1 2 1 Hyperbolic Lucas spinor
2 1 2 2 Hyperbolic Pell Lucas spinor
2 1 2 1 Hyperbolic Jacobsthal Lucas spinor

Table 1. Various hyperbolic spinor types.

For example, let’s construct the hyperbolic Lucas spinor sequence using the
numerical values specified in the table. Let the general term of the sequence be
denoted as SHLn. Then, the initial conditions SHL0 and SHL1 are as follows.

SHL0 =

[
2 + 4j
−1 + 3j

]
,

SHL1 =

[
1 + 7j
−3 + 4j

]
.

Since the recurrence relation of the Lucas sequence is satisfied, the other terms of
the sequence are obtained using the relation

SHLn+1 = SHLn + SHLn−1.

Definition 3.4. Let the conjugate of the split Horadam quaternion Hn = Wn −
iWn+1 − jWn+2 − kWn+3. The hyperbolic Horadam spinor SHn corresponding to
the conjugate of the split Horadam quaternion is written by(

SHn

)
=

[
Wn − jWn+3

−Wn+1 − jWn+2

]
Furthermore, by utilizing conjugate definitions, we can obtain the following.
The hyperbolic conjugate of hyperbolic Horadam spinor SHn is

SH∗n =

[
Wn − jWn+3

Wn+1 − jWn+2

]
.

Hyperbolic Horadam spinor conjugate SH̃n = jCSHn is

SH̃n =

[
−Wn+2 − jWn+1

Wn+3 − jWn

]
The mate of hyperbolic Horadam spinor SH̆n = −CSHn is

SH̆n =

[
Wn+1 + jWn+2

Wn − jWn+3

]
where

C =

[
0 1
−1 0

]
.

Let’s give an example for each of the numerical counterparts of the given conju-
gate definitions.

For n = 0 hyperbolic Horadam spinor SH0, the conjugatesof this spinor are as
follows.
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(
SH0

)
=

[
a− j(pc+ qb)
−b− jc

]
,

SH∗0 =

[
a− j(pc+ qb)
b− jc

]
,

SH̃0 =

[
−a− j(pc+ qb)

b− jc

]
,

SH̆0 =

[
a+ j(pc+ qb)
b− jc

]
.

Corollary 3.5. For the hyperbolic Horadam spinor SHn and its conjugates, the
following equalities are valid.

· CSĤn = SHn,

· jH̃n = −SĤn,

· jCSH̃n = −SHn.

Proposition 3.6. Let the nth hyperbolic Horadam spinor SHn be the spinor cor-
responding to the nth split Horadam quaternion Wn. In this case, the hyperbolic
Horadam spin or representation of the split quaternion norm is as follows:

N (Hn) = (SH∗n)
>
SHn.

Proof. Assume that nth hyperbolic Horadam spinor SHn corresponds to the nth
split Horadam quaternion Wn. Then, the following equation can be obtained as:

(SH∗n)
>
SHn =

[
Wn − jWn+3 Wn+1 − jWn+2

] [ Wn + jWn+3

−Wn+1 + jWn+2

]
We can associate to the product of two Horadam split quaternions with a hy-

perbolic Horadam spinor matrix product as follows:

qw → q̂w −→ Q̂SH

where Q̂ is the hyperbolic, unitary, square matrix defined by

Q̂ =

[
W0 + jW3 W1 + jW2

−W1 + jW2 W0 − jW3

]
.

�

We present fundamental equations, such as the Binet formula, generating func-
tion.

Theorem 3.7. The Binet formula for hyperbolic Horadam spinor is as follows.

SHn =
1

2
√
d

([
r +
√
d(a+ j(pc+ qb))

s+
√
d(−b+ jc)

]
αn −

[
r −
√
d(a+ j(pc+ qb))

s−
√
d(−b+ jc)

]
βn

)
where r = 2b− pa+ j

(
p2c+ pqb+ 2qc

)
, s = pb− 2c+ j(pc+ 2qb),

c = pb+ qa, α =
1 +
√
d

2
, β =

1−
√
d

2
, d = p2 + 4q.
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Proof. The characteristic equation of the recurrence relation of hyperbolic Horadam
spinor sequence is x2− px− q = 0. The discriminant of this equation is d = p2 + 49

and the roots of α and β are α = p+
√
d

2 , β = p−
√
d

2 . The Bines formula for hyperbolic

Horadam spinor sequence is SHn = Aαn + Bβn where A =

[
a0

a1

]
, B =

[
b0
b1

]
are 2 × 1 matrices. When substituted for n = 0 and n = 1, after performing the
necessary operations, the desired result is obtained. �

As a result, the Binet formulas for hyperbolic (p, q)- Fibonacci and hyperbolic
(p, q)- Lucas spinors can be expressed as follows.

Corollary 3.8. The Binet formulas for hyperbolic (p, q)-Fibonacci and hyperbolic
(p, q)- Lucas spinor are as follows, respectively.

SUn =
1

2
√
d

([
2 + j

(
p3 + 3pq

)
+
√
d
(
jp2 + jq

)
−p+ j

(
p2 + 2q

)
+
√
d(−1 + jq)

]
αn −

[
2 + j

(
p3 + 3pq

)
−
√
d
(
jp2 + jq

)
−p+ j

(
p2 + 2q

)
−
√
d(−1 + jq)

]
βn.

SVn =
1

2
√
d

(
2b− 2p+ j

(
p3b+ p2bq + 4qp2 + 4q2

)
+
√
d
(
4 + 2p2bj + 4qbj + 2pqbj

)
−pb− 4q + j

(
p2b+ 2pq + 2pqb

)
+
√
d(−2b+ 2pb+ 4q)

]
αn−[

2b− 2p+ j
(
p3b+ p2qb+ 4qp2 + 4q2

)
−
√
d
(
4 + 2p2bj + 4qbj + 2pbqj

)
−pb− 4q + j

(
p2b+ 2pq + 2pbq

)
−
√
d(−2b+ 2pbj + 4qj)

]
βn.

Theorem 3.9. The generating function for the nth hyperbolic Horadam spinor is
obtained as follows:

Gw(x) =
1

1− px− qx2
(SH0(1− px) + SH1) ,

where

SH0 =

[
a+ j(pc+ qb)
−b+ jc

]
SH1 =

[
b+ j

(
p2c+ qbp+ qc

)
−c+ j(pc+ qb)

]
, c = pb+ qa.

Proof. Assume that SHn is the nth hyperbolic Horadam spinor and the generating
function of the hyperbolic Horadam spinor is

Gw(x) =

∞∑
n=0

SHnx
n.

First, the function can be written from the recurrence relation of the hyperbolic
Horadam spinor sequence as follows:

∞∑
n=0

SHn+2x
n = p

∞∑
n=0

SHn+1x
n + q

∞∑
n=0

SHnx
n,

∞∑
n=2

SHnx
n−2 = p

∞∑
n=1

SHnx
n−1 + q

∞∑
n=0

SHnx
n.

Then, the following equation can be obtained

1

x2
[−SH0 − SH1 +Gw(x)] = p

1

x
[−SH0 +Gw(x)] + qGw(x)
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Consequently, for the hyperbolic Horadam spinors, the generating function is
obtained as follows.

Gw(x) =
1

1− px− qx2
(SH0(1− px) + SH1) .

�

Corollary 3.10. The generating functions for hyperbolic (p, q)- Fibonacci spinors
and hyperbolic (p, q)-Lucas spinor are as follows, respectively.

Gu(x) =
1

1− px− qx2

[
1 + j

(
p3 + 2pq + p2 + q − p3x− qpx

)
−1− p+ j

(
p− p2x+ p2 + q

) ]
,

Gv(x) =
1

1− px− qx2

[
2 + b− 2px+ j

(
(1− x)

(
p3b+ 2qp2 + p2bq

)
+ 2pq + 2pqb+ 2q2

)
−b− pb− 2q + pbx+ j

(
(1− x)

(
p2b+ 2pq

)
+ pbq + 2q

) ]
.

4. Conclusion

This study, defined hyperbolic Horadam spinor sequences using the most general
form of number sequences, namely Horadam sequences and split Horadam quater-
nions. Additionally, (p, q)-Fibonacci and (p, q)-Lucas hyperbolic spinor sequences
were defined using the general forms of Fibonacci and Lucas sequences with pa-
rameters p and q. The relationships between these newly defined sequences, as well
as their internal relationships, were demonstrated through provided equalities. As
a result, a new hyperbolic spinor sequence was defined based on the properties of
number sequences and the definitions of split quaternions and spinors.
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