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Abstract: Nowadays, the sustainability of agriculture and food security have an increasing 

importance on soil fertility. Soil fertility is defined as the capacity of a land to grow crops 

and its potential crop productivity. However, factors such as increasing population, climate 

change, land use changes and environmental pollution threaten soil fertility. These threats 

can result in problems such as erosion, soil salinisation and organic matter depletion. Soil 

fertility is critical for the long-term health of agriculture and food security. 

 

This study investigates the application of machine learning algorithms to optimize soil 

fertility, a critical factor in sustainable agricultural practices and food security. The research 

utilizes a dataset comprising 880 samples, each containing 12 different soil properties, 

including nutrient levels, pH, and organic carbon, to develop predictive models. Three 

machine learning algorithms Extra Trees, Random Forest and K-Nearest Neighbors (KNN) 

were employed to classify soil fertility and identify the key factors influencing it. Results 

indicate that the Extra Trees and Random Forest models exhibited superior performance, 

with the Extra Trees model achieving a high accuracy rate of 0.90 and a mean squared error 

of 0.09. The feature importance analysis identified Boron as the most influential variable, 

while Electrical Conductivity was deemed less significant. These findings demonstrate the 

potential of machine learning to enhance soil management strategies, offering a promising 

approach to improving agricultural productivity and sustainability. Future research should 

focus on expanding the dataset and applying these models across various agro-ecological 

zones to validate their adaptability. 
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1. INTRODUCTION 

 

Nowadays, the sustainability of agriculture and food security 

are gaining increasing importance with regard to soil 

fertility. Soil fertility is defined as the capacity of a land to 

grow crops and its potential crop productivity. This soil 

fertility is determined by the interaction of a number of 

factors, including physical, chemical and biological 

properties. However, in recent years, factors such as 

increasing population, climate change, land use changes and 

environmental pollution threaten soil fertility. Maintaining 

soil fertility is critical to the long-term health of agriculture 

and human nutrition. Fertile soils contribute to stable crops 

across cropping seasons and contribute to ensuring food 

security of societies. However, problems such as erosion, 

soil salinisation and organic matter depletion can reduce soil 

fertility and threaten the long-term sustainability of 

agriculture. 

 

Soil fertility refers to the ability of soil to support optimum 

plant growth. It is influenced by various factors such as 

organic matter content, nutrient availability, pH and 

biological processes. Intensive agricultural practices have 

led to a decline in soil fertility due to erosion, loss of organic 

matter and deterioration of soil properties (Patzel et al., 

2000). Cover crops have been used to improve soil fertility 
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by increasing organic matter content, nutrient availability 

and cation exchange capacity (Solomon, 2023). Soil fertility 

can be assessed by methods such as soil sampling, heating 

and titration to detect nutrient levels and organic matter 

content (Peng Chunjian, 2018). Furthermore, advances in 

technology have led to the development of electronic devices 

and systems that use image analysis to determine soil fertility 

based on colour values (Zhaorong et al., 2018). In general, 

soil fertility is a complex concept involving the interaction 

of environmental, physical and chemical factors and plays a 

crucial role in supporting plant growth (Henis, 1986). 

 

Intensive agricultural practices have led to a decline in soil 

fertility, primarily due to soil erosion, loss of organic matter 

and degradation of soil physical, chemical and biological 

processes and properties. Cover crops have traditionally 

been used to improve soil fertility. Cover crops can serve as 

a valuable source of phosphorus (P) and reduce the need for 

inorganic P fertilisers for subsequent crops. Soil pH, an 

important indicator of nutrient availability and soil fertility, 

can be influenced by cover crops. Cover crops release 

nutrients through residue decomposition after termination, 

and factors such as cover crop residue quality, soil texture, 

biological activity and climatic conditions can influence the 

rate of nutrient release (Solomon, 2023). 

 

Soil fertility is determined by the interaction and 

interweaving of physical, chemical and biological 

substances, and biological fertility is one of the least 

understood components. Soil microorganisms such as 

bacteria, actinobacteria, fungi, soil algae and soil protozoa 

play a crucial role in maintaining soil fertility and nutrient 

cycles. Understanding soil microbiology is essential for 

sustainable agriculture and meeting the needs of a growing 

world population (Nadarajah, 2022). 

 

Soil fertility is a fundamental property of every soil type and 

is determined using various physiochemical methods for the 

purpose of applying soil fertilisers for plant nutrition. The 

soil fertility parameters tested include pH in potassium-

chloride (KCl), CaCO3, humus, total nitrogen, P2O5 and 

K2O. The results of the research show that soil fertility is 

high in many places studied, but there are also areas that 

require remedial measures (Majstorović et al., 2022). 

 

Soil fertility plays a very important role in agriculture and 

artificial intelligence (AI) techniques have been applied to 

improve soil fertility management. Various AI algorithms 

such as artificial neural networks (ANN), decision trees, 

random forests and k-nearest neighbours have been used to 

predict soil fertility and recommend the best crops to farmers 

(Sunori et al., 2022) (Swetha et al., 2023). These algorithms 

categorise soil into different categories by analysing soil 

data, including pH value, available potassium content and 

other factors, and provide accurate recommendations for 

crop selection (Swetha et al., 2023). Furthermore, machine 

learning algorithms such as logistic regression, support 

vector machines and ensemble techniques have been used to 

categorise soil into healthy and unhealthy categories based 

on chemical fertility and other characteristics (Patil, 2022). 

An approach combining deep learning, artificial intelligence 

(AI) and the Internet of Things (IoT) has been presented to 

provide fast and accurate results for soil fertility testing and 

crop recommendations and overcome the disadvantages of 

traditional soil testing practices (D N & Choudhary, 2021). 

The integration of AI with Internet of Things (IoT) 

technologies has also been investigated to optimise irrigation 

and fertilisation processes by assessing soil nutrients and 

moisture content in real time. These advances in AI have the 

potential to improve soil fertility management and increase 

agricultural productivity (Nyakuri et al., 2022). 

 

Soil testing is an effective tool for evaluating soil nutrient 

levels and calculating the appropriate quantity of soil 

nutrients based on fertility and crop requirements (Raman & 

Chelliah, 2023). In order to classify village-wise soil nutrient 

levels and soil fertility indices, a group of 20 classifiers, 

including bagging, random forest (RF), AdaBoost, support 

vector machine (SVM), and neural network (NN), were 

employed, and the class label was evaluated on a scale of 

high, low, and medium according to their numerical value 

(Escorcia-Gutierrez et al., 2022). A soil classification 

method based on principal component analysis (PCA) based 

laser-induced breakdown spectroscopy (LIBS) and random 

forest (RF) algorithm was proposed, and the standard soil 

samples from six different mining areas were accurately 

identified and classified(Jin et al., 2023). Soil fertility 

capability classification (FCC) is a technical system to group 

the soils according to the kind of physical and chemical 

constraints they present under agronomic management (Hota 

et al., 2022). Remote sensing techniques based on machine 

learning algorithms can be used to predict and assess the 

physical and chemical parameters of the soil, which is 

extremely important for the fertilization process in precision 

agriculture(Radočaj et al., 2022).  

 

Machine learning algorithms have materialized in soil 

fertility prediction as an encouraging method for enhancing 

production (Rajamanickam & Mani, 2021). Conditional 

inference tree (CIT) is a machine learning method able to 

untangle complex interactions while providing an 

interpretable model (Bastos et al., 2021). Soil parameters 

such as nitrogen, phosphorus, potassium (NPK), pH, organic 

carbon, moisture content, and few more things are 

considered for predicting the fertility of the soil and also to 

predict the right crops to be grown and nutrition required for 

it (Varshitha & Choudhary, 2022). Compared with other 

optimizer models, the adopted method is more suitable for 

the accurate classification of soil erosion, and can provide 

new solutions for natural soil supply capacity analysis, 

integrated erosion management, and environmental 

sustainability judgment(Chen et al., 2021). Since Machine 

Learning could play a key role in reducing the costs and time 

needed for a suitable site investigation program, the basic 

ability of Machine Learning models to classify soils from 

Cone Penetration Tests (CPT) is evaluated (Rauter et al., 

2021). Features are independent variables such as climatic, 

edaphic or managerial data, indices or categories, soil tests, 

and tissue tests (Parent et al., 2021). proposed a model to 

estimate soil organic matter, total nitrogen, and total carbon 

where remote sensing data were used as inputs to a support 

vector machine and an artificial neural network to determine 

these three soil attributes (Sarkar et al., 2022).  

 

Five machine-learning models – K-nearest neighbor (KNN), 

multilayer perceptron neural network (MLP), random forest 
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(RF), support vector machines (SVM), and extreme gradient 

boosting (XGB) – combined with the original data and three 

log-ratio transformation methods – additive log ratio (ALR), 

centered log ratio (CLR), and isometric log ratio (ILR) – 

were applied to evaluate soil texture and PSFs using both raw 

and log-ratio-transformed data from 640 soil samples in the 

Heihe River basin (HRB) in China (Zhang et al., 2020). It 

includes the identification of land arable, diversification of 

crops, restoration of organic matter, and rationalization of 

soil input (Kalyani & Prakash, 2020). In this paper, surface 

soil moisture was retrieved from Radarsat-2 and polarimetric 

target decomposition data by using semiempirical models 

and machine learning methods (Acar et al., 2020). 

 

2. MATERIAL AND METHOD  

 

This study presents a dataset analysis in which various 

chemical and physical parameters are analysed to determine 

soil fertility. 

 

2.1. Dataset 

 

The dataset used for this model is the Soil Fertility dataset 

(https://www.kaggle.com/datasets/rahuljaiswalonkaggle/soi

l-fertility-dataset). The dataset consists of 880 samples and 

13 different properties are measured for each sample. These 

properties consist of Nitrogen (N), Phosphorus (P), 

Potassium (K), pH, Electrical Conductivity (EC), Organic 

Carbon (OC), Sulfur (S), Zinc (Zn), Iron (Fe), Copper (Cu), 

Manganese (Mn), Boron (B) and fertility as given in Table1 

These data show that several chemical and physical 

parameters are important variables related to soil fertility. 

For example, nutrients such as Nitrogen and Potassium as 

well as pH and Organic Carbon levels directly affect 

productivity. The study results can provide an important 

basis for optimising soil management and fertilisation 

strategies. 

 

The following table provides the descriptive statistics of the 

soil fertility data: 

 

Table 1. Features of the data set 

 
Variable Mean Standard 

Deviation 

Min Max Units 

N 246.74 77.39 6 383 mg/kg 

P 14.56 21.97 2.9 125 mg/kg 

K 499.98 124.22 11 887 mg/kg 

pH 7.51 0.46 0.9 11.15 - 

EC 0.54 0.14 0.1 0.95 dS/m 

OC 0.62 0.84 0.1 24 % 

S 7.55 4.42 0.64 31 mg/kg 

Zn 0.47 1.89 0.07 42 mg/kg 

Fe 4.14 3.11 0.21 44 mg/kg 

Cu 0.95 0.47 0.09 3.02 mg/kg 

Mn 8.67 4.30 0.11 31 mg/kg 

B 0.59 0.57 0.06 2.82 mg/kg 

Productivity 

Output 

0.59 0.58 0 2 - 

  

This table provides a general overview of the distribution of 

the soil fertility data and presents the basic statistical 

summary for each variable. 

 

 

2.2. Machine-learning models and parameter 

optimization 

 

Machine learning models Extra Trees, Feature Importance, 

K-Nearest Neighbors (KNN) and Random Forest (RF) used 

in this study. 

 

2.2.1. Extra Trees 

 

To classify soil fertility using Extra Trees machine learning 

methods, researchers can leverage the robustness and 

efficiency of this ensemble learning algorithm. Extra Trees, 

also known as extremely randomized trees, construct 

multiple decision trees randomly from the training dataset. 

This approach is particularly beneficial in soil fertility 

classification tasks due to its ability to handle high-

dimensional data and reduce overfitting (Geurts et al., 2006). 

 

By utilizing Extra Trees, researchers can improve the 

accuracy of soil fertility predictions by combining the 

outcomes of independent decision trees into a forest (Ekinci, 

2022). This ensemble technique enhances the reliability of 

classifications by aggregating the outputs of multiple trees, 

thereby enhancing overall predictive performance (Ali et al., 

2023). Additionally, Extra Trees can aid in feature selection, 

enabling the identification of the most significant soil 

properties influencing fertility levels (Baby et al., 2021). 

Figure 1 shows the structure of the Extra Trees method. 

 

 
 

Figure 1. Extra Trees method (Chu et al., 2021) 

 

2.2.2. Feature Importance 

 

To classify soil fertility using Feature Importance machine 

learning methods, researchers can leverage the significance 

of relevant features in predicting soil fertility levels. By 

employing feature importance techniques, such as Mean 

Decrease in Impurity (MDI) measures, researchers can 

identify the most influential soil properties that contribute to 

soil fertility classification (Ahmadi et al., 2020). This 

approach aids in selecting the most relevant features while 

excluding irrelevant or redundant ones, thereby enhancing 

the accuracy and efficiency of the classification model 

(Talasila et al., 2020).  

 

Furthermore, integrating Feature Importance methods with 

machine learning algorithms like Random Forest, Support 

Vector Machines, or Extreme Learning Machines can 

optimize the soil fertility classification process (Bondre & 

Santosh Mahagaonkar, 2019). By combining Feature 

Importance techniques with these algorithms, researchers 

can prioritize the most critical soil parameters for predicting 

soil fertility levels accurately (Trontelj Ml & Chambers, 

2021). This integration ensures that the classification model 
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focuses on the key features that significantly impact soil 

fertility, leading to more precise predictions (Suruliandi et 

al., 2021). 

 

2.2.3. K-Nearest Neighbors (KNN) 

 

To classify soil fertility using the K-Nearest Neighbors 

(KNN) machine learning method, researchers can benefit 

from its simplicity and effectiveness in handling 

classification tasks. KNN is a non-parametric algorithm that 

categorizes data points based on the majority class of their 

nearest neighbors (Li et al., 2008). This method is 

particularly useful for soil fertility classification as it 

considers the similarity of soil samples based on their 

features, making it suitable for identifying patterns in soil 

properties that determine fertility levels (Koren et al., 2024).  

 

By applying the KNN algorithm to soil fertility 

classification, researchers can leverage its ability to handle 

both classification and regression tasks (Shakeel et al., 

2019). This flexibility allows for predicting soil fertility 

levels based on the characteristics of neighboring soil 

samples, enabling accurate classification of soil fertility into 

different categories (Li et al., 2008). Additionally, KNN can 

be used to identify hidden patterns in soil data, aiding in the 

discovery of relationships between soil properties and 

fertility levels (Raikwal & Saxena, 2012). The working 

system of the KNN model is given in Figure 2. 

 

 
 

Figure 2. The working system of the KNN model 

(Aghaabbasi et al., 2023) 

 

 

 

 

 

 

2.2.4. Random Forest (RF) 

 

Random Forest is a robust machine learning algorithm that 

has demonstrated significant potential in soil fertility 

classification. Random forests are an ensemble learning 

technique that combines multiple decision trees, with each 

tree being built based on a random vector sampled 

independently (Breiman, 2001). This methodology has 

proven successful in various fields, including ecology, where 

it has shown effectiveness as a statistical classifier (Cutler et 

al., 2007).  

 

In the realm of soil fertility classification, Random Forest has 

been employed to enhance predictions by taking into account 

the significance of different soil properties. Research has 

consistently shown that Random Forest outperforms other 

algorithms, such as linear regression, in predicting soil 

properties across various depths (Hengl et al., 2015). By 

utilizing the ensemble approach of Random Forest, 

researchers can achieve more precise predictions by 

aggregating the results of multiple decision trees. The 

working principle of the Random Forest model is given in 

Figure 3. 

 

 
Figure 3. Working principle of the Random Forest model 

(Khan et al., 2021) 

 

3. RESULTS  

 

In this study, the classification algorithms Random Forest, 

K-nearest neighbour and extra trees were employed on the 

soil fertility dataset. GridSearchCV was utilised to optimise 

the performance of the classification algorithms. 

GridSearchCV is designed to identify the most effective 

combinations through cross-validation on a specified grid of 

hyperparameters. The final hyperparameters were selected 

by evaluating the model on metrics such as accuracy, F1 

score and error rate. 

The analysis of soil fertility data using machine learning 

algorithms yielded significant results. Specifically, the Extra 

Trees model demonstrated outstanding performance with a 

Mean Squared Error (MSE) of 0.09, Root Mean Squared 

Error (RMSE) of 0.30, and an R-Squared value of 0.74, 

indicating perfect prediction accuracy. Additionally, the 

accuracy of the Extra Trees model was found to be 0.90. The 

training results of the Extra Trees model shown in Figure 4. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 4. Extra Trees model training results (a. Prediction Graph, b. Error Distribution Graph, c.  Prediction Accuracy 

Graph, d. Confusion Matrix Graph) 

The confusion matrix in Figure 4(d) reveals a high-

performance model that achieves an accuracy of 0.909. The 

matrix shows how well the model predicts the actual class 

labels (True labels) in three categories (0, 1 and 2). The rows 

represent the true labels, while the columns show the 

predicted labels. Each cell shows the number of instances 

classified accordingly.  In general, the model performs well 

for classes 0 and 1, but struggles for class 2, where it fails to 

predict correctly. The unbalanced performance, especially 

for class 2, suggests that potential improvements are needed, 

such as addressing class imbalance or increasing the 

sensitivity of the model to this class. 

 

 

 

 

 

 

 

 

 

 

Further comparative analysis between different machine 

learning models highlighted the efficiency of the Random 

Forest (RF) and K-Nearest Neighbors (KNN) models. The 

KNN model achieved an accuracy of 0.869, while the RF 

model achieved a perfect accuracy of 0.969. These results 

affirm the superior predictive capability of the RF model in 

classifying soil fertility based on the dataset used. Figure 5 

shows the results of KNN and Rf models in comparison. 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5. KNN and RF models training results (a. KNN 

Prediction Graph, b. KNN Error Distribution Graph, c.  KNN 

Prediction Accuracy Graph, d. RF Prediction Graph, e. RF 

Error Distribution Graph, f.  RF Prediction Accuracy Graph, 

g. KNN Confusion Matrix Graph, h. RF Confusion Matrix 

Graph) 
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The confusion matrix in Figure 5(g) indicates that the KNN 

model performs reasonably well but not perfectly. The 

matrix shows the number of true and predicted labels, where 

rows indicate true labels and columns indicate predicted 

labels. The KNN classifier showed strong performance in 

identifying instances in class 0, moderate performance for 

class 1, and failed to correctly classify any instance in class 

2. This misclassification pattern highlights a difficulty with 

class 2, which may indicate that the model is unable to 

effectively discriminate this class.  

 

The provided confusion matrix in Figure 5(h) shows the 

performance of the Random Forest classifier in three 

categories (0, 1 and 2). Each row corresponds to the actual 

class labels, while each column shows the predicted labels 

made by the model. The values in the matrix represent the 

number of instances classified under each predicted label. 

The Random Forest model performs robustly in 

discriminating between classes 0 and 1 with relatively few 

misclassifications. However, the classification accuracy for 

class 2 is slightly reduced, indicating that the model faces 

difficulties in distinguishing this class from the others. 

 

The feature importance analysis revealed that certain soil 

properties significantly contributed to the fertility 

classification. The use of Mean Decrease in Impurity (MDI) 

measures allowed for the identification of key features, such 

as nutrient levels, pH, and organic matter content, which 

were crucial in predicting soil fertility. This underscores the 

importance of targeted soil management practices to enhance 

these critical parameters.  

 

 
Figure 6.  Feature Importance Graph 

 

Figure 6 suggests that Boron (B) is the most influential 

feature in the model, significantly contributing to the 

predictions. In contrast, Electrical Conductivity (EC) has the 

least importance and may even negatively impact the model's 

performance. Features like pH and Organic Carbon (OC) 

also play crucial roles but to a lesser extent than Boron. 

 

It is essential to consider these importance scores when 

making decisions about feature selection or further model 

tuning. Features with low or negative importance might be 

candidates for removal to simplify the model and potentially 

improve its performance. Conversely, ensuring the most 

important features are accurately measured and included in 

the model is critical for maintaining its predictive accuracy. 

 

4. DISCUSSION AND CONCLUSIONS 

 

The study demonstrates the potential of machine learning 

algorithms, in particular the Extra Trees and Random Forest 

models, to accurately predict soil fertility. The high accuracy 

achieved by these models underlines their robustness and 

reliability in performing soil fertility classification tasks. 

Furthermore, trait importance analysis provides valuable 

information for improving soil management practices by 

highlighting critical soil properties that influence fertility. 

The integration of advanced machine learning techniques 

with soil fertility assessment offers a promising approach for 

sustainable agriculture. By leveraging these technologies, 

farmers and agronomists can make informed decisions on 

crop selection and soil management, ultimately increasing 

agricultural productivity and sustainability. Future research 

should focus on expanding the dataset and exploring the 

application of these models in different agro-ecological 

zones to further validate their effectiveness and adaptability. 

 

In conclusion, the application of machine learning models in 

soil fertility assessment offers a powerful tool for optimizing 

agricultural practices and ensuring long-term soil health. The 

findings from this study contribute to the growing body of 

knowledge on precision agriculture and highlight the 

importance of integrating technology with traditional 

agricultural practices to ensure sustainable food security. 
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