
Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

Research Article

European Journal of Technique

journal homepage: https://dergipark.org.tr/en/pub/ejt

Vol.14, No.2, 2024

Automated Fault Classification in Solar Panels Using
Transfer Learning with EfficientNet and ResNet
Models

Rojbin Akinca1 , Hüseyin Firat2 and Mehmet Emin Asker3,*

1 Dicle University, Department of Renewable Energy Resources, Diyarbakır, Türkiye. (e-mail: rojbin.akinca@dicle.edu.tr).
2 Dicle University, Department of Computer Engineering, Diyarbakır, Türkiye. (e-mail: huseyin.firat@dicle.edu.tr).
3,* Dicle University, Department of Electricity and Energy, Diyarbakır, Türkiye. (e-mail: measker@dicle.edu.tr).

1. INTRODUCTION

Recently, the reduction in fossil fuel reserves and the

impact of global warming have driven a greater focus on

sustainable, clean, and renewable energy (RE) sources such as

geothermal energy, hydroelectric, solar, and wind [1,2].

Among RE sources, solar energy is one of the most powerful

and is being used increasingly often [3]. Solar panels (SPs) are

key to producing solar energy efficiently [4]. The performance

and durability of SPs are closely connected to identifying and

fixing potential issues. Therefore, early detection of faults in

SPs is crucial for ensuring uninterrupted energy production and

reducing maintenance costs [5-8].

The SP faults result from a combination of electrical

irregularities and environmental factors. Various issues, such

as pyhsical damage, electrical damage, hot spots, bird

droppings, dust, and panel deformation due to external

conditions, can cause disruptions in energy production [9-12].

Traditional machine learning methods for detecting these faults

tend to be both costly and time-consuming. However, fault

detection methods based on manual inspections and remote

monitoring tools have been significantly improved recently

with the advent of deep learning (DL) models [1,6]. The DL

involves artificial intelligence techniques capable of

recognizing and learning complex patterns from large datasets

[13]. Convolutional neural networks (CNNs) and DL-based

feature extractors are particularly effective in extracting precise

information from image data and identifying faults [11,14].

Using DL methods to detect faults in SPs provides several

advantages. Early fault detection can extend the lifespan of

panels, reduce energy production losses, and make

maintenance processes more efficient, thereby increasing the

reliability of solar energy systems [15,17].

In the literature, there are various studies on fault detection

from SP images using DL models. Some of these studies are as

follows. Espinosa et al. [5] introduced an automated technique

for classifying faults in SP images by employing CNNs for

both classification and semantic segmentation based on RGB

images. The method achieved an average accuracy 70% for

categorizing four classes: dust, shadows, cracks, no-fault, and

75% for distinguishing between no-fault and fault categories.

Le et al. [6] introduced a CNN framework that combines a

residual network method with ensemble method to identify

faults in photovoltaic modules. Following the method, they

applied various transformations to augment the dataset, aiming

to achieve the highest classification performance. Additionally,

ARTICLE INFO

ABSTRACT

Received: Aug., 15. 2024

Revised: Nov., 05. 2024

Accepted: Nov., 09. 2024

 Classifying and detecting faults in solar panels using deep learning methods is crucial to
ensuring their efficiency and longevity. In this study, we propose a model that concatenates
ResNet and EfficientNet to classify faults in solar panel images. ResNet's advantage lies in
its residual connections, which help mitigate the vanishing gradient problem and improve
training of deep networks. EfficientNet is known for its scalability and efficiency, providing
a balanced trade-off between accuracy and computational cost by optimizing network depth,
width, and resolution. Together, these models enhance fault classification accuracy while
maintaining efficiency. To evaluate the performance of the proposed model, experimental
studies were conducted using a solar panel dataset with six classes: bird-drops, covered
snow, dusty, clean, electrical and physical damage on the surfaces of solar panels. The
results demonstrated that the ResNet101 + EfficientNetB1 concatenation achieved superior
performance, with an accuracy of 87.55%, F1-score of 88.13%, recall of 88.75%, and
precision of 87.92%. This concatenation provided significant improvements in fault
classification metrics compared to individual models.

Keywords:
Solar panel
Transfer learning

EfficientNet
ResNet

Fault classification

Corresponding author: Mehmet Emin

Asker

ISSN: 2536-5010 | e-ISSN: 2536-5134

DOI: https://doi.org/10.36222/ejt.153783

164

https://orcid.org/0009-0004-0199-4913
https://orcid.org/0000-0002-1257-8518
https://orcid.org/0000-0003-4585-4168
https://doi.org/10.36222/ejt.153783

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

they determined the optimal number of filters by evaluating

both the augmented datasets and raw with different filter

configurations. The ensemble method achieved an accuracy of

94.40% for the 2-class problem and 85.90% for the 12-class

problem. Duranay [11] examines using infrared images of solar

modules for detecting defects via DL, aiming to improve solar

energy system efficiency. The dataset included 20,000 images

across 12 classes, with classification performed using an

EfficientNetB0 model and SVM classifier. The method

achieved strong results, with average accuracy of 93.93%, F1-

score of 89.82%, precision of 91.50%, and sensitivity of

88.28%. Mahmud et al. [12] conducted fault detection on SP

images using the VGG16 and VGG19 models. Their dataset,

besides clean panels, included five additional classes: Snow-

Covered, Physical damage, Electrical damage, Bird-drops, and

Dusty. Their experimental results showed a prediction

accuracy of 72.88% with VGG16 and 86.44% with VGG19.

Alves et al. [18] introduced a CNN architecture for classifying

faults in photovoltaic modules. They created a balanced dataset

by applying oversampling and undersampling techniques. To

analyze the classification effectiveness of their proposed

approach, they examined different scenarios. The overall

classification criterias for the 2-class problem were reported as

92.50% for accuracy (Acc), 92.00% for F1-score (F1s), recall

(R), and precision (P). Additionally, They noted that the

proposed approach acquired an Acc of 66.43% for the 11-class

problem. Lee et al. [19] introduces LIRNet, a lightweight

inception residual convolutional network designed for

detecting faults in SPs. LIRNet leverages DL and hierarchical

learning, consisting of two phases: data preprocessing using K-

means clustering to refine the dataset, followed by model

training to enhance fault detection accuracy and processing

speed.

In this study, we propose concatenating ResNet and

EfficientNet models to classify faults in SP images. ResNet is

known for its ability to effectively train deep neural networks

using residual connections, which help prevent issues like

vanishing gradients. EfficientNet, on the other hand, optimizes

accuracy and efficiency by scaling depth, width, and resolution

systematically. By concatenating these models, the proposed

approach benefits from ResNet's depth and learning

capabilities and EfficientNet's balanced performance, resulting

in improved fault classification accuracy. To test the

effectiveness of the proposed model, a dataset containing

images of SPs with six classes was used. Experimental results

on this dataset showed that among the ResNet models,

ResNet152 acquired the best performance with an Acc of

84.15%, P of 85.72%, R of 82.84%, and F1s of 83.97%. For the

EfficientNet models, the best results were obtained with

EfficientNetB2, achieving an Acc of 82.64%, P of 83.96%, R

of 83.54%, and F1s of 83.67%, and with EfficientNetB4,

achieving an Acc of 83.40%, P of 83.68%, R of 83.45%, and

F1s of 83.41%. The concatenation of different versions of the

two models resulted in the best performance with the

ResNet101 + EfficientNetB1 model, achieving an Acc of

87.55%, P of 87.92%, R of 88.75%, and F1s of 88.13%. This

concatenation showed improvements in classification metrics

compared to the closest models by 3.4% in Acc, 2.2% in P,

5.21% in R, and 4.16% in F1s.

In the other sections of the paper, Section 2 covers the

dataset containing solar panel images, the proposed model, and

the models that make up the proposed model. Section 3

discusses the experimental setup, evaluation metrics, and

experimental results in detail. The final section, Section 4,

provides a general summary of the study's findings.

2. MATERIALS AND METHODS

2.1. Solar Panel (SP) Dataset
The presence of bird drops, snow, dust etc. on SP surfaces

decreases their efficiency and the energy they generate. Thus,

it is essential to monitor and clean these panels regularly.

Creating an effective process for monitoring and cleaning SPs

is crucial to enhance their efficiency, lower maintenance costs,

and minimize resource usage.

In this study, a dataset containing publicly available SP

images from the Kaggle platform was used [20]. This dataset

consists of images of clean, dusty, and various damaged panels,

categorized into six different classes. The classes are as

follows: snow-covered, physical damage, electrical damage,

bird drops, dusty, and clean. The original dataset includes a

total of 885 SP images. Among these images, 193 are clean,

190 are dusty, 103 have electrical damage, 69 have physical

damage, 123 are snow-covered, and 207 contain bird drops.

The sample panel images in the dataset are shown in Figure 1.

The aim of utilizing this dataset is to evaluate the

effectiveness of various machine learning classifiers in

accurately classifying bird drops, snow, dust, as well as

electrical and physical damage on the surfaces of SPs.

Clean (C)

Bird-drops (BD)

Dusty (D)

Electrical-damage

(ED)

Physical-damage (PD)

Snow-covered (SC)

Figure 1. Sample images of solar panels

2.2. Transfer Learning
Transfer learning (TL) is an effective method in DL that

involves utilizing a model trained for one specific task as the
foundation for a model aimed at a different but related task
[21]. This approach is particularly beneficial in DL, as it allows
models to leverage features learned from large datasets,
reducing the amount of data and training time required for new
tasks [22]. The primary concept involves transferring
knowledge from one domain (source) to another (target), where
the source domain contains a large amount of data, while the
target domain has only a small amount of data available.

The TL involves utilizing feature extraction from a model
that has already been pre-trained, thereby avoiding the
necessity for developers to train a model from scratch [21].
Typically, a TL model is trained on a large dataset such as
ImageNet [23]. The learned parameters from this model can
then be applied to a CNN-based model for a different but
related application. Such models can be directly employed for

165

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

making predictions on new tasks or integrated into the training
processes of related applications [21,22].

In summary, the TL is a versatile and efficient approach to
developing deep learning models, allowing the reuse of
existing knowledge to solve new problems. It accelerates the
training process, improves performance, and is particularly
useful when working with limited data. By leveraging pre-
trained models and applying techniques like feature extraction
and fine-tuning, transfer learning can effectively address a wide
range of tasks across different domains.

In this study, EfficientNet [24] and Residual Network
(ResNet) [25], two important pre-trained models available in
the Keras library, are used for classifying faults in solar panels.

2.3. Residual Network (ResNet) Model
Residual networks, or ResNets, are a type of deep CNN

architecture introduced to address the challenges associated

with training very deep networks. The key innovation of

ResNets is the concept of residual learning (RL), which helps

overcome issues like vanishing gradients and difficulty in

training deep models [25].

The RL is a technique in deep learning designed to address

the difficulties associated with training very deep CNN. Instead

of learning the entire transformation directly from input to

output, the RL focuses on learning the residual, or the

difference between the desired output and the input [25].

In practice, this means that if the aim of the network is to

learn a mapping 𝐻(𝑥), it learns 𝐹(𝑥)=𝐻(𝑥)−𝑥 instead. Here,

𝐻(𝑥) is the desired mapping, 𝑥 is input, and 𝐹(𝑥) represents the

residual function. The final output of the network is then

obtained by adding this residual to the original input, resulting

in 𝐹(𝑥)+𝑥 (Figure 2). This method simplifies the learning

process by allowing the network to concentrate on the

residuals, which are often easier to model than the complete

transformation [25].

The RL is implemented through residual blocks, which are

the core components of ResNets. Each block consists of several

convolutional layers followed by a skip connection that adds

the input of the block directly to its output (Figure 2). These

shortcut or skip connections, ensure that the learning focuses

on the residuals and help maintain the flow of gradients during

training, thus mitigating the vanishing gradient problem. In

addition, the benefits of the RL are substantial. It makes the

training of very deep networks more manageable by

simplifying the optimization process. By enabling the effective

training of deeper models, the RL enhances feature extraction

capabilities and overall model accuracy [25].

Figure 2. Block of residual learning

ResNets can be quite deep, with common variants including

ResNet50, ResNet101, and ResNet152 where the number

indicates the number of layers. This depth enables the network

to learn more complex features and achieve high accuracy in

various tasks [25]. ResNet50 model has 50 layers and is known

for its balance between performance and computational

efficiency. It is commonly used for various image recognition

tasks. Suitable for applications where computational resources

are limited, and real-time performance is needed. With 101

layers, ResNet101 model provides increased depth compared

to ResNet50, allowing it to capture more complex features and

achieve higher accuracy on image classification tasks. Ideal for

tasks requiring more detailed feature extraction and where

additional computational resources are available. It can be a

good choice for medium to large-scale image classification

tasks. The deepest among the three, with 152 layers,

ResNet152 offers even greater accuracy, making it suitable for

more demanding image recognition tasks. However, it requires

more computational resources and longer training times.Best

for high-performance applications that require the utmost

accuracy, such as medical imaging and large-scale visual

recognition [25].

2.4. EfficientNet Model
EfficientNet is a family of CNNs designed for image

classification tasks, introduced by Google researchers. The key

innovation in EfficientNet is its use of a compound scaling

approach that uniformly scales all dimensions of resolution,

width, and depth. This approach ensures EfficientNet models

to acquire higher accuracy and efficiency compared to previous

models [24].

The EfficientNet family comprises models named from

EfficientNetB0 to EfficientNetB7, each increasing in size and

complexity. EfficientNetB0 is the smallest and simplest model

in the family, serving as the base model. It has approximately

5.3 million parameters and performs about 0.39 billion

floating-point operations (FLOPs). EfficientNetB1 is slightly

larger than EfficientNetB0, with around 7.9 million parameters

and approximately 0.70 billion FLOPs. EfficientNetB2

continues this trend, being larger than EfficientNetB1, with

roughly 9.2 million parameters and about 1.0 billion FLOPs.

EfficientNetB3 increases the size and complexity even further,

containing around 12 million parameters and performing

approximately 1.8 billion FLOPs. EfficientNetB4, significantly

larger than B3, has around 19 million parameters and about 4.2

billion FLOPs. EfficientNetB5 is larger still, with

approximately 30 million parameters and 9.9 billion FLOPs,

offering very high accuracy suitable for high-end applications

with substantial computational resources. EfficientNetB6,

larger than B5, contains around 43 million parameters and

performs approximately 19 billion FLOPs. It provides

extremely high accuracy, making it suitable for applications

demanding the highest performance and having ample

computational power. At the top of the scale is EfficientNetB7,

the largest model in the family, with around 66 million

parameters and approximately 37 billion FLOPs [24].

The fundamental building block used in EfficientNet

models is the MBConv block, which stands for Mobile Inverted

Bottleneck Convolution [26]. This block is optimized for both

performance and efficiency, making it well-suited for deep

neural networks used in mobile and resource-constrained

environments. EfficientNet models use a varying number of

MBConv blocks in their models, depending on the specific

166

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

model variant (B0 to B7). The number of MBConv blocks

increases with the model size, contributing to the depth and

complexity of the network [24,26].

The MBConv block combines several methods to achieve

high computational efficiency and powerful feature extraction,

as shown in Figure 3. These methods in the structure of the

MBConv block are as follows.
Inverted Bottleneck: Traditional bottleneck layers in neural

networks reduce the dimensionality of the data before
processing it further. In contrast, the inverted bottleneck layer
in MBConv expands the dimensionality of the input features
(i.e., increases the number of channels) before applying further
convolutions. This expansion allows the network to capture
more complex features and then compress them back to a
lower-dimensional space efficiently [27].

Depthwise Convolution (DC): This convolution operation
applies a single filter to each input channel separately, as
opposed to using multiple filters across all channels. This
significantly reduces the computational complexity and the
number of parameters required [28].

Pointwise Convolution (PC) (1x1 Convolution): After the
DC, a PC is used to combine the outputs of the DC. This step
effectively mixes information across different channels and
compensates for the reduced computational complexity of the
DC [28].

Squeeze-and-Excitation (SE) Block: The SE block is
integrated within the MBConv block to enhance the
representational power of the network. It consists of two main
steps: Squeeze: Global average pooling is applied to each
channel of the feature map to produce a channel descriptor,
reducing each feature map to a single value. Excitation: These
descriptors are passed through two fully connected (FC) layers
with a Swish activation in between, generating a set of weights
that are used to scale the original input channels. This process
helps the network focus on the most important features by re-
calibrating the feature maps [29].

Residual Connections: Residual connections are used to
add the input of the MBConv block directly to its output. This
skip connection helps in mitigating the vanishing gradient
problem, making it easier to train deeper networks. It also
enables the network to learn residual mappings, which are often
more straightforward to optimize than learning the complete
transformation [25].

The working steps of the MBConv block given in Figure 3

are as follows:

 The process starts with an input tensor, which is a set of
features with a certain number of channels. The first step
is to expand this input tensor by increasing the number of
channels. This is done using a pointwise convolution (1x1
convolution). This expansion allows the network to
capture more detailed and complex features from the input
data.

 After expanding the number of channels, the next step is
to apply a DC. Unlike a regular convolution that operates
across all channels, a DC applies a separate filter to each
channel. This means that each channel is processed
independently. This step is computationally efficient
because it decreases the number of parameters and
operations compared to a full convolution.

 The output from the DC is then passed through a squeeze-
and-excitation block.

 After the SE block has re-weighted the channels, another
PC (1x1 convolution) is implemented to decrease the
number of channels back to the original count. This step

compresses the expanded and processed features back to a
manageable number of channels, making the output tensor
easier to handle.

 Dropout is used in MBConv blocks to prevent overfitting
and improve generalization by randomly deactivating a
subset of neurons during training.

 If the dimensions of the input tensor and the output tensor
after the compression phase (second PC) are the same, a
residual connection is used. This means the original input
tensor is added to the output tensor, helping the network
learn better by preserving the original input information.

 Batch normalization (BN) is performed after each
convolution operation in the network. BN is used to
stabilize and speed up the training process of deep neural
networks in MBConv blocks. In addition, the activation
function used in this network is Swish. The EfficientNet
model uses the Swish activation function, which has been
shown to improve performance compared to traditional
activation functions like ReLU (Rectified Linear Unit).

Input

1x1 Convolution

(increases the number

of channels)

BN

Swish

3x3 or 5x5

Depthwise

Convolution

BN

Swish

SE block

1x1 Convolution

(reduced the number

of channels)

BN

+

Output

Global average

pooling

Fully Connected 1

Swish

Fully Connected 2

Sigmoid

X

Dropout

(reducing overfitting)

Figure 3. Structure of MBConv

2.5. Proposed Model
In this study, a concatenation of ResNet and EfficientNet

models is proposed for automated classification of faults in

solar panels. The proposed model is a concatenation of

ResNet101 and EfficientNetB1 models as shown in Figure 4.

The reasons for using ResNet101 in the proposed model are as

follows: (1) ResNet101’s depth allows it to capture more

detailed features than ResNet50, making it more effective for

tasks that require distinguishing between fine-grained classes.

(2) ResNet101 strikes a balance between the number of layers

and computational efficiency, making it suitable for tasks that

are not too simple but also not extremely complex. (3)

Compared to ResNet152, ResNet101 is less prone to overfitting

167

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

on small datasets, which is crucial for maintaining good

generalization performance. In summary, ResNet101

outperformed ResNet50 and ResNet152 because it provides the

right depth and complexity for the task at hand. It is deep

enough to capture complex patterns in the solar panel images,

but not so deep that it overfits on the relatively small dataset,

making it the best choice for achieving high accuracy. The

reasons for using the EfficientNetB1 model in the proposed

model are as follows: (1) EfficientNetB1 has more parameters

and a higher resolution input size compared to EfficientNetB0,

allowing it to capture more detailed features and improve

classification accuracy. (2) Compared to EfficientNetB0, The

additional layers and width in EfficientNetB1 help in learning

more complex patterns and subtle differences, which is crucial

for tasks like fault detection in solar panels where fine details

matter. (3) EfficientNetB1 has significantly fewer parameters

and FLOPs compared to larger models (EfficientNetB2 to B7),

making it more efficient and suitable for environments with

limited computational resources.

The proposed model starts with an input image. The size of

the input solar panel image is 224 x 224 x 3. Then, this input

image is given to the input of ResNet101 and EfficientNetB1

models separately and feature extraction is performed. A

detailed description of the layer steps of the ResNet101 model

when performing feature extraction on the 224x224x3 input

image is as follows. Following the input layer, the image is

passed through the first convolutional layer, which applies 64

filters, each of size 7x7, with a stride of 2. This operation

increases the depth of the feature maps and reduces the spatial

dimensions, resulting in an output of size 112x112x64. This

initial convolutional layer is crucial for capturing low-level

features, such as edges and textures, in the input image. The

output from the convolutional layer is then normalized using a

batch normalization layer, which stabilizes and accelerates the

training process by normalizing the inputs to each layer. After

batch normalization, a ReLU activation function is

implemented to introduce non-linearity into the model,

enabling it to learn more complex representations. Next, a max

pooling layer with a filter size of 3x3 and a stride of 2 further

reduces the spatial dimensions, yielding an output of size

56x56x64. This pooling operation helps to down-sample the

feature maps and reduce computational complexity, while also

retaining important features. ResNet101 is primarily built using

bottleneck residual blocks, each consisting of three

convolutional layers: 1x1, 3x3, and 1x1. The network contains

several groups of these blocks, organized to gradually reduce

the spatial dimensions while increasing the depth, allowing the

network to learn increasingly abstract features. The bottleneck

residual blocks in the ResNet101 model are as follows:
Conv2x Stage (3 Blocks): The first set of residual blocks,

known as Conv2x, begins with a bottleneck block that
comprises three key layers: 1x1 Convolution Layer uses 64
filters to reduce the dimensionality of the input, making the
computation more efficient. 3x3 Convolution Layer (the main
processing layer), which employs 64 filters to perform
convolutions and extract features. 1x1 Convolution Layer
restores the dimensionality using 256 filters, preparing the
output for the next stage. Within each bottleneck block, a
residual connection adds the input to the output, creating a
shortcut path that enables gradients to flow more easily during

backpropagation. This mechanism is central to the success of
residual networks, as it alleviates the vanishing gradient
problem. The Conv2_x stage contains three of these bottleneck
blocks, each maintaining an output size of 56x56x256.

Conv3x Stage (4 Blocks): The next stage, Conv3x,
introduces the first bottleneck block with downsampling,
which reduces the spatial dimensions while increasing the
depth. 1x1 Convolution Layer utilizes 128 filters to reduce
dimensions. 3x3 Convolution Layer continues processing with
128 filters. 1x1 Convolution Layer increases dimensions using
512 filters. The Conv3_x stage consists of four bottleneck
blocks, resulting in an output size of 28x28x512.

Conv4x Stage (23 Blocks): The Conv4x stage is the deepest
stage, consisting of 23 bottleneck blocks, each further refining
the feature maps. 1x1 Convolution Layer employs 256 filters
for dimensionality reduction. 3x3 Convolution Layer applies
256 filters for feature extraction. 1x1 Convolution Layer
restores dimensions with 1024 filters. The Conv4x stage
maintains an output size of 14x14x1024.

Conv5x Stage (3 Blocks): The final set of blocks, Conv5x,
consists of three bottleneck blocks that further distill the
features. 1x1 Convolution Layer uses 512 filters for
dimensionality reduction. 3x3 Convolution Layer processes
with 512 filters. 1x1 Convolution Layer expands dimensions
with 2048 filters. The output from this stage has a size of
7x7x2048. After the final convolutional stage, ResNet101
employs a global average pooling (GAP) layer. This layer
reduces each feature map to a single value by averaging,
resulting in a 2048-dimensional feature vector. This vector
effectively summarizes the learned features from the input
image.

A detailed description of the layer steps of the
EfficientNetB1 model when performing feature extraction on
the 224x224x3 input image is as follows. Following the input
layer, the image is passed through the first convolutional layer,
which applies 32 filters, each of size 3x3, with a stride of 2. The
output size obtained at the end of this process is 112x112x32.
MBConv blocks in the EfficientNetB1 model are applied to the
obtained output feature map. EfficientNetB1 consists of seven
MBConv blocks. These are depth separable convolutions that
are efficient and help to decrease the number of parameters and
computations while maintaining performance. The blocks are
organised as follows: Block 1 includes two MBConv 3x3
layers. Block 2 includes three MBConv 3x3 layers. Block 3
includes three MBConv 5x5 layers. Block 4 includes four
MBConv 3x3 layers. Block 5 includes four MBConv 5x5
layers. Block 6 includes five MBConv 5x5 layers. Block 7
includes two MBConv 3x3 layers. The output from all
MBConv block has a size of 7x7x2560. After the final
MBConv block, EfficientNetB1 employs the GAP layer. This
layer reduces each feature map to a single value by averaging,
resulting in a 2560-dimensional feature vector. After
performing feature extraction using both ResNet101 and
EfficientNetB1 models, the obtained feature maps are passed
through a GAP layer, and then the two models are
concatenated. The concatenated model results in a 4608-
dimensional feature vector. Subsequently, a FC layer with 128
neurons is applied. After the FC layer, batch normalization is
applied, followed by a dropout layer with a dropout rate of 0.3.
Finally, classification is performed using a softmax classifier.

168

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

x3

x4

x23

x3

3x3 Convolution

MBConv, 3x3

MBConv, 3x3
Block 1

MBConv, 3x3

MBConv, 3x3

MBConv, 3x3

Block 2

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

Block 3

MBConv, 3x3

MBConv, 3x3

MBConv, 3x3

MBConv, 3x3

Block 4

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

MBConv, 5x5

Block 5

MBConv, 5x5

Block 6

MBConv, 3x3

MBConv, 3x3
Block 7

Global Average Pooling

R

E

S

N

E

T

1

0

1

E

F

F

I

C

I

E

N

T

N

E

T

B

1

Input Image

(224 x 224 x 3)

Concatenated Features

Fully Connected Layer, 128

Batch Normalization (BN)

Dropout (0.3)

Dense (6)

C BDD ED PD SC

Classes

Relu

Softmax

7x7 Convolution, 64, /2

3x3 Maxpooling, /2

1x1 Convolution, 64

3x3 Convolution, 64

1x1 Convolution, 256

1x1 Convolution, 128

3x3 Convolution, 128

1x1 Convolution, 512

1x1 Convolution, 256

3x3 Convolution, 256

1x1 Convolution, 1024

1x1 Convolution, 512

3x3 Convolution, 512

1x1 Convolution, 2048

Global Average Pooling

Conv1_x

Conv2_x

Conv3_x

Conv4_x

Conv5_x

Figure 4. Structure of proposed model

169

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

3. EXPERIMENTS

3.1. Experimental Setup
In the experimental studies, the python programming

language and Keras-TensorFlow libraries were used. All

python code was written on the Kaggle notebook platform. For

training the proposed model on the Kaggle platform, a GPU

P100 was used as the execution environment. The

hyperparameters used are as follows: batch size 64, learning

rate 0.0001, and the number of epochs was set to 150. The

Adam optimization method was used. The input image

dimensions were set to 224x224x3. The dataset containing 885

solar panel images was split into training and test datasets as

70% and 30%, respectively. That is, 620 images were used for

training and 265 images for testing. Sparse Categorical

Crossentropy (SCC) loss function is used to train the proposed

model. The SCC is a loss function that is particularly

advantageous for multi-class classification problems where

labels are available as integers rather than one-hot encoded

vectors. This loss function is efficient because it directly uses

integer labels, reducing memory and computational overhead

compared to Categorical Crossentropy, which requires one-hot

encoded labels. It is well-suited for tasks where each instance

belongs to a single class among many, providing a

straightforward probabilistic interpretation of predictions

through integration with the softmax activation function. This

efficiency and compatibility make the SCC an ideal choice for

training models with a significant number of classes, as in our

solar panel image classification task [30-32].

3.2. Evaluation Metrics
Different evaluation metrics were used to compare the

performance of the proposed model. The following four

metrics are commonly used when observing various criteria of

a classifier.

Accuracy represents the ratio of correct predictions to the

total number of predictions made by the model. Accuracy is

calculated as in Equation (1) [33].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1)

In the context of multi-class classification, precision is a

metric that evaluates the accuracy of positive predictions made

by a model for each class. Precision measures how many of the

examples predicted as positive actually belong to the class. It is

defined as shown in Equation (2) [33].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

Recall is a metric used in classification to evaluate a model's

ability to correctly identify all relevant examples (true

positives) from the total actual positive examples (true

positives + false negatives). In other words, it measures the

percentage of true positive examples correctly identified by the

model. It is defined as shown in Equation (3) [33].

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

The F1-score is a metric used in multi-class classification

to balance precision and recall. By combining both precision

and recall into a single value, it becomes a useful metric for

evaluating the overall performance of a method. The F1-score

is calculated as the harmonic mean of precision and recall, and

it is particularly valuable when a balance between false

positives and false negatives is desired. It is calculated as

shown in Equation (4) [33].

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 (𝐹1𝑠) = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

The terms TN, TP, FN, and FP in Equations (1)-(4) are

derived from the confusion matrix. True Negatives (TN)

represent the number of examples that the model correctly

predicts as belonging to the negative class (e.g., "0" or "no").

These are cases where the model correctly identifies examples

as not belonging to the positive class when they truly don't.

True Positives (TP) represent the number of examples that the

model correctly predicts as belonging to the positive class (e.g.,

"1" or "yes"). These are cases where the model correctly

identifies examples as belonging to the positive class when they

truly do. False Positives (FP) represent the number of examples

that are actually in the negative class but are incorrectly

predicted by the model as belonging to the positive class. These

are situations where the model makes a positive prediction

when it should have made a negative one. False Negatives (FN)

represent the number of examples that are actually in the

positive class but are incorrectly predicted by the model as

belonging to the negative class. These are situations where the

model makes a negative prediction when it should have made

a positive one [33,34].

3.3. Experimental Results and Discussion
The proposed model is a concatenation of ResNet and

EfficientNet models. In the proposed model, the best

classification result is obtained with the concatenation of

ResNet101 and EfficientNetB1 models. The confusion matrix

of the proposed model (ResNet101 + EfficientNetB1) is given

in Figure 5. When examining Figure 5, it can be seen that 48

out of a total of 57 panel images in class Bird-drops (BD) are

correctly classified. Similarly, 51 out of a total of 55 images in

class Clean (C), 44 out of 57 images in class Dusty (D), 28 out

of 34 images in class Electrical-damage (ED), 24 out of 25

images in class Physical-damage (PD), and finally, all 37

Snow-covered (SC) images are correctly classified. Out of a

total of 265 test images, 232 are correctly classified. In this

case, the test accuracy is (232/265) * 100 = 87.55%.

Figure 5. The confusion matrix of proposed model

170

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

In this study, comparisons were made with various pre-

trained deep learning models including EfficientNetB0-B7

[24], ResNet50-101-152 [25], VGG16-19 [35], MobileNet

[36], MobileNetV2 [27], DenseNet121-169-201 [37] to

classify faults in solar panel images. The results of the

comparison are given in Table 1. When Table 1 is analyzed, it

is clearly seen that the best results are obtained with ResNet

and EfficientNet models. Table 1 also shows the classification

results obtained by combining ResNet50-101-201 and

EfficientNetB0-B7 models. A detailed analysis of all the

models in Table 1 is as follows:

The VGG16 and VGG19 models, known for their

simplicity and depth, achieved moderate performance with

VGG16 slightly outperforming VGG19. VGG16 achieves an

Acc of 66.79%, with P of 69.12%, R of 67.82%, and an F1s of

68.24%. VGG19, on the other hand, has slightly lower metrics

across the board, with an Acc of 65.28%, P of 67.50%, R of

65.96%, and an F1s of 66.20%. The marginally better

performance of VGG16 suggests that, for this dataset, the

additional depth of VGG19 does not translate into improved

results. This may be due to the increased complexity and

overfitting associated with deeper networks.

MobileNet models are designed for efficiency, balancing

performance with computational cost. The original MobileNet

achieves an Acc of 66.42%, with P, R, and F1s around 65%.

MobileNet performed similarly to VGG16 with an Acc of

66.42%. However, MobileNetV2 shows a notable drop in

performance, with all metrics hovering around 59-60%. This

decline suggests that the architectural changes in

MobileNetV2, which aim to improve efficiency, may have

compromised its ability to capture relevant features in this

specific dataset.

DenseNet models, known for their dense connectivity,

generally outperform VGG and MobileNet models.

DenseNet121, DenseNet169, and DenseNet201 exhibit

accuracies of 69.43%, 69.06%, and 68.30%, respectively. P, R,

and F1s for these models are also consistently high, can

indicating reliable performance. These results show that

DenseNet architectures are more capable of capturing complex

images in data than VGG and MobileNet models. The

improvement over VGG and MobileNet models can be

attributed to the enhanced feature propagation and reduced

vanishing-gradient problem inherent in DenseNet

architectures.

ResNet models significantly outperform the previously

discussed models (VGG, MobileNet, and DenseNet).

ResNet50 achieves an Acc of 79.62%, with P and F1s both at

80.40%, and a R of 80.50% [38]. Larger ResNet models, such

as ResNet101 and ResNet152, further enhance performance,

with ResNet152 achieving the highest individual model Acc of

84.15%, P of 85.72%, R of 82.84%, and an F1s of 83.97% [38].

In addition, ResNet101 achieving individual model Acc of

83.40%, P of 84.37%, R of 84.04%, and an F1s of 84.07% [38].

The success of ResNet architectures can be attributed to their

ability to mitigate the vanishing gradient problem through skip

connections, allowing them to maintain high performance even

with increased depth.

EfficientNet models also exhibit strong performance, with

several variants outperforming most other EfficientNet models.

EfficientNetB2 and EfficientNetB4 stand out with accuracies

of 82.64% and 83.40%, respectively. These models also

maintain high precision, recall, and F1-scores, indicating

balanced performance across different metrics. The

EfficientNet model scales depth, width, and resolution in a

compound manner, optimizing performance while maintaining

computational efficiency.

The concatenation of ResNet and EfficientNet models

yields the highest performance metrics. Notably, the

concatenation of ResNet101 and EfficientNetB1 (proposed

model) achieves the highest overall performance, with an Acc

of 87.55%, P of 87.92%, R of 88.75%, and F1s of 88.13%. This

concatenation leverages the strengths of both models—

ResNet's robust feature learning and EfficientNet's balanced

scaling—resulting in superior classification capabilities. Other

successful concatenation include ResNet101 with

EfficientNetB3, ResNet101 with EfficientNetB4, ResNet101

with EfficientNetB6, and ResNet152 with EfficientNetB5, all

of which show high accuracies and balanced metric scores.

These results suggest that model ensembling, particularly

concatenating different models, can effectively enhance

performance by capturing diverse feature representations.

TABLE I

COMPARISON WITH DIFFERENT DEEP LEARNING MODELS

Models Acc(%) P(%) R(%) F1s(%)

VGG16 66.79 69.12 67.82 68.24

VGG19 65.28 67.50 65.96 66.20

MobileNet 66.42 65.56 65.84 65.64

MobileNetV2 59.62 59.54 59.59 59.27

DenseNet121 69.43 70.99 68.17 69.19

DenseNet169 69.06 69.91 69.47 69.49

DenseNet201 68.30 70.38 66.85 67.86

ResNet50 79.62 80.40 80.50 80.40

ResNet101 83.40 84.37 84.04 84.07

ResNet152 84.15 85.72 82.84 83.97

EfficientNetB0 81.13 82.39 82.16 82.07

EfficientNetB1 81.89 83.39 81.36 82.06

EfficientNetB2 82.64 83.96 83.54 83.67

EfficientNetB3 80.00 81.76 80.70 81.09

EfficientNetB4 83.40 83.68 83.45 83.41

EfficientNetB5 81.89 82.81 81.96 82.26

EfficientNetB6 77.74 78.75 78.56 78.50

EfficientNetB7 76.60 78.02 76.90 77.31

ResNet50 + EfficientNetB0 83.02 83.11 84.13 83.53

ResNet50 + EfficientNetB1 82.64 84.17 83.87 83.96

ResNet50 + EfficientNetB2 83.02 83.64 83.41 83.37

ResNet50 + EfficientNetB3 80.76 81.47 81.06 81.12

ResNet50 + EfficientNetB4 81.51 81.71 82.60 82.10

ResNet50 + EfficientNetB5 83.77 85.37 85.47 85.28

ResNet50 + EfficientNetB6 82.26 83.55 82.25 82.71

ResNet50 + EfficientNetB7 83.02 84.18 84.51 84.29

ResNet101 + EfficientNetB0 83.40 84.37 84.62 84.28

ResNet101 + EfficientNetB1 87.55 87.92 88.75 88.13

ResNet101 + EfficientNetB2 86.42 86.24 86.11 86.11

ResNet101 + EfficientNetB3 87.17 88.49 87.58 87.86

ResNet101 + EfficientNetB4 87.17 87.24 87.23 87.21

ResNet101 + EfficientNetB5 85.28 85.82 86.09 85.76

ResNet101 + EfficientNetB6 87.17 88.03 86.87 87.32

ResNet101 + EfficientNetB7 84.53 85.13 84.40 84.53

ResNet152 + EfficientNetB0 86.04 87.23 86.47 86.78

ResNet152 + EfficientNetB1 83.77 86.32 84.12 84.89

ResNet152 + EfficientNetB2 83.77 84.23 83.06 83.50

ResNet152 + EfficientNetB3 85.66 87.76 86.71 87.12

ResNet152 + EfficientNetB4 85.28 85.64 85.30 85.44

ResNet152 + EfficientNetB5 86.79 87.02 87.02 86.96

ResNet152 + EfficientNetB6 81.51 82.15 80.96 81.40

ResNet152 + EfficientNetB7 84.15 85.42 84.80 85.07

4. CONCLUSION
SPs play a crucial role in the global transition to renewable

energy, offering a sustainable solution to meet the world's

energy demands. As a clean and abundant energy source, SPs

171

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

contribute to reducing carbon emissions and combating climate

change. However, the effectiveness and reliability of solar

energy systems can be significantly impacted by faults and

defects in SPs. Common issues such as cracks, dusty, snow-

covered, soiling, and shading can reduce the efficiency of solar

panels, leading to decreased energy output and increased

maintenance costs. Therefore, accurate and timely detection of

these faults is essential for maintaining the performance and

longevity of solar energy systems.

In this study, we propose a hybrid DL model using ResNet

and EfficientNet models to classify faults in solar panels.

ResNet is renowned for its ability to train very deep neural

networks effectively, utilizing residual connections to prevent

issues like vanishing gradients. This capability allows ResNet

to capture intricate patterns and features in complex datasets,

which is essential for detecting subtle defects in solar panels.

On the other hand, EfficientNet is designed to achieve a

balance between accuracy and computational efficiency by

systematically scaling the network's resolution, width, and

depth. By integrating ResNet and EfficientNet models, our

approach benefits from the strengths of both architectures: the

depth and learning capacity of ResNet and the optimized

performance of EfficientNet.
The experimental results demonstrate that the combined

ResNet101 + EfficientNetB1 model significantly outperforms
individual models in terms of Acc, P, R, and F1s. This hybrid
model achieved an Acc of 87.55%, P of 87.92%, R of 88.75%,
and F1s of 88.13%, marking notable improvements over the
closest models. The synergistic use of ResNet and EfficientNet
enables the proposed model to accurately identify and classify
various faults in solar panels, thereby enhancing the reliability
and efficiency of solar energy systems.

In conclusion, the combination of ResNet and EfficientNet
models offers a powerful solution for detecting and classifying
faults in solar panels. This approach not only improves fault
detection accuracy but also contributes to the overall
performance and sustainability of solar energy systems. As the
demand for solar energy continues to rise, implementing
advanced deep learning models like the one proposed in this
study will be essential for ensuring the long-term viability and
efficiency of solar power installations.

In future work, the primary aim is to further enhance the
model's performance by experimenting with cutting-edge
neural network models such as Vision Transformers and
different ensemble methods. Additionally, research is planned
to improve the model's ability to detect and classify faults by
incorporating additional data sources, such as thermal imaging
and real-time monitoring data.

REFERENCES

[1] D. Korkmaz and H. Acikgoz, “An efficient fault classification method

in solar photovoltaic modules using transfer learning and multi-scale

convolutional neural network,” Eng. Appl. Artif. Intell., vol. 113, no.
April, p. 104959, 2022.

[2] H. Acikgoz, “A novel approach based on integration of convolutional

neural networks and deep feature selection for short-term solar radiation
forecasting,” Appl. Energy, vol. 305, no. June 2021, p. 117912, 2022.

[3] T. Z. Ang, M. Salem, M. Kamarol, H. S. Das, M. A. Nazari, and N.

Prabaharan, “A comprehensive study of renewable energy sources:
Classifications, challenges and suggestions,” Energy Strateg. Rev., vol.

43, no. November 2021, p. 100939, 2022.

[4] B. Li, C. Delpha, D. Diallo, and A. Migan-Dubois, “Application of
Artificial Neural Networks to photovoltaic fault detection and diagnosis:

A review,” Renew. Sustain. Energy Rev., vol. 138, no. October 2020,

2021.

[5] A. Rico Espinosa, M. Bressan, and L. F. Giraldo, “Failure signature

classification in solar photovoltaic plants using RGB images and

convolutional neural networks,” Renew. Energy, vol. 162, pp. 249–256,

2020.

[6] M. Le, L. Van Su, N. Dang Khoa, V. D. Dao, V. Ngoc Hung, and V.

Hong Ha Thi, “Remote anomaly detection and classification of solar
photovoltaic modules based on deep neural network,” Sustain. Energy

Technol. Assessments, vol. 48, no. June, p. 101545, 2021.

[7] C. Haydaroğlu, H. Kılıç, and B. Gümüş, “Performance Analysis and
Comparison of Performance Ratio of Solar Power Plant,” Turkish J.

Electr. Power Energy Syst., vol. 4, pp. 190–199, 2024.

[8] H. KILIC, M. YILMAZ, and B. GUMUS, “Fault Detection in
Photovoltaic Arrays: a Robust Regularized Machine Learning

Approach,” Dyna, vol. 95, no. 1, pp. 622–628, 2020.

[9] K. Osmani, A. Haddad, T. Lemenand, B. Castanier, M. Alkhedher, and
M. Ramadan, “A critical review of PV systems’ faults with the relevant

detection methods,” Energy Nexus, vol. 12, no. September, p. 100257,

2023.
[10] G. R. Venkatakrishnan et al., “Detection, location, and diagnosis of

different faults in large solar PV system—a review,” Int. J. Low-Carbon

Technol., vol. 18, no. 1, pp. 659–674, 2023.
[11] Z. B. Duranay, “Fault Detection in Solar Energy Systems: A Deep

Learning Approach,” Electron., vol. 12, no. 21, 2023.

[12] A. Mahmud, M. S. R. Shishir, R. Hasan, and M. Rahman, “A
comprehensive study for solar panel fault detection using VGG16 and

VGG19 convolutional neural networks,” 2023 26th Int. Conf. Comput.
Inf. Technol. ICCIT 2023, pp. 1–6, 2023.

[13] M. M. Taye, “Understanding of Machine Learning with Deep Learning:

Architectures, Workflow, Applications and Future Directions,”
Computers, vol. 12, no. 5, 2023.

[14] S. H. Han, T. Rahim, and S. Y. Shin, “Detection of faults in solar panels

using deep learning,” 2021 Int. Conf. Electron. Information, Commun.
ICEIC 2021, pp. 2–5, 2021.

[15] W. Tang, Q. Yang, K. Xiong, and W. Yan, “Deep learning based

automatic defect identification of photovoltaic module using
electroluminescence images,” Sol. Energy, vol. 201, no. November

2019, pp. 453–460, 2020.

[16] S. Naveen Venkatesh and V. Sugumaran, “Fault Detection in aerial
images of photovoltaic modules based on Deep learning,” IOP Conf.

Ser. Mater. Sci. Eng., vol. 1012, no. 1, p. 012030, 2021.

[17] G. S. Eldeghady, H. A. Kamal, and M. A. M. Hassan, “Fault diagnosis
for PV system using a deep learning optimized via PSO heuristic

combination technique,” Electr. Eng., vol. 105, no. 4, pp. 2287–2301,

2023.
[18] R. H. Fonseca Alves, G. A. de Deus Júnior, E. G. Marra, and R. P.

Lemos, “Automatic fault classification in photovoltaic modules using

Convolutional Neural Networks,” Renew. Energy, vol. 179, pp. 502–
516, 2021.

[19] S. H. Lee, L. C. Yan, and C. S. Yang, “LIRNet: A Lightweight Inception

Residual Convolutional Network for Solar Panel Defect Classification,”
Energies, vol. 16, no. 5, pp. 1–12, 2023.

[20] Afroz, “Solar Panel Images Clean and Faulty Images,” Kaggle, 2023.

[Online]. Available:
https://www.kaggle.com/datasets/pythonafroz/solar-panel-images.

[Accessed: 10-May-2024].

[21] A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical
Imaging: Advantages, Challenges, Future Scope,” Sustainability, vol.

15, no. 7, 2023.

[22] N. Raza, A. Naseer, M. Tamoor, and K. Zafar, “Alzheimer Disease
Classification through Transfer Learning Approach,” Diagnostics, vol.

13, no. 4, 2023.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” 2009 IEEE

Conf. Comput. Vis. Pattern Recognit., pp. 248–255, 2010.

[24] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML

2019, vol. 2019-June, pp. 10691–10700, 2019.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem,

pp. 770–778.
[26] B. Baheti, S. Innani, S. Gajre, and S. Talbar, “Eff-UNet: A novel

architecture for semantic segmentation in unstructured environment,”

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol.
2020-June, no. September 2021, pp. 1473–1481, 2020.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520,

172

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

2018.

[28] F. Chollet, “Xception: Deep learning with depthwise separable

convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern
Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017.

[29] H. Fırat, “Classification of White Blood Cells using the Squeeze-

Excitation Residual Network,” Bilişim Teknol. Derg., vol. 16, no. 3, pp.
189–205, 2023.

[30] B. N. Chaithanya, T. J. Swasthika Jain, A. Usha Ruby, and A. Parveen,

“An approach to categorize chest X-ray images using sparse categorical
cross entropy,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp.

1700–1710, 2021.

[31] P. Naveen, “Phish: A novel hyper-optimizable activation function,”
techrxiv.orgP NaveenAuthorea Prepr. 2023•techrxiv.org, pp. 1–8, 2023.

[32] A. Bhat, A. V. Krishna, and S. Acharya, “Analytical Comparison of

Classification Models for Raga Identification in Carnatic Classical
Instrumental Polyphonic Audio,” SN Comput. Sci., vol. 1, no. 6, pp. 1–

9, 2020.

[33] H. Dalianis, “Evaluation Metrics and Evaluation,” Clin. Text Min., no.
1967, pp. 45–53, 2018.

[34] S. A. Hicks et al., “On evaluation metrics for medical applications of

artificial intelligence,” Sci. Rep., vol. 12, no. 1, pp. 1–9, 2022.
[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in 3rd International Conference on

Learning Representations, ICLR 2015 - Conference Track Proceedings,
2015.

[36] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017.

[37] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” Proc. - 30th IEEE Conf. Comput.
Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269,

2017.

[38] R. Akınca, H. Fırat, and M. E. Asker, “Transfer Öğrenme Tabanlı
ResNet Modeli Kullanılarak Güneş Panellerindeki Hataların Tespiti,”

Dicle Üniversitesi 2.Uluslararası Fen Bilim. Lisansüstü Araştırmalar

Sempozyumu, pp. 27–30, 2024.

BIOGRAPHIES

Rojbin Akınca received her Bsc. degree in electrical and electronics

engineering from Dicle University, Diyarbakır, Turkey in 2018. She continues
her MSc. degree in Renewable Energy Resources at Dicle University as of

2023. She is currently working as a Data Preparation and Control Operator at

Dicle University. Her research interests include renewable energy resources,
artificial intelligence, deep learning and machine learning.

Hüseyin Fırat received the BSc. degree in computer engineering from
Cukurova University, Adana, Turkey, in 2014. He received the MSc. degree in
computer engineering from Inonu University in 2018. He received the PhD
degree in computer engineering from Inonu University, Turkey, in 2022. He
also works as assistant professor at Dicle University in Turkey. His current
interests include remote sensing, deep learning, pattern recognition, signal
processing, medical image processing and image classificaiton.

Mehmet Emin Asker received the BSc. degree in electrical electronics
engineering, from Firat University, Elazig, Turkey in 1997, the MSc. degree
and the PhD degree in electrical machines, power electronics from Firat
University, Elazig, Turkey, in 2009 and 2016, respectively. He is an assistant
professor with Dicle University, department of electrical power and energy.
Where he teaches courses on power system, power electronics, circuit theory
and electrical machines since 2007. His research interests include electrical
machines, power electronics, chaos, machine learning and power systems.

173

