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Abstract

Observing and monitoring land use, land-use change and forestry 
(LULUCF) trends has extensively been used remote sensing. Collect 
Earth, a free remote sensing tool, was used in Kyrgyzstan to assess 
the historical and present LULUCF trends in 2015 and 2019. Howev-
er, it is quite difficult for users to classify land cover and determine 
changes in land use if no satellite images with sufficient temporal and 
spatial resolution are available. The unavailability of high/very high 
spatial and temporal resolution satellite images (7.2%) or the availa-
bility of low spatial and temporal resolution satellite images (7.8%) 
was the primary reason for mandatory field verification. A fieldwork 
was conducted to validate the remote sensing assessment in 2019. In 
total, 941 sample plots were visited, and 119 misclassified sample 
plots were detected during the field validation work. Hence, this arti-
cle reports an updated version of LULUCF assessment in Kyrgyzstan. 
The database update resulted in the re-classification of 1073 sample 
plots in Kyrgyzstan. The results of the field validation showed that 
forestlands occupied 1.81 million ha (9%) of the total land in 2019, 
with a 5.33% uncertainty in Kyrgyzstan. However, it was 1.36 million 
ha based on the remote sensing study.

Keywords: Collect Earth, Field validation, Land use, Remote sensing, 
Kyrgyzstan

Öz

Arazi kullanımı, arazi kullanım değişikliği ve ormancılık (AKAK-
DO) eğilimlerini gözlemlemek ve izlemek için uzaktan algılama yay-
gın olarak kullanılmaktadır. Ücretsiz bir uzaktan algılama yazılımı 
olan Collect Earth, Kırgızistan’da 2015 ve 2019 yıllarındaki tarihi ve 
mevcut AKAKDO eğilimlerini değerlendirmek için kullanılmıştır. 
Ancak, yeterli zamansal ve mekansal çözünürlüğe sahip uydu görün-
tüleri mevcut değilse, kullanıcıların arazi örtüsünü sınıflandırması ve 
arazi kullanımındaki değişiklikleri belirlemesi oldukça zordur. Yük-
sek/çok yüksek mekansal ve zamansal çözünürlüklü uydu görüntüle-
rinin eksikliği (%7,2) ve düşük mekansal ve zamansal çözünürlüklü 
uydu görüntülerinin (%7,8) varlığı, zorunlu saha doğrulamasının bi-
rincil nedeni olmuştur. 2019 yılında, arazide seçilen örnek sahalar zi-
yaret edilerek bir saha çalışması yürütülmüştür. Toplamda 941 örnek 
saha ziyaret edilmiş ve arazi doğrulama çalışması sırasında 119 yan-
lış sınıflandırılmış örnek saha tespit edilmiştir. Bu nedenle, bu maka-
le Kırgızistan’daki AKAKDO değerlendirmesinin güncellenmiş bir 
versiyonunu sunmaktadır. Veritabanı güncellemesi, Kırgızistan›daki 
1073 örnek alanın yeniden sınıflandırılmasıyla sonuçlanmıştır. Saha 
doğrulama sonuçları, Kırgızistan’da ormanlık alanların 2019’da top-
lam arazinin 1,81 milyon hektarını (%9) kapladığını %5,33’lük bir 
belirsizlik ile göstermiştir. Halbuki, bu alan, uzaktan algılama çalış-
masına göre 1,36 milyon ha olarak hesaplanmıştır.
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1. Introduction

“Land use” describes how land is used for the sum 
of human activities and arrangements (Lambin, 
2006; Arsanjani, 2011; McConnell, 2015). Obser-
ving and monitoring land use is crucial for seve-
ral reasons, spanning environmental, economic, 
and social dimensions. Understanding how land is 
utilized and managed can significantly impact sus-
tainable development, resource management, and 
environmental conservation. The observation and 
monitoring of land use and land-use change (LU-
LUC) have made extensive use of remote sensing 
(Olokeogun et al., 2014; Mishra et al., 2016; Rai et 
al., 2016; Hua, 2017; Liping et al., 2018; Schepasc-
henko et al., 2019). Remote sensing offers consis-
tent, accurate, reliable, and quick land observations 
and assessments over time at various temporal and 
spatial scales at the local, regional, and global le-
vels to support the decision-making process (Reis, 
2008; Klein et al., 2012; Srivastava et al., 2013; Per-
vez et al., 2016). 

Using specific techniques, remote sensing ima-
ges-which can also be a great data source-can be 
effectively used to gather, evaluate, and simulate 
current information regarding LULUC (Pradhan et 
al., 2008; Singh et al., 2017). Accordingly, recent 
developments in this sector have enabled nations to 
map and monitor their land resources and environ-
ment more efficiently and economically (Martínez 
and Mollicone, 2012; Hansen et al., 2013; Khadka 
et al., 2020).

Monitoring LULUC with remote sensing is a com-
mon way to generate the data needed to calculate 
anthropogenic influences on the Earth’s system. 
Using remote sensing data, users can easily evalu-
ate and compute the land area on a wide scale that 
has been assigned to different land-use categories 
in the past and present (Bey et al., 2016).

Using remote sensing is time-efficient and econo-
mical in countries where the terrain is mountai-
nous. The area of the country is another factor in 
deciding whether to conduct LULUC monitoring 
and reporting via remote sensing or field inventory. 
Remote sensing is increasingly vital in Kyrgyzs-
tan for various applications, particularly environ-
mental monitoring, disaster management, and land 
resource management. The country’s unique geog-
raphy, characterized by mountainous terrain and 
significant ecological challenges, makes remote 
sensing an essential tool for addressing these issu-
es effectively. 

Remote sensing allows LULUCF monitoring (Li-
ping et al., 2018; Schepaschenko et al., 2019), 

mapping tree density (Crowther et al., 2015), con-
ducting forest inventory, and monitoring of forest 
trends and valuation of ecosystem services (Achard 
et al., 2010; Potapov et al., 2011; Hansen et al., 2013; 
Romero-Sanchez and Ponce-Hernandez, 2017; Lis-
ter et al., 2019; Schepaschenko et al., 2019). 

In addition to worldwide studies, local-level remote 
sensing research has been carried out in Kyrgyzs-
tan in several studies. Jia et al. (2019) used a hybrid 
approach to create a forest cover map by merging 
classifier results, geographical data, and land co-
ver. An estimated 472,369 ha (2.4%) of the nation’s 
land area are covered by forests. In the Mailuu-Suu 
Valley, Piroton et al. (2020) observed landslides 
and determined their triggering factors. Their fin-
dings demonstrated that small-scale displacement, 
long-term land degradation, intense rainfall events, 
and quick snowmelt cause landslides. In a different 
study, Nazarkulov et al. (2021) analyzed 85,000 
sampling units in the Uzgen region to create geo-
hazard maps, identified hazards in 3,500 plots, and 
carried out a geohazard inventory.

Conversely, De Simone et al. (2021) conducted a 
study to track the Mountain Green Cover Index. 
They found 41,400 ha of forestland had been lost 
in mountainous regions between 2015 and 2018. 
Isaev et al. (2022) finally tracked walnut forests 
using the normalized difference vegetation index 
(NDVI) and vegetation condition index (VCI) in 
western Tien Shan. The research addressed chal-
lenges in obtaining field data due to difficult access 
and aims to enhance ecological monitoring throu-
gh remote sensing. The study highlights the poten-
tial of using remote sensing to monitor ecological 
parameters over large areas, particularly in moun-
tainous regions where traditional data collection is 
challenging. The study also found a strong correla-
tion between the drought index derived from Sen-
tinel-2’s VCI and ground-based precipitation data, 
indicating that remote sensing can effectively mo-
nitor drought conditions. The study demonstrates 
that combining high-resolution unmanned aerial 
vehicle (UAV) data with satellite imagery can sig-
nificantly improve ecological monitoring capabili-
ties in complex terrains like Kyrgyzstan, ultimately 
contributing to better forest management practices 
and conservation strategies. 

Regular, useful, and quick land observations and 
evaluations at various geographical and temporal 
scales at the global, regional, and local levels are 
possible with remote sensing open-access software 
tools (Wulder and Coops, 2014; Turner et al., 2015; 
Klein et al., 2017). 

Collect Earth, developed by the Food and Agri-
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culture Organization of the United Nations (FAO), 
among other software, is a thorough and easy-to-
use instrument for monitoring land. It may be app-
lied to evaluate natural disasters, land-use changes, 
sustainable resource management, and ecosystem 
health. Bey et al. (2016) provided more technical 
information regarding Collect Earth.

Recently, Collect Earth has been extensively emp-
loyed in various research projects, such as creating 
forest cover maps (Schepaschenko et al., 2015), es-
timating global tree coverage and forests in dry-
lands (Bastin et al., 2017), determining LULUC 
(Martín-Ortega et al., 2018; García-Montero et al., 
2021a; Bassullu and Martín-Ortega, 2023), and 
monitoring trees in non-forestlands (García-Mon-
tero et al., 2021b).  

However, Collect Earth has certain drawbacks. 
Applying a suitable sampling design and sampling 
intensity to sufficiently capture the land parame-
ters’ variability is critical for precision and accu-
racy assessment. Also, the point-sampling metho-
dology limits the entire variability of the land that 
can be identified and measured because it is a non-
exhaustive spatial cover (Bey et al., 2016).

Additionally, even though remote sensing tech-
niques allow users to analyze satellite images in 
high and very high resolution, there are still no 
satellite images with sufficient temporal and spa-
tial resolution in some areas. The majority of these 
images are taken in isolated, mountainous regions 
that receive a lot of snowfall all year round. Since 
Google Earth is the primary source of the images 
used in this research, there is most likely not much 
interest to discover more regarding these locations. 
Missing or low/medium resolution remote sensing 
images make classification harder. For example, 
monitoring diverse forests, mapping forest types, 
and documenting LULUC may require higher-re-
solution images than those obtained from medium-
resolution satellites (i.e., Sentinel 2A (i.e., 10 m) 
and Landsat (30 m) (García-Montero, 2021a). Thus, 
it is quite difficult for users to classify land cover 
and determine changes in land use. There are also 
controversial sample plots with a hard-to-define 
type of land use categories without a field survey.

Validation and calibration are crucial elements in 
almost every remote sensing study. The models’ 
findings or the observations from remote sensing 
are compared to the ground measurements in both 
situations. The sensor’s field of view and the scale at 
which in-situ measurements are taken are frequent-
ly out of sync, especially in studies using medium-
resolution remote sensing (Baccini et al., 2007).

Field data are necessary for calibrating models ba-
sed on remote sensing and validating model outco-
mes (Franklin, 1986; Ardo, 1992; Cohen and Spies, 
1992; Danson and Curran, 1993; Gemmell, 1995; 
Wulder, 1998; Puhr and Donoghue, 2000; Cohen 
et al., 2001; Cohen et al., 2003). However, for prag-
matic reasons, the quantity of data collected and 
the geographic region visited during fieldwork are 
typically minimal. Indeed, the necessity to keep 
fieldwork expenses within reasonable bounds over 
wide swaths of land frequently leads to sampling 
relatively tiny regions with field plots smaller than 
one ha. Therefore, a major challenge when using 
field data in remote sensing-based studies is ma-
king sure that the in-situ measurements provide a 
sufficient and representative sample supporting the 
study or mapping goals (Baccini et al., 2007).

Thanks to ground-based data collected during the 
time-consuming validation work, users can com-
prehend land characteristics and variability across 
the land-use categories in greater detail. The data 
from both the remote sensing and the field validati-
on work provide more detailed land characteristics 
from a small number of field sites to the landscape 
level by drawing from the much larger number of 
sites evaluated in remote sensing studies. The data 
from the field validation can be used to estimate 
uncertainties within the spatial extent and area es-
timation of land-use categories (Bey et al., 2016).

The necessity of remote sensing validation in the 
field hasn’t gotten much attention despite its signi-
ficance. But recently, it has been noted in several 
articles as a significant issue, especially in relation 
to validation work (Milne and Cohen, 1999; Tian 
et al., 2002). 

Kyrgyzstan is a mountainous country with low re-
solution and no satellite images. This results in in-
correct land use classifications. The unavailability 
of high/very high spatial and temporal resolution 
satellite images (7.2%) and the availability of low 
spatial and temporal resolution satellite images 
(7.8%) were the primary reasons for mandatory fi-
eld verification. Hence, we conducted field valida-
tion work to verify the land-use, land-use change, 
and forestry (LULUCF) assessment in 2019. Field 
validation also supported the reassessment of in-
consistent plots due to operator bias. The research 
reported in this paper extends the combination of 
remote sensing and field validation efforts. It de-
monstrates the necessity of field validation work in 
remote sensing studies.
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2. Materials and Methods

2.1. Study site

The study site covers Kyrgyzstan’s territory (Figu-
re 1), located within the Tien Shan and Pamir-Alai 

Mountains. The country covers an area of 19.99 
million ha. State Forest Fund occupies 2.66 milli-
on ha (GoK, 2022). While forestlands cover 1.36 
million ha (6.8%) of the total land, croplands cover 
1.72 million ha (8.6%) (Bassullu and Martín‑Orte-
ga, 2023). 

Figure 1. Map of the study site (UN, 2011)
Şekil 1. Araştırma sahası haritası (UN, 2011)

2.2. Land use classes

This study used land use classes defined in Chapter 
3 of the 2006 IPCC Guidelines for National Gre-
enhouse Gas Inventories: Volume 4 Agriculture, 
Forestry and Other Land Use (IPCC, 2006). 

2.3. Data source and land use representation

Through a Collect Earth study, we used the sample 
plots and the first results of the LULUCF assess-
ment performed by Bassullu and Martín‑Ortega 
(2023). This research analyzed 13.414 1-ha sample 
plots via an augmented visual interpretation appro-
ach using very high spatial and temporal resoluti-
on satellite imagery on the Google Earth platform. 
The data generated through Collect Earth corres-
ponds to Approach 3 in Chapter 3 of the 2006 IPCC 
Guidelines. 

The activity data is annually spatially explicit land-
use conversion data where the position of each 
sampling unit is known, and therefore, auxiliary 
data -maps- can be used to stratify the informati-
on by regions, climatic zones, conservation areas, 
and forest concessions. Likewise, through Collect 
Earth, data can be extracted from areas by category 

and by changes between land use categories. This 
allows a very detailed analysis of land use dynami-
cs and enables the use of specific emission factors 
for the subdivision combinations of land use (forest 
type) and conservation area. 

2.4. Fieldwork for the validation

Bassullu and Martín-Ortega (2023) conducted the 
remote sensing study in 2019. Hence, the research, 
including available satellite images, covers 2000 
and 2019. 

Fieldwork for the validation process was planned 
after the LULUCF assessment in 2019. The objecti-
ve of the fieldwork was to confirm the accuracy of 
the LULUCF assessment, validate selected samp-
le plots from Collect Earth, and obtain additional 
data, if possible. Hence three groups were created 
with the national experts to conduct the field work. 
After consultation about the previous field invento-
ries in Kyrgyzstan, some concepts were extracted 
to help national experts carry out this task. Previ-
ous field works were conducted following Scheu-
ber’s (1999) study. Thus, we also used this study 
as a guide.
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2.4.1. Accessibility information

Scheuber (1999) decided not to visit sample plots in 
lake basins (e.g., Issyk-Kul, Son-Kul) and any ter-
ritory above 3.500 m due to accessibility problems. 
The remaining sample plots were sorted by acces-
sibility. We defined the following criteria; slope, 
the distance between sample plots and highways, 
and availability of forest plantations, when deci-
ding the accessibility of a sample plot. Hence, we 
established four categories regarding the accessibi-
lity of the sample plots. 

•	 Category 1: Slope up to 5º, the existence of fo-
rests, residence area (orchards, outdoor and by-
the-road plants), the distance between the sample 
plot and highway is 1-3 km. 

•	 Category 2: Slope between 6º -15º, forest cover 
up to 33%, the distance between the sample plot 
and highway is 3.1-5.0 km. 

•	 Category 3: Slope between 16º -30º, forest co-
ver from 34% to 66%, the distance between the 

sample plot and highway is 5.1-8 km. 

•	 Category 4: Slope over 31º, forest coverage over 
67%, the distance between the sample plot and 
highway is over 8.1 km (Chyngojoev et al., 2010).

2.4.2. Time consumption in the field

Table 1 shows that in all forest types, except broad-
leaved forests, about one day is needed to assess the 
information of one sample plot. The experience of 
the field teams reveals that in broadleaved forests, 
3 sample plots can be assessed in 2 days. Here, eit-
her a half day is typically needed for the fieldwork 
of one sample plot or a whole day (Scheuber, 1999).

The total time needed for one sample plot (about 
100 m) varied from 7.4 hours (h) to 9.6 h in a walnut 
(Juglans) forest, from 1.7 h to 7.4 h in a broadlea-
ved forest, from 4.4 h to 12.6 h in a spruce (Picea) 
forest, and from 8.0 h to 12.1 h in a juniper (Junipe-
rus) forest. Besides, the structure of the walnut and 
juniper forests is very homogeneous. Most variati-
on can be found in spruce forests.

Table 1. The time needed for traveling and measurement of plots during the fieldwork (Scheuber, 1999)
Tablo 1. Saha çalışması sırasında seyahat ve örnek noktaların ölçümü için gereken süre

Time
Walnut forest Broad-leaved 

forest Spruce forest Juniper forest All sample plots

Min % Min % Min % Min % Min %
Measurement 323 61 82 33 94 21 310 54 165 41
Travel 203 39 167 67 359 79 262 46 240 59
Total 526 100 249 100 453 100 572 100 405 100

The relation between measurement time and tra-
veling time varies greatly depending on the forest 
type (Table 1). For example, the worst relation is 
found in spruce forests, where 79% of the time is 
spent traveling, and only 21% is dedicated to work. 

2.4.3. Stratification by accessibility and 
selection of plots for field validation

Accessing the sampling units in regions with chal-
lenging topography or inadequate road systems can 
become exceedingly costly and time-consuming. 
A compromise to lower travel costs while mainta-
ining the probability sampling strategy is to stra-
tify based on accessibility zones (i.e., distance to 
roads) and choose a larger percentage of samples 
from the “easy to access” zones. It is advised to 
omit inaccessible locations for data gathering if the 
necessary information or data is available. These 
can include no-access locations such as national 
parks, military installations, and hilly or steep ter-
rain. Since the samples dropping in these regions 
were not observed from the ground, these regions 
are not included in the accuracy assessment (Haub 

et al., 2015).

In this regard, the following criteria were applied to 
select sample plots for field validation.

•	 Select only roads in good condition to conduct 
the fieldwork, or at least rank them in order of 
importance.

•	 Create a buffer of 5 km around the selected roads 
where plots within this buffer are candidates for 
visiting.

•	 Within this buffer, select those plots with low slo-
pe values.

•	 Check for consistency of selected plots, similar 
% of land use compared with the total number, 
and cover all elevation ranges to represent diffe-
rent ecological conditions.

•	 Calculate the number of plots to select based on 
the number of workers and days dedicated to fi-
eldwork.
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Only roads showing the maximum speed limit 
were selected using the layer from open street maps 
(OSM). Roads classified with this property seem 
to correspond to the main communication roads 
and visually connect all the different regions in the 
country. A 5 km buffer was applied, and all plots 
falling within this buffer were selected, with a total 
of 280 plots. To check the representativity of the 
plots chosen, they were compared with the whole 
population in two ways: First, in representativity of 
IPCC land use categories (Figure 2) and second, in 
their variability in altitude as a proxy of ecological 
conditions (Figure 3).

Figure 2. Share of each IPCC land use in all plots (left) 
and selected plots (right)

S: Settlement, W: Wetland, F: Forest, C: Cropland, O: 
Other land, G: Grassland 

Şekil 2. Tüm örnek noktalarda (solda) ve seçilen örnek 
noktalarda (sağda), her bir IPCC arazi kullanım oranı

S: Yerleşim, W: Sulak alan, F: Orman, C: Tarım arazisi, 
O: Diğer alan, G: Mera 

Figure 3. Elevation profile for all plots (left) and the 
selected plots for field validation (right)

Şekil 3. Tüm örnek noktalarda (solda) ve saha 
doğrulaması için seçilen örnek noktalarda (sağda) 

yükseklik profili

Based on the selection criteria, we planned to vi-
sit 673 sample plots due to limited time, human 
resources, and the project budget. Hence, Table 2 
presents the number of selected sample plots for fi-
eld validation by regions and land use categories. 
Figure 4 provides the distribution of selected samp-
le plots across the country.

After the  preliminary selection of sample plots, 
we developed a schedule and approved the preli-

minary routes for fieldwork. We also prepared the 
field verification forms for the sample plots. 

Even though Collect Earth, combined with Goog-
le Earth, Bing Maps, and Google Earth Engine, 
allows users to analyze satellite images, there are 
still no satellite images with sufficient temporal 
and spatial resolution for some areas. It is quite dif-
ficult for users to classify land cover and determine 
changes in land use. For example, in 2010 satelli-
te images, one of the sample plot was a pasture. 
However, today, this territory is used as cropland. 
Over the past year, it has been changed to a sett-
lement. There are also controversial sample plots 
with a hard-to-define type of land use categories 
without a field survey, and these sample plots were 
included in a field survey.

The analysis showed that no images with high spa-
tial resolution exist for 961 sample plots (7.2%). 
Certain regions of Kyrgyzstan, particularly those 
with mountains, do not have 1- meter or sub-meter 
pixel resolution images for the year 2016 and some 
years beyond. There, Landsat images are accessib-
le. While Google Earth imagery offers a combina-
tion of Airbus and Maxar products with resolutions 
between 0.15 and 1.5 meters and 0.15 to 5 meters, 
respectively, Bing Maps imagery offers products 
with pixel resolutions up to 0.30 meters. In additi-
on, in 1.045 plots (7.8%), images were taken betwe-
en 2001 and 2010. Suppose, in one case, it is rather 
challenging to define land cover types accurately; 
in other cases, it is difficult. In that case, there is no 
opportunity to determine land-use changes more 
precisely. In such cases, the Google Earth Engine 
service was actively used to show the vegetation 
index. However, despite this, in some cases, it was 
challenging to determine the subtypes of land use 
accurately. Thus, no the low spatial and temporal 
resolution of satellite images served as one of the 
reasons for mandatory verification in the field.

The field visit ended with verifying 941 sample 
plots (268 sample plots more than planned) since 
some were close to roads and easy to validate, par-
ticularly the croplands, settlements, and wetlands 
(Table 3). As suggested in previous fieldwork (Sc-
heuber, 1999), forest plots took a whole working 
day because there were many necessary measures. 
In contrast, croplands, settlements, and wetlands 
took less time. 

We also compared the slope with land use categori-
es in selected plots. Figure 5 shows the distribution 
of slopes by IPCC land use in selected plots. Beca-
use plots were located close to the main roads, so 
slopes generally have low values.
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2.5. Fieldwork 

We established three teams of national experts to 
conduct field validation work. The first team visi-
ted Chui, Issyk-Kul, and Naryn regions, the second 
team visited the Talas and Jalal-Abad regions, and 
the last team conducted field validation work in the 

Osh and Batken regions. The region maps are pre-
sented in Figures 6 to 10. 

We considered locality and transport  availability 
and used GIS tools in sample plot selection. Some 
parts of selected sample plots may be inaccessible 
due to various circumstances (poor road conditi-

Table 2. The number of selected plots for field validation in the regions
Tablo 2. Bölgelerde saha doğrulaması için seçilen örnek nokta sayıları

Region
Planned 

number of 
sample plots

Land use categories

Forestland Cropland Grassland Wetland Settlement Otherland

Chui 105 5 39 39 1 14 7
Issyk-Kul 86 9 19 38 2 7 11
Naryn 93 4 18 59 1 6 5
Talas 57 6 30 21 0 0 0
Jalal-Abad 153 43 28 82 0 0 0
Batken 77 13 24 40 0 0 0
Osh 102 11 51 40 0 0 0
Total 673 91 209 319 4 27 23

Table 3. Summary table of the surveyed field plots of the regions
Tablo 3. Bölgelere ait araştırma yapılan örnek noktaların özet tablosu

District name Planned sample plots Number of verified sample plots Difference
Chui 105 155 50

Issyk-Kul 86 111 25

Naryn 93 115 22

Talas 57 67 10

Jalal-Abad 153 196 43

Batken 77 164 87

Osh 102 133 31

Total 673 941 268

Figure 4. Map of selected plots for field validation (within 5 km from the main road) by land use categories
S: Settlement, W: Wetland, F: Forest, C: Cropland, O: Other land, G: Grassland 

Şekil 4. Arazi kullanım kategorilerine göre saha doğrulaması için seçilen örnek noktalar (ana yola 5 km)
S: Yerleşim, W: Sulak alan, F: Orman, C: Tarım arazisi, O: Diğer alan, G: Mera 
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Figure 5. Distribution of slopes by IPCC land use categories in selected plots
S: Settlement, W: Wetland, F: Forest, C: Cropland, O: Other land, G: Grassland 

Şekil 5. Seçilen örnek noktalardaki eğimlerin IPCC arazi kullanım kategorilerine göre dağılımı
S: Yerleşim, W: Sulak alan, F: Orman, C: Tarım arazisi, O: Diğer alan, G: Mera 

Figure 6. Map of Chui Region
Şekil 6. Chui Bölgesi haritası

Figure 7. Map of Issyk-Kul Region
Şekil 7. Issyk-Kul Bölgesi haritası
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Figure 8. Map of Naryn Region
Şekil 8. Naryn Bölgesi haritası

Figure 9. Map of Talas and Jalal-Abad regions
Şekil 9. Talas and Jalal-Abad Bölgeleri haritası

Figure 10. Map of Osh and Batken regions
Şekil 10. Osh and Batken bölgeleri haritası
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The overall agreement of comparing both assess-
ments in 2019 was 95 If we consider the last assess-
ment after the fieldwork, the wetland and grassland 
categories were the most accurate, with misclassi-
fication values of around 1% and 2%, respectively; 
the main error in classifying grassland was classif-
ying it as forest, cropland, and other land.  Anot-
her important misclassification was with the forest 
class, previously classified as grassland, probably 
due to the vast open woodlands in the country or 
the abundance of shrubs that could be confounded 
with trees using high-resolution imagery. The rest 

of the classes were all represented with accuracy 
values equal to or higher than 93%.

Table 5 shows a comparison between remote sen-
sing assessment and field validation work. Diffe-
rences in number of plots and uncertainties between 
assessments and years are also shown. The largest 
variation was detected in the forest category, with 
a difference in uncertainty of around (0.90%). The 
rest of the classes showed differences equal to or 
below 0.18% in uncertainty.

Once we reassessed all sample plots, we rerun the 

ons or lack of roads, enclaves, border sections),. 
Therefore, field trips were carried out by a flexible 
route. For example, some remote and inaccessible 
mountain areas of  the Jalal-Abad  region (Chatkal 
and Ala-Buka) and Osh region (Alai, Chon-Alai, 
and Kara-Kulzha) were excluded.

Due to the discrepancies between the types of land 
categories detected during the field survey, we de-
cided to re-inventory all sample plots to improve 
the reliability and update the Collect Earth databa-
se, considering the results obtained from the field 
validation. 

According to the results, a significant change oc-
curred in the grassland category since vegetation 
in satellite imagery is visually difficult to recogni-
ze. In such cases, NDVI is needed - this is a well-
known index showing vegetation’s presence and 
condition. We used multispectral images Landsat 
8 OLI, Landsat 7ETM +, Sentinel 2, and Modis to 
determine the presence of vegetation.

For example, Plot hi14517 was qualified as other 
land (bare soil). Based on the NDVI value, the plot 
contains vegetation, and its land use category is 
grassland. 

Besides, other lands, such as sandy, clay, and rocky 
surfaces, were classified as grasslands due to the 
lack of high-resolution satellite images. In this case, 
the NDVI was also used to determine the presence 
of vegetation. Many forestlands (i.e., juniper, hawt-
horn (Crataegus)) are qualified as pastured shrubs. 
Slight deviations were detected in the remaining 
areas, mainly caused by the reasons above. 

3. Findings

After the field validation work, we reviewed all 
sample plots based on Bassullu and Martín-Ortega 
(2023) assessed. First, we corrected misclassified 
plots. Based on the field validation work, 119 samp-
le plots from 941 were reclassified into other land 
use types, which is 12.6% (Annex). 

Later, we checked the whole database and applied 
the knowledge acquired during the fieldwork. In 
total, 1073 plots were reclassified after reviewing 
the entire dataset. The updated data was saved in 
the “Collect” database. We used the Saiku Server 
to update the LULUCF assessment based on the 
reclassified sample plots. Table 4 presents a confu-
sion matrix comparing sample plots through the re-
mote sensing assessment and field validation work.

Table 4. Confusion matrix comparing land use in the sample plots
Tablo 4. Örnek noktalarda arazi kullanım matrisi

*Producer’s accuracy (PA): Probability that a value predicted to be in a certain class is that class.
**User’s accuracy (UA): Probability that a value in a given class was classified correctly.
***Overall accuracy (OA): Percentage of correctly classified plots from known reference plots.

C
Remote sensing assessment

F G O S W Total UA**

Field validation 
work

Cropland 1105 0 34 2 1 1 1143 0.97
Forest 5 891 293 20 6 1 1216 0.73

Grassland 40 16 6838 105 4 4 7007 0.98
Other land 0 3 136 3116 0 1 3256 0.96
Settlement 13 1 2 1 227 1 245 0.93
Wetland 0 0 4 3 0 540 547 0.99

Total 1163 911 7307 3247 238 548 13414
PA* 0.95 0.98 0.94 0.96 0.95 0.99 0.95 OA***
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LULUCF analysis to update the size of all land use 
categories. Table 6 presents the land-use change 
matrix for 2000 and 2019.

Table 7 shows the land-use change matrix showing 
the percentage of different land-use classes.

The highest area loss between 2000 and 2019 
was in cropland (-1.05%), followed by wetland 
(-0.37%). Cropland is transformed mainly into sett-
lement (-0.53%) and grassland (-0.52%). Grassland 
(-0.17%), forest (-0.08%), and other land (-0.06%) 
are lost to a lesser extent. 

Table 5. The number of sample plots and uncertainties between remote sensing assessment and field validation work 
Tablo 5. Örnek noktaların sayıları ve uzaktan algılama değerlendirmesi ile saha doğrulama çalışması arasındaki 

belirsizlikler 

Field validation work Remote sensing assessment
Land use in

2000
Sample 

size
Uncertainty 

%
Land use in

2000
Sample 

size
Uncertainty 

%
Difference in 

sample number 
Difference in 
uncertainty 

Forest 1214 5.34% Forest 909 6.24% 305 -0.90%
Cropland 1150 5.55% Cropland 1166 5.51% -16 0.04%
Grassland 7010 1.62% Grassland 7312 1.54% -302 0.08%
Otherland 3255 2.99% Otherland 3246 3.00% 9 -0.01%
Wetland 549 8.25% Wetland 551 8.24% -2 0.01%
Settlement 236 12.66% Settlement 230 12.82% 6 -0.16%

Field validation work Remote sensing assessment
Land use in 

2019
Sample 

size
Uncertainty 

%
Land use in 

2019
Sample 

size
Uncertainty 

%
Difference in 

sample number
 Difference in 
uncertainty

Forest 1216 5.33% Forest 911 6.23% 305 -0.90%
Cropland 1143 5.57% Cropland 1163 5.51% -20 0.06%
Grassland 7007 1.62% Grassland 7307 1.55% -300 0.07%
Otherland 3256 2.99% Otherland 3247 3.00% 9 -0.01%
Wetland 547 8.27% Wetland 548 8.26% -1 0.01%
Settlement 245 12.42% Settlement 238 12.60% 7 -0.18%

Table 6. Land-use change matrix
Tablo 6. Arazi kullanımı değişim matrisi

Forest
Land use 2000 (ha)

Cropland Grassland Wetland Settlement Otherland

La
nd

 u
se

 2
01

9 
(h

a) Forest 1,809,741.07 3,017.12 1,487.17
Cropland 1,680,173.85 5,935.04 3,040.85
Grassland 1,454.88 8,815.54 10,387,747.94 1,481.86
Wetland 805,719.42
Settlement 8,975.66 4,391.62 349,930.31
Otherland 4,445.59 4,828,824.76

Table 7. Land-use change matrix (%)
Tablo 7. Arazi kullanımı değişim matrisi (%)

Land use 2000 (%)
Land use 2019 

(%) Forest Cropland Grassland Wetland Settlement Otherland Gain 
2000-2019

Forest 99.92 0.03 0.18 +0.21
Cropland 98.95 0.06 0.06 +0.12
Grassland 0.08 0.52 99.83 0.18 +0.78
Wetland 99.63 +0.00

Settlement 0.53 0.04 100.00 +0.57
Otherland 0.04 99.94 +0.04

Loss 2000-2019 -0.08 -1.05 -0.17 -0.37 -0.00 -0.06
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4. Discussion and Conclusions

The primary objective of this research was to vali-
date the remote sensing LULUCF assessment con-
ducted by Bassullu and Martín-Ortega (2023) by 
visiting selected sample plots in the field, updating 
the database for the current and historical LULU-
CF data, and verifying or revising inconsistent or 
incorrect sample plots based on the field data. 

Fieldwork was conducted by three teams consisting 
of Kyrgyz national experts. We determined 673 
sample plots for field validation. However, national 
experts visited 941 sample plots across the coun-
try. Based on the fieldwork, we detected incorre-
ct assessments in 119 sample plots where the land 
use category was misclassified. Hence, we decided 
to update the Collect Earth database based on the 
feedback from the field validation work. We reas-
sessed all 13,414 sample plots. The results of the 
surveyed sample plots became the basis for revi-
sing 1.073 sample plots by updating the database in 
Collect Earth and reanalyzing land use categories 
for all sample plots in the country. 

The overall agreement of comparing both assess-
ments in 2019 was 95%. If we consider the last as-
sessment after the fieldwork as the most accurate 
one, wetlands and grasslands had lower values of 
misclassification of about 1 and 2%, respectively. 
This was due to the main error for classifying 

grasslands that they were classified as forests, 
croplands, and other lands.

A notable misclassification occurred with the fo-
rest class, which had previously been classified as 
grassland. This confusion likely arose from the 
open structure of the woodlands in the country, 
as well as the abundance of shrubs that could be 
mistaken for trees when using high-resolution ima-
gery. However, by visiting the plots in the field, we 
were able to accurately differentiate this feature. 
All other classes had representation values equal to 
or greater than 93%.

The update of the Collect Earth database yielded a 
new LULUCF assessment. Based on the updated 
LULUCF assessment, forest cover is 1.81 million 
ha in Kyrgyzstan, 9% of the country’s land area, 
with a 5.33% uncertainty in 2019. Besides, minor 
increases were observed in forests (0.13%), settle-
ments (0.57%), and grasslands (0.61%). On the con-
trary, minor decreases were observed in otherlands 
(0.02%), wetlands (0.37%), and croplands (0.93%). 

This research recognizes the different forest and ot-
her land use extent estimates by other studies and, 
thus, advises further remote sensing studies with 
different techniques supported by extended field 
validation work.

The highest gains in 2019 correspond to grassland 
(+0.78%) followed by settlements (+0.57%), which 
have only been gained from other land-use types 
due to urban expansion. Forests show an increase 
(+0.21%), followed by cropland (+0.12) and other-
land (+0.04) to a lesser extent.

Net changes in land use, i.e., gains-losses, are 
shown in Figure 14. Net losses between 2000 and 
2019 correspond to cropland, wetland, and other 
land, whereas forest, settlement, and grassland inc-
rease in ascending order (Figure 11).

Figure 11. Net gains and losses of the area in the different IPCC land use classes between 2000 and 2019
Şekil 11. 2000 ile 2019 yılları arasında farklı IPCC arazi kullanım sınıflarında alansal net kazançlar ve kayıplar
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Annex. List of inconsistent land use categories of the sample plots

Ek. Örnek sahalarda yanlış sınıflandırılan arazi kullanım kategorilerinin listesi

№ District Name Misclassification
Land use classes 

Remote sensing data Field data

1 Alamedin 6

Cropland Grassland
Cropland Settlement
Grassland Cropland
Cropland Grassland
Otherland Grassland
Grassland Settlement

2 Issyk-Ata 1 Cropland Settlement

3 Kemin 2
Wetland Otherland
Cropland Forest

4 Sokuluk 5

Cropland Settlement
Cropland Grassland
Cropland Grassland
Cropland Grassland

Settlement Forest

5 Zhaiyl 7

Grassland Forest
Cropland Grassland
Otherland Grassland
Otherland Grassland
Grassland Cropland
Cropland Forest
Cropland Grassland

6 Panfilov 3
Otherland Grassland
Otherland Grassland
Cropland Settlement

Total Chui Region 24  

7 Ton 2
Cropland Grassland
Otherland Grassland

8 Seven-Oguz 4

Grassland Forest
Forest Grassland

Otherland Grassland
Grassland Forest

9 White Water 2
Cropland Grassland
Grassland Cropland

10 Tup 2
Wetland Grassland

Otherland Settlement

11 Issyk-Kul 7

Cropland Settlement
Cropland Grassland
Grassland Cropland
Grassland Otherland
Grassland Otherland
Grassland Otherland
Grassland Otherland
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Annex. List of inconsistent land use categories of the sample plots (Continued)

Ek. Örnek sahalarda yanlış sınıflandırılan arazi kullanım kategorilerinin listesi (Devam)

Total Issyk-Kul Region 17  

1 Kochkor 4

Settlement Forest
Otherland Grassland
Settlement Grassland
Wetland Grassland

2 Jumgal 3
Cropland Grassland
Cropland Grassland
Cropland Settlement

3 Naryn 5

Grassland Forest
Cropland Grassland
Cropland Grassland
Cropland Grassland
Cropland Grassland

4 At-Bashy 3
Cropland Grassland
Cropland Grassland
Otherland Grassland

5 Ak-Talaa 2
Cropland Grassland
Grassland Otherland

Total Naryn Region 17  

1 Talas 2
Grassland Forest
Grassland Forest

2 Kara-Buura 2
Cropland Grassland
Otherland Grassland

Total Talas Region 4

1 Suzak 4

Forest Settlement
Grassland Cropland
Grassland Cropland
Grassland Cropland

2 Bazar-Korgon 3
Grassland Cropland
Grassland Forest
Grassland Forest

3 Nooken 8

Grassland Forest
Forest Grassland

Grassland Forest
Cropland Grassland
Cropland Grassland
Grassland Cropland
Grassland Forest
Grassland Forest
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Annex. List of inconsistent land use categories of the sample plots (Continued)

Ek. Örnek sahalarda yanlış sınıflandırılan arazi kullanım kategorilerinin listesi(Devam)

4 Aksy 10

Grassland Forest
Grassland Forest
Grassland Forest
Cropland Grassland
Grassland Forest
Grassland Otherland
Grassland Forest
Grassland Forest
Grassland Forest
Grassland Forest

5 Toktogul 4

Grassland Otherland
Cropland Grassland
Grassland Otherland
Grassland Otherland

Total Jalal-Abad Region 29

1 Ozgon 10

Cropland Forest
Cropland Settlement
Cropland Grassland
Cropland Grassland
Grassland Forest
Cropland Forest

Settlement Forest
Cropland Settlement
Grassland Cropland
Grassland Forest

2

Kara-Suu 3
Grassland Otherland
Cropland Grassland
Cropland Forest

Aravan 1 Grassland Cropland

Nookat 5

Grassland Forest
Grassland Forest
Grassland Otherland

Forest Grassland
Cropland Grassland

Total Osh Region 19

1 Kadamjai 5

Grassland Otherland
Grassland Otherland
Grassland Otherland
Grassland Otherland
Cropland Grassland

2 Leilek 4

Wetland Settlement
Grassland Otherland
Grassland Otherland
Grassland Otherland

Total Batken Region 9  
Grand total 119  
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